ANALOG DEVICES

2．5 V to 5．5 V，Paralle Interface OctalVoltage Output8－／10－／12－BitDACs

Preliminary Technical Data

FEATURES

AD5346：Octal 8－Bit DAC
AD5347：Octal 10－Bit DAC
AD5348：Octal 12－Bit DAC
Low Power Operation： $1.4 \mathrm{~mA}(\max) @ 3 \mathrm{~V}$
Power－Down to 100 nA＠ 3 V， 240 nA＠ 5 V
Guaranteed Monotonic by Design Over All Codes
Rail－to－Rail Output Range：0－V $\mathbf{V}_{\text {ref }}$ or 0－2 $\mathrm{V}_{\text {ReF }}$
Power－On Reset to Zero Volts
Simultaneous Update of DAC Outputs via $\overline{\text { LDAC }}$ Pin
Asynchronous CLR Facility
Readback
Buffered／Unbuffered Reference Inputs
20ns WR time
38－lead TSSOP／6mm x 6 mm 40－lead CSP Packaging
Temperature Range：$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
APPLICATIONS
Portable Battery－Powered Instruments
Digital Gain and Offset Adjustment
Programmable Voltage and Current Sources
Optical Networking
Automatic Test Equipment
Mobile Communications
Programmable Attenuators
Industrial Process Control

GENERAL DESCRIPTION

The AD5346／AD5347／AD5348 are octal 8－，10－，and 12－ bit DACs，operating from a 2.5 V to 5.5 V supply．These devices incorporate an on－chip output buffer that can drive the output to both supply rails，and also allows a choice of buffered or unbuffered reference input．
The AD5346／AD5347／AD5348 have a parallel interface． $\overline{\mathrm{CS}}$ selects the device and data is loaded into the input registers on the rising edge of $\overline{\mathrm{WR}}$ ．A readback feature allows the internal DAC registers to be read back through the digital port．
The GAIN pin on these devices allows the output range to be set at 0 V to $\mathrm{V}_{\mathrm{REF}}$ or 0 V to $2 \times \mathrm{V}_{\mathrm{REF}}$ ．
Input data to the DACs is double－buffered，allowing si－ multaneous update of multiple DACs in a system using the $\overline{L D A C}$ pin．
An asynchronous $\overline{\mathrm{CLR}}$ input is also provided，which resets the contents of the Input Register and the DAC Register to all zeros．These devices also incorporate a power－on－reset circuit that ensures that the DAC output powers on to 0 V and remains there until valid data is written to the device．

All three parts are pin－compatible，which allows the user to select the amount of resolution appropriate for their application without redesigning their circuit board．

[^0]
PRELIMINARY TECHNICAL DATA

AD5346/AD5347/AD5348-SPECIFICATIONS

($\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=2 \mathrm{~V} . \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to $\mathrm{GND} ; \mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}$ to GND ; all specifications T_{MI} to $\mathrm{T}_{\mathrm{MAX}}$ unless otherwise noted.)

Parameter ${ }^{1}$	B Version ${ }^{2}$			Unit	Conditions/Comments
	Min	Typ	Max		
DCPERFORMANCE ${ }^{3,4}$ AD5346 Resolution Relative Accuracy DifferentialNonlinearity AD5347 Resolution Relative Accuracy DifferentialNonlinearity AD5348 Resolution Relative Accuracy DifferentialNonlinearity OffsetError Gain Error LowerDeadband ${ }^{5}$ UpperDeadband Offset Error Drift ${ }^{6}$ Gain Error Drift ${ }^{6}$ DC Power Supply Rejection Ratio ${ }^{6}$ DC Crosstalk ${ }^{6}$		$\begin{aligned} & 8 \\ & \pm 0.15 \\ & \pm 0.02 \\ & 10 \\ & \pm 0.5 \\ & \pm 0.05 \\ & \\ & 12 \\ & \pm 2 \\ & \pm 0.2 \\ & \pm 0.4 \\ & \pm 0.1 \\ & 10 \\ & 10 \\ & -12 \\ & -5 \\ & -60 \\ & 200 \end{aligned}$	± 1 ± 0.25 ± 4 ± 0.5 ± 16 ± 1 ± 3 ± 1 60 60	Bits LSB LSB Bits LSB LSB Bits LSB LSB \% of FSR \% of FSR mV mV ppm of $\mathrm{FSR} /{ }^{\circ} \mathrm{C}$ ppm of FSR $/{ }^{\circ} \mathrm{C}$ dB $\mu \mathrm{V}$	Guaranteed Monotonic By Design Over All Codes Guaranteed Monotonic By Design Over All Codes Guaranteed Monotonic By Design Over All Codes Lower Deadband Exists Only if Offset Error Is Negative $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$. Upper Deadband Exists Only if $\mathrm{V}_{\mathrm{REF}}=\mathrm{V}_{\mathrm{DD}}$ $\begin{aligned} & \Delta \mathrm{V}_{\mathrm{DD}}= \pm 10 \% \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } \mathrm{GND}, 2 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{DD}} ; \mathrm{C}_{\mathrm{L}}=200 \mathrm{pF} \text { to GND; } \\ & \text { Gain }=1 \end{aligned}$
DACREFERENCE INPUT ${ }^{6}$ $\mathrm{V}_{\text {REF }}$ Input Range $\mathrm{V}_{\text {REF }}$ Input Range $\mathrm{V}_{\text {REF }}$ Input Impedance ReferenceFeedthrough Channel-to-ChannelIsolation	$\begin{aligned} & 1 \\ & 0.25 \end{aligned}$	$\begin{aligned} & >10 \\ & 90 \\ & 45 \\ & -90 \\ & -75 \end{aligned}$	V_{DD} V_{DD}	V V MR $k \Omega$ $k \Omega$ dB dB	Buffered Reference Mode Unbuffered Reference Mode Buffered Reference Mode and Power-Down Mode Gain $=1$. Input Impedance $=R_{\text {DAC }}$ Gain $=2$. Input Impedance $=\mathrm{R}_{\mathrm{DAC}}$ Frequency $=10 \mathrm{kHz}$ Frequency $=10 \mathrm{kHz}$
OUTPUTCHARACTERISTICS ${ }^{6}$ Minimum Output Voltage ${ }^{4,7}$ Maximum Output Voltage ${ }^{4,7}$ DC OutputImpedance Short Circuit Current Power-Up Time		0.001 $V_{\text {DD }}$ 0.5 25 16 2.5 5		V min V max Ω mA mA $\mu \mathrm{s}$ $\mu \mathrm{s}$	Rail-to-Rail Operation $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=3 \mathrm{~V} \end{aligned}$ Coming Out of Power-Down Mode. $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ Coming Out of Power-Down Mode. $\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$
LOGICINPUTS ${ }^{6}$ Input Current V_{IL}, Input Low Voltage V_{IH}, Input High Voltage PinCapacitance	1.7	3	$\begin{aligned} & \pm 1 \\ & 0.8 \\ & 0.8 \\ & 0.7 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{pF} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \% \\ & \mathrm{~V}_{\mathrm{DD}}=3 \mathrm{~V} \pm 10 \% \\ & \mathrm{~V}_{\mathrm{DD}}=2.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=2.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \end{aligned}$
LOGIC OUTPUTS ${ }^{6}$ $\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}$ Output Low Voltage, $\mathrm{V}_{\text {OL }}$ Output High Voltage, V_{OH} $\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V} \text { to } 3.6 \mathrm{~V}$ Output Low Voltage, V_{OL} Output High Voltage, V_{OH}	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}-1 \\ & \mathrm{~V}_{\mathrm{DD}}-0.5 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\text {SINK }}=2 \mathrm{~mA} \\ & \mathrm{I}_{\text {SOURCE }}=2 \mathrm{~mA} \\ & \mathrm{I}_{\text {SINK }}=2 \mathrm{~mA} \\ & \mathrm{I}_{\text {SOURCE }}=2 \mathrm{~mA} \end{aligned}$
POWERREQUIREMENTS $V_{D D}$ I_{DD} (Normal Mode) $\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}$ $\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V} \text { to } 3.6 \mathrm{~V}$ I_{DD} (Power-Down Mode) $\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}$ $\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V} \text { to } 3.6 \mathrm{~V}$	2.5	1 0.8 0.4 0.12	$\begin{aligned} & 5.5 \\ & 1.8 \\ & 1.5 \\ & 1 \\ & 1 \end{aligned}$	V mA mA $\mu \mathrm{A}$ $\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{GND}$ All DACs in Unbuffered Mode. In Buffered Mode, extra current is typically $\mathrm{x} \mu \mathrm{A}$ per DAC where $\mathrm{x}=$ $\begin{aligned} & 5 \mu \mathrm{~A}+\mathrm{V}_{\mathrm{REE}} / \mathrm{R}_{\mathrm{DAC}} . \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{GND} \end{aligned}$

PRELIMINARY TECHNICAL DATA

AD5346/AD5347/AD5348

NOTES
${ }^{1}$ See Terminology section.
${ }^{2}$ Temperature range: B Version: $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$; typical specifications are at $25^{\circ} \mathrm{C}$.
${ }^{3}$ Linearity is tested using a reduced code range: AD5346 (Code 8 to 255); AD5347 (Code 28 to 1023); AD5348 (Code 115 to 4095).
${ }^{4}$ DC specifications tested with outputs unloaded.
${ }^{5}$ This corresponds to x codes. $\mathrm{x}=$ Deadband voltage/LSB size.
${ }^{6}$ Guaranteed by design and characterisation, not production tested.
${ }^{7}$ In order for the amplifier output to reach its minimum voltage, Offset Error must be negative. In order for the amplifier output to reach its maximum voltage, $\mathrm{V}_{\mathrm{REF}}=\mathrm{V}_{\mathrm{DD}}$ and "Offset plus Gain" Error must be positive.
Specifications subject to change without notice.

AC CHARACTERISTICS ${ }^{1}\left(V_{D D}=2.5 \mathrm{~V}\right.$ to $5.5 \mathrm{~V} . \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to $\mathrm{GND} ; \mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}$ to GND . All specifications $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ unless otherwise noted.)

Parameter ${ }^{2}$	B Version ${ }^{3}$			Unit	Conditions/Comments
	Min	Typ	Max		
Output Voltage Settling Time					$\mathrm{V}_{\text {REF }}=2 \mathrm{~V}$. See Figure 20
AD5346		6	8	μs	1/4 Scale to 3/4 Scale Change (40 H to C0H)
AD5347		7	9	$\mu \mathrm{s}$	$1 / 4$ Scale to $3 / 4$ Scale Change (100 H to 300 H)
AD5348		8	10	$\mu \mathrm{s}$	$1 / 4$ Scale to 3/4 Scale Change (400 H to C00 H)
Slew Rate		0.7		V/us	
Major Code Transition Glitch Energy		8		nV -s	1 LSB Change Around Major Carry
DigitalFeedthrough		0.5		nV -s	
Digital Crosstalk		1		nV -s	
Analog Crosstalk		0.5		nV -s	
DAC-to-DAC Crosstalk		3.5		nV -s	
MultiplyingBandwidth		200		kHz	$\mathrm{V}_{\mathrm{REF}}=2 \mathrm{~V} \pm 0.1 \mathrm{Vp}-\mathrm{p}$. Unbuffered Mode
Total Harmonic Distortion		-70		dB	$\mathrm{V}_{\mathrm{REF}}=2.5 \mathrm{~V} \pm 0.1 \mathrm{~V}$ p-p. Frequency $=10 \mathrm{kHz}$; UnbufferedMode.

NOTES

${ }^{1}$ Guaranteed by design and characterization, not production tested.
${ }^{2}$ See Terminology section.
${ }^{3}$ Temperature range: B Version: $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$; typical specifications are at $25^{\circ} \mathrm{C}$.
Specifications subject to change without notice.

Figure 1. Load Circuit for Digital Output Timing Specifications

AD5346/AD5347/AD5348

Parameter	Limit at $\mathrm{T}_{\text {MIN }}, \mathrm{T}_{\text {MAX }}$	Unit	Condition/Comments
Data Write Mode (Figure 1)			
t_{1}	0	ns min	$\overline{\mathrm{CS}}$ to $\overline{\mathrm{WR}}$ Setup Time
t_{2}	0	ns min	$\overline{\mathrm{CS}}$ to $\overline{\mathrm{WR}}$ Hold Time
t_{3}	20	ns min	$\overline{\mathrm{WR}}$ Pulsewidth
t_{4}	5	ns min	Data, GAIN, BUF Setup Time
t_{5}	4.5	ns min	Data, GAIN, BUF Hold Time
t_{6}	5	ns min	Synchronous Mode. $\overline{\text { WR }}$ Falling to $\overline{\text { LDAC }}$ Falling.
t_{7}	5	ns min	Synchronous Mode. $\overline{\text { LDAC }}$ Falling to $\overline{\text { WR }}$ Rising.
t_{8}	4.5	ns min	Synchronous Mode. WR Rising to LDAC Rising.
t_{9}		ns min	Asynchronous Mode. $\overline{\text { LDAC R Rising to } \overline{\text { WR }} \text { Rising. }}$
t_{10}	4.5	ns min	Asynchronous Mode. WR Rising to LDAC Falling.
t_{11}	20	ns min	LDAC Pulsewidth
t_{12}	20	ns min	CLR Pulsewidth
t_{13}	50	ns min	Time Between $\overline{\mathrm{WR}}$ Cycles
t_{14}	${ }_{0}^{20}$	ns min	A0, A1, A2 Setup Time
t_{15}	0 0	ns min	A0, A1, A2 Hold Time
Data Readback Mode (Figure 2)			
t_{16}	0	ns min	A0, A1, A2 to $\overline{\mathrm{CS}}$ Setup Time
t_{17}	0	ns min	A0, A1, A2 to $\overline{\mathrm{CS}}$ Hold Time
t_{18}	0	ns min	$\overline{\mathrm{CS}}$ to falling edge of $\overline{\mathrm{RD}}$
t_{19}	20	ns min	RD Pulsewidth; $\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$ to 5.5 V
	40	ns min	$\overline{\mathrm{RD}}$ Pulsewidth; $\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$ to 3.6 V
t_{20}	0	ns min	$\overline{\mathrm{CS}}$ to $\overline{\mathrm{RD}}$ Hold Time
t_{21}	22	ns max	Data Access time after falling edge of $\overline{\mathrm{RD}} ; \mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$ to 5.5 V
	35	ns max	Data Access time after falling edge of $\mathrm{RD} ; \mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$ to 3.6 V Bus Relinquish Time after rising edge of $\overline{\mathrm{RD}}$
t_{22}	30	ns max	Bus Relinquish Time after rising edge of KD
t_{23}	22	ns max	$\overline{\mathrm{CS}}$ falling edge to Data; $\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$ to 5.5 V
	35	ns max	$\overline{\mathrm{CS}}$ falling edge to Data; $\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$ to 3.6 V

NOTES

${ }^{1}$ Guaranteed by design and characterization, not production tested.
${ }^{2}$ All input signals are specified with $\mathrm{tr}=\mathrm{tf}=5 \mathrm{~ns}\left(10 \%\right.$ to 90% of $\left.\mathrm{V}_{\mathrm{DD}}\right)$ and timed from a voltage level of $\left(\mathrm{V}_{\mathrm{IL}}+\mathrm{V}_{\mathrm{IH}}\right) / 2$.
${ }^{3}$ See Figure 1.
Specifications subject to change without notice.

Figure 2. Parallel Interface Write Timing Diagram

Figure 3. Parallel Interface Read Timing Diagram

```
ABSOLUTE MAXIMUM RATINGS*
( }\mp@subsup{\textrm{T}}{\textrm{A}}{}=2\mp@subsup{5}{}{\circ}\textrm{C}\mathrm{ unless otherwise noted)
V
Digital Input Voltage to GND .. -0.3 V to V DD + 0.3 V
Digital Output Voltage to GND . -0.3 V to V VD + 0.3 V
Reference Input Voltage to GND -0.3 V to V DD + 0.3 V
V VUT to GND ................. - 0.3 V to V VDD }+0.3\textrm{V
Operating Temperature Range
    Industrial (B Version) . . . . . . . . . . - 40 }\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ to }+10\mp@subsup{5}{}{\circ}\textrm{C
Storage Temperature Range ......... }6\mp@subsup{6}{}{\circ}\textrm{C}\mathrm{ to }+15\mp@subsup{0}{}{\circ}\textrm{C
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . 150 % C
38-lead TSSOP Package
    Power Dissipation ........... (T
    \mp@subsup{0}{\textrm{JA}}{}}\mathrm{ Thermal Impedance .................. 98.3 }\mp@subsup{}{}{\circ}\textrm{C}/\textrm{W
    \mp@subsup{0}{\mathrm{ JC }}{}}\mathrm{ Thermal Impedance . . . . . . . . . . . . . . . . 8.9 }\mp@subsup{}{}{\circ}\textrm{C}/\textrm{W
```

```
40-lead CSP Package
    Power Dissipation .......... ( }\mp@subsup{\textrm{T}}{\textrm{J}}{}\operatorname{max}-\mp@subsup{T}{\textrm{A}}{})/\mp@subsup{0}{\textrm{JA}}{}\textrm{mW
    0
    \mp@subsup{0}{\textrm{JC}}{}}\mathrm{ Thermal Impedance ...................... }\mp@subsup{}{}{\circ}\textrm{C}/\textrm{W
Lead Temperature, Soldering (10 seconds) ..... . 300 }\mp@subsup{}{}{\circ}\textrm{C
    IR Reflow, Peak Temperature ............... +220*
```

*Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
AD5346BRU	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	TSSOP (Thin Shrink Small Outline Package)	RU-38
AD5346BCP	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	CSP (Chip Scale Package)	CP-40
AD5347BRU	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	TSSOP (Thin Shrink Small Outline Package)	RU-38
AD5347BCP	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	CSP (Chip Scale Package)	CP-40
AD5348BRU	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	TSSOP (Thin Shrink Small Outline Package)	RU-38
AD5348BCP	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	CSP (Chip Scale Package)	CP- 40

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD5346/AD5347/AD5348 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

AD5346/AD5347/AD5348

AD5346 PIN CONFIGURATIONS

AD5346 PIN FUNCTION DESCRIPTIONS

TSSOP ${ }^{\text {Pin }}$	o. CSP	Mnemonic	Function
1	35	$\mathrm{V}_{\text {REF }} \mathrm{GH}$	Reference Input for DACs G and H .
2	36	$\mathrm{V}_{\text {REF }} \mathrm{EF}$	Reference Input for DACs E and F.
3	37	$\mathrm{V}_{\text {REF }} \mathrm{CD}$	Reference Input for DACs C and D.
4	38,39	$\mathrm{V}_{\text {D }}$	Power Supply Pin(s). This part can operate from 2.5 V to 5.5 V and the supply should be decoupled with a $10 \mu \mathrm{~F}$ capacitor in parallel with a $0.1 \mu \mathrm{~F}$ capacitor to GND. Both $V_{D D}$ pins on the CSP package must be at the same potential.
5	40	$\mathrm{V}_{\text {REF }} \mathrm{AB}$	Reference Input for DACs A and B.
6-9, 11-14	1-4, 7-10	Vout X	Output of DAC X. Buffered Output with Rail-to-Rail Operation.
10	5,6	AGND	Analog Ground. Ground Reference for Analog Circuitry.
15, 21-24	11, 17-20	DGND	Digital Ground. Ground Reference for Digital Circuitry.
16	12	BUF	Buffer Control Pin. This pin controls whether the reference input to the DAC is buffered or unbuffered.
17	13	$\overline{\mathrm{L}} \overline{\mathrm{D}} \overline{\mathrm{A}} \overline{\mathrm{C}}$	Active Low Control Input that Updates the DAC Registers with the Contents of the Input Registers. This allows all DAC outputs to be simultaneously updated.
18	14	A0	LSB Address Pin for Selecting which DAC is to Be Written to.
19	15	A 1	Address Pin for Selecting which DAC is to Be Written to.
20	16	A2	MSB Address Pin for Selecting which DAC is to Be Written to.
25-32	21-28	$\mathrm{DB}_{0}-\mathrm{DB}_{7}$	Eight Parallel Data Inputs. DB_{7} is the MSB of these eight bits.
33	29	$\overline{\mathrm{C}} \overline{\mathrm{S}}$	Active Low Chip Select Input. This is used in conjunction with $\overline{\mathrm{WR}}$ to write data to the parallel interface, or with $\overline{\mathrm{RD}}$ to readback data from a DAC.
34	30	$\overline{\mathrm{R}} \overline{\mathrm{D}}$	Active Low Read Input. This is used in conjunction with $\overline{\mathrm{CS}}$ to read data back from the internal DACS.
35	31	$\overline{\mathrm{W}} \overline{\mathrm{R}}$	Active Low Write Input. This is used in conjunction with $\overline{\mathrm{CS}}$ to write data to the parallel interface.
36	32	GAIN	Gain Control Pin. This controls whether the output range from the DAC is 0 $\mathrm{V}_{\mathrm{REF}}$ or $0-2 \mathrm{~V}_{\mathrm{REF}}$.
37	33	$\overline{\mathrm{C}} \overline{\mathrm{L}} \overline{\mathrm{R}}$	Asynchronous Active Low Control Input that Clears All Input Registers and DAC Registers to Zeros.
38	34	$\overline{\mathrm{P}} \overline{\mathrm{D}}$	Power-Down Pin. This active low control pin puts all DACs into power-down mode.

AD5347 PIN CONFIGURATIONS

40-lead CSP Package

38-lead TSSOP Package

AD5347 PIN FUNCTION DESCRIPTIONS

TSSOP Pin ${ }^{\text {P }}$	No. CSP	Mnemonic	Function
1	35	$\mathrm{V}_{\text {REF }} \mathrm{GH}$	Reference Input for DACs G and H.
2	36	$\mathrm{V}_{\text {REF }} \mathrm{EF}$	Reference Input for DACs E and F.
3	37	$\mathrm{V}_{\text {REF }} \mathrm{CD}$	Reference Input for DACs C and D.
4	38,39	$\mathrm{V}_{\text {DD }}$	Power Supply Pin(s). This part can operate from 2.5 V to 5.5 V and the supply should be decoupled with a $10 \mu \mathrm{~F}$ capacitor in parallel with a $0.1 \mu \mathrm{~F}$ capacitor to GND. Both V_{DD} pins on the CSP package must be at the same potential.
5	40	$\mathrm{V}_{\text {REF }} A B$	Reference Input for DACs A and B.
6-9, 11-14	1-4, 7-10	$\mathrm{V}_{\text {Out }} \mathrm{X}$	Output of DAC X. Buffered Output with Rail-to-Rail Operation.
10	5,6	AGND	Analog Ground. Ground Reference for Analog Circuitry.
15, 21-22	11, 17-18	DGND	Digital Ground. Ground Reference for Digital Circuitry.
16	12	BUF	Buffer Control Pin. This pin controls whether the reference input to the DAC is buffered or unbuffered.
17	13	$\overline{\mathrm{L}} \overline{\mathrm{D}} \overline{\mathrm{A}} \overline{\mathrm{C}}$	Active Low Control Input that Updates the DAC Registers with the Contents of the Input Registers. This allows all DAC outputs to be simultaneously updated.
18	14	A0	LSB Address Pin for Selecting which DAC is to Be Written to.
19	15	A1	Address Pin for Selecting which DAC is to Be Written to.
23-32	19-28	$\mathrm{DB}_{0}-\mathrm{DB}_{9}$	Ten Parallel Data Inputs. DB_{9} is the MSB of these ten bits.
33	29	$\overline{\mathrm{C}} \overline{\mathrm{S}}$	Active Low Chip Select Input. This is used in conjunction with $\overline{\mathrm{WR}}$ to write data to the parallel interface, or with $\overline{\mathrm{RD}}$ to readback data from a DAC.
34	30	$\overline{\mathrm{R}} \overline{\mathrm{D}}$	Active Low Read Input. This is used in conjunction with $\overline{\mathrm{CS}}$ to read data back from the internal DACS.
35	31	$\overline{\mathrm{W}} \overline{\mathrm{R}}$	Active Low Write Input. This is used in conjunction with $\overline{\mathrm{CS}}$ to write data to the parallel interface.
36	32	GAIN	Gain Control Pin. This controls whether the output range from the DAC is 0 $\mathrm{V}_{\text {REF }}$ or $0-2 \mathrm{~V}_{\mathrm{REF}}$.
37	33	$\overline{\mathrm{C}} \overline{\mathrm{L}} \overline{\mathrm{R}}$	Asynchronous Active Low Control Input that Clears All Input Registers and DAC Registers to Zeros.
38	34	$\overline{\mathrm{P}} \overline{\mathrm{D}}$	Power-Down Pin. This active low control pin puts all DACs into power-down mode.

PRELIMINARY TECHNICAL DATA

AD5346/AD5347/AD5348

AD5348 PIN FUNCTION DESCRIPTIONS

TSSOP ${ }^{\text {Pin }}$	No. CSP	Mnemonic	Function
1	35	$\mathrm{V}_{\text {REF }} \mathrm{GH}$	Reference Input for DACs G and H.
2	36	$\mathrm{V}_{\text {REF }} \mathrm{EF}$	Reference Input for DACs E and F .
3	37	$\mathrm{V}_{\text {REF }} \mathrm{CD}$	Reference Input for DACs C and D.
4	38,39	$\mathrm{V}_{\text {D }}$	Power Supply Pin(s). This part can operate from 2.5 V to 5.5 V and the supply should be decoupled with a $10 \mu \mathrm{~F}$ capacitor in parallel with a $0.1 \mu \mathrm{~F}$ capacitor to GND. Both $V_{D D}$ pins on the CSP package must be at the same potential.
5	40	$\mathrm{V}_{\text {REF }} \mathrm{AB}$	Reference Input for DACs A and B.
$6-9,11-14$	1-4, 7-10	V out X	Output of DAC X. Buffered Output with Rail-to-Rail Operation.
10	5,6	AGND	Analog Ground. Ground Reference for Analog Circuitry.
15	11	DGND	Digital Ground. Ground Reference for Digital Circuitry.
16	12	BUF	Buffer Control Pin. This pin controls whether the reference input to the DAC is buffered or unbuffered.
17	13	$\bar{L} \bar{D} \bar{A} \bar{C}$	Active Low Control Input that Updates the DAC Registers with the Contents of the Input Registers. This allows all DAC outputs to be simultaneously updated.
18	14	A0	LSB Address Pin for Selecting which DAC is to Be Written to.
19	15	A 1	Address Pin for Selecting which DAC is to Be Written to.
20	16	A2	MSB Address Pin for Selecting which DAC is to Be Written to.
21-32	17-28	$\mathrm{DB}_{0}-\mathrm{DB}_{11}$	Twelve Parallel Data Inputs. DB_{11} is the MSB of these twelve bits.
33	29	$\overline{\mathrm{C}} \overline{\mathrm{S}}$	Active Low Chip Select Input. This is used in conjunction with $\overline{\mathrm{WR}}$ to write data to the parallel interface, or with $\overline{\mathrm{RD}}$ to readback data from a DAC.
34	30	$\overline{\mathrm{R}} \overline{\mathrm{D}}$	Active Low Read Input. This is used in conjunction with $\overline{\mathrm{CS}}$ to read data back from the internal DACS.
35	31	$\overline{\mathrm{W}} \overline{\mathrm{R}}$	Active Low Write Input. This is used in conjunction with $\overline{\mathrm{CS}}$ to write data to the parallel interface.
36	32	GAIN	Gain Control Pin. This controls whether the output range from the DAC is 0 $\mathrm{V}_{\text {REF }}$ or $0-2 \mathrm{~V}_{\text {REF }}$.
37	33	$\overline{\mathrm{C}} \overline{\mathrm{L}} \overline{\mathrm{R}}$	Asynchronous Active Low Control Input that Clears All Input Registers and DAC Registers to Zeros.
38	34	$\overline{\mathrm{P}} \overline{\mathrm{D}}$	Power-Down Pin. This active low control pin puts all DACs into power-down mode.

TERMINOLOGY

RELATIVE ACCURACY

For the DAC, Relative Accuracy or Integral Nonlinearity (INL) is a measure of the maximum deviation, in LSBs, from a straight line passing through the actual endpoints of the DAC transfer function. Typical INL versus Code plot can be seen in TPC's 1,2 , and 3.

DIFFERENTIAL NONLINEARITY

Differential Nonlinearity (DNL) is the difference between the measured change and the ideal 1 LSB change between any two adjacent codes. A specified differential nonlinearity of ± 1 LSB maximum ensures monotonicity. This DAC is guaranteed monotonic by design. Typical DNL versus Code plot can be seen in TPC's 4, 5, and 6.

OFFSET ERROR

This is a measure of the offset error of the DAC and the output amplifier. It is expressed as a percentage of the full-scale range.
If the offset voltage is positive, the output voltage will still be positive at zero input code. This is shown in Figure 5. Because the DACs operate from a single supply, a negative offset cannot appear at the output of the buffer amplifier. Instead, there will be a code close to zero at which the amplifier output saturates (amplifier footroom). Below this code there will be a deadband over which the output voltage will not change. This is illustrated in Figure 6 .

GAIN ERROR

This is a measure of the span error of the DAC (including any error in the gain of the buffer amplifier). It is the deviation in slope of the actual DAC transfer characteristic from the ideal expressed as a percentage of the full-scale range. This is illustrated in Figure 4.

Figure 4. Gain Error

Figure 5. Positive Offset Error and Gain Error

Figure 6. Negative Offset Error and Gain Error

PRELIMINARY TECHNICAL DATA

AD5346/AD5347/AD5348

OFFSET ERROR DRIFT

This is a measure of the change in Offset Error with changes in temperature. It is expressed in (ppm of fullscale range) $/{ }^{\circ} \mathrm{C}$.

GAIN ERROR DRIFT

This is a measure of the change in Gain Error with changes in temperature. It is expressed in (ppm of full-scale range) $/{ }^{\circ} \mathrm{C}$.

DC POWER-SUPPLY REJECTION RATIO (PSRR) This indicates how the output of the DAC is affected by changes in the supply voltage. PSRR is the ratio of the change in $\mathrm{V}_{\text {OUT }}$ to a change in V_{DD} for full-scale output of the DAC. It is measured in dBs. $\mathrm{V}_{\text {REF }}$ is held at 2 V and V_{DD} is varied $\pm 10 \%$.

DC CROSSTALK

This is the dc change in the output level of one DAC at midscale in response to a full-scale code change (all 0 s to all 1 s and vice versa) and output change of another DAC. It is expressed in $\mu \mathrm{V}$.

REFERENCE FEEDTHROUGH

This is the ratio of the amplitude of the signal at the DAC output to the reference input when the DAC output is not being updated (i.e., $\overline{\mathrm{LDAC}}$ is high). It is expressed in dBs.

CHANNEL-TO-CHANNEL ISOLATION

This is a ratio of the amplitude of the signal at the output of one DAC to a sine wave on the reference inputs of the other DACs. It is measured by grounding one $\mathrm{V}_{\text {REF }}$ pin and applying a $10 \mathrm{kHz}, 4 \mathrm{~V}$ peak-to-peak sine wave to the other $\mathrm{V}_{\mathrm{REF}}$ pins. It is expressed in dB .

MAJOR-CODE TRANSITION GLITCH ENERGY

Major-Code Transition Glitch Energy is the energy of the impulse injected into the analog output when the DAC changes state. It is normally specified as the area of the glitch in nV secs and is measured when the digital code is changed by 1 LSB at the major carry transition ($011 \ldots 11$ to $100 \ldots 00$ or $100 \ldots 00$ to $011 \ldots 11$).

DIGITAL FEEDTHROUGH

Digital Feedthrough is a measure of the impulse injected into the analog output of the DAC from the digital input pins of the device but is measured when the DAC is not being written to ($\overline{\mathrm{CS}}$ held high). It is specified in nV -secs and is measured with a full-scale change on the digital input pins, i.e. from all 0 s to all 1 s and vice versa.

DIGITAL CROSSTALK

This is the glitch impulse transferred to the output of one DAC at midscale in response to a full-scale code change (all 0 s to all 1 s and vice versa) in the input register of another DAC. It is expressed in nV secs.

ANALOG CROSSTALK

This is the glitch impulse transferred to the output of one DAC due to a change in the output of another DAC. It is measured by loading one of the input registers with a fullscale code change (all 0 s to all 1 s and vice versa) while keeping $\overline{\text { LDAC }}$ high. Then pulse $\overline{\text { LDAC }}$ low and monitor the output of the DAC whose digital code was not changed. The area of the glitch is expressed in nV secs.

DAC-TO-DAC CROSSTALK

This is the glitch impulse transferred to the output of one DAC due to a digital code change and subsequent output change of another DAC. This includes both digital and analog crosstalk. It is measured by loading one of the DACs with a full-scale code change (all 0s to all 1 s and vice versa) with the LDAC pin set low and monitoring the output of another DAC. The energy of the glitch is expressed in nV secs.

MULTIPLYING BANDWIDTH

The amplifiers within the DAC have a finite bandwidth. The Multiplying Bandwidth is a measure of this. A sine wave on the reference (with full-scale code loaded to the DAC) appears on the output. The Multiplying Bandwidth is the frequency at which the output amplitude falls to 3 dB below the input.

TOTAL HARMONIC DISTORTION

This is the difference between an ideal sine wave and its attenuated version using the DAC. The sine wave is used as the reference for the DAC and the THD is a measure of the harmonics present on the DAC output. It is measured in dBs .

FUNCTIONAL DESCRIPTION

The AD5346/AD5347/AD5348 are octal resistor-string DACs fabricated on a CMOS process with resolutions of 8,10 , and 12 bits, respectively. They are written to using a parallel interface. They operate from single supplies of 2.5 V to 5.5 V and the output buffer amplifiers offer rail-to-rail output swing. The gain of the buffer amplifiers can be set to 1 or 2 to give an output voltage range of 0 to $\mathrm{V}_{\text {REF }}$ or 0 to $2 \mathrm{~V}_{\text {REF. }}$. The AD5346/AD5347/AD5348 have reference inputs that may be buffered to draw virtually no current from the reference source. The devices have a power-down feature that reduces current consumption to only $100 \mathrm{nA} @ 3 \mathrm{~V}$.

Digital-to-Analog Section

The architecture of one DAC channel consists of a reference buffer and a resistor-string DAC followed by an output buffer amplifier. The voltage at the $\mathrm{V}_{\text {REF }}$ pin provides the reference voltage for the DAC. Figure 5 shows a block diagram of the DAC architecture. Since the input coding to the DAC is straight binary, the ideal output voltage is given by:

$$
V_{\text {OUT }}=V_{\text {REF }} \times \frac{D}{2^{N}} \times \text { Gain }
$$

where:
$\mathrm{D}=$ decimal equivalent of the binary code which is loaded to the DAC register:

$$
\begin{aligned}
& 0-255 \text { for AD5346 (8 Bits) } \\
& 0-1023 \text { for AD5347 (10 Bits) } \\
& 0-4095 \text { for AD5348 (12 Bits) }
\end{aligned}
$$

$\mathrm{N}=\mathrm{DAC}$ resolution
Gain $=$ Output Amplifier Gain (1 or 2)

Figure 7. Single DAC Channel Architecture

Resistor String

The resistor string section is shown in Figure 6. It is simply a string of resistors, each of value R. The digital code loaded to the DAC register determines at what node on the string the voltage is tapped off to be fed into the output amplifier. The voltage is tapped off by closing one of the switches connecting the string to the amplifier. Because it is a string of resistors, it is guaranteed monotonic.

Figure 8. Resistor String

DAC Reference Input

The DACs operate with an external reference. The AD5346/AD5347/AD5348 has a reference input for each pair of DACs. The reference inputs may be configured as buffered or unbuffered. This option is controlled by the BUF pin.
In buffered mode (BUF $=1$) the current drawn from an external reference voltage is virtually zero, as the inpedance is at least $10 \mathrm{M} \Omega$. The reference input range is 1 V to V_{DD}.

In unbuffered mode ($\mathrm{BUF}=0$) the user can have a reference voltage as low as 0.25 V and as high as V_{DD} since there is no restriction due to headroom and footroom of the reference amplifier. The impedance is still large at typically $90 \mathrm{k} \Omega$ for $0-\mathrm{V}_{\text {REF }}$ mode and $45 \mathrm{k} \Omega$ for $0-2 \mathrm{~V}_{\text {REF }}$ mode.
If using an external buffered reference (e.g. REF192) there is no need to use the on-chip buffer.

Output Amplifier

The output buffer amplifier is capable of generating output voltages to within 1 mV of either rail. Its actual range depends on $\mathrm{V}_{\text {REF }}$, GAIN, the load on $\mathrm{V}_{\text {OUT }}$ and offset error.
If a gain of 1 is selected (GAIN $=0$), the output range is 0.001 V to $\mathrm{V}_{\mathrm{REF}}$.

If a gain of 2 is selected (GAIN = 1), the output range is 0.001 V to $2 \mathrm{~V}_{\mathrm{REF}}$. However because of clamping the maximum output is limited to $\mathrm{V}_{\mathrm{DD}}-0.001 \mathrm{~V}$.
The output amplifier is capable of driving a load of 2 $\mathrm{k} \Omega$ to GND or V_{DD}, in parallel with 500 pF to GND or V_{DD}. The source and sink capabilities of the output amplifier can be seen in TPC 7.
The slew rate is $0.7 \mathrm{~V} / \mu \mathrm{s}$ with a half-scale settling time to ± 0.5 LSB (at 8 bits) of 6μ s with the output unloaded. See TPC 10.

PRELIMINARY TECHNICAL DATA

AD5346/AD5347/AD5348

PARALLEL INTERFACE

The AD5346, AD5347, and AD5348 load their data as a single $8-, 10-$, or 12 -bit word.

Double-Buffered Interface

The AD5346/AD5347/AD5348 DACs all have doublebuffered interfaces consisting of an input register and a DAC register. DAC data, BUF and GAIN inputs are written to the input register under control of the Chip Select $(\overline{\mathrm{CS}}$) and Write ($\overline{\mathrm{WR} \text {). }}$
Access to the DAC register is controlled by the $\overline{\text { LDAC }}$ function. When $\overline{\mathrm{LDAC}}$ is high, the DAC register is latched and the input register may change state without affecting the contents of the DAC register. However, when $\overline{\text { LDAC }}$ is brought low, the DAC register becomes transparent and the contents of the input register are transferred to it. The gain and buffer control signals are also doublebuffered and are only updated when $\overline{\mathrm{LDAC}}$ is taken low.
This is useful if the user requires simultaneous updating of all DACs and peripherals. The user may write to all input registers individually and then, by pulsing the $\overline{\text { LDAC }}$ input low, all outputs will update simultaneously.
These parts contain an extra feature whereby the DAC register is not updated unless its input register has been updated since the last time that $\overline{\mathrm{LDAC}}$ was brought low. Normally, when $\overline{\text { LDAC }}$ is brought low, the DAC registers are filled with the contents of the input registers. In the case of the AD5346/AD5347/AD5348, the part will only update the DAC register if the input register has been changed since the last time the DAC register was updated. This removes unnecessary crosstalk.
Clear Input ($\overline{\mathrm{CLR}}$)
$\overline{\mathrm{CLR}}$ is an active low, asynchronous clear that resets the input and DAC registers.
Chip Select Input ($\overline{\mathbf{C S}}$)
$\overline{\mathrm{CS}}$ is an active low input that selects the device.
Write Input ($\overline{\mathrm{W} R}$)
$\overline{\mathrm{WR}}$ is an active low input that controls writing of data to the device. Data is latched into the input register on the rising edge of $\overline{\mathrm{WR}}$.

Read Input ($\overline{\mathbf{R D}}$)

$\overline{\mathrm{RD}}$ is an active low input that controls when data is readback from the internal DAC registers. Data is latched into the input register on the rising edge of $\overline{\mathrm{RD}}$.

Load DAC Input ($\overline{\text { LDAC }}$)

$\overline{\text { LDAC }}$ transfers data from the input register to the DAC register (and hence updates the outputs). Use of the $\overline{\mathrm{LDAC}}$ function enables double buffering of the DAC data, GAIN data and BUF. There are two LDAC modes:
Synchronous Mode: In this mode the DAC register is updated after new data is read in on the rising edge of the $\overline{\mathrm{WR}}$ input. $\overline{\mathrm{LDAC}}$ can be tied permanently low or pulsed as in Figure 1.
Asynchronous Mode: In this mode the outputs are not updated at the same time that the input register is written to. When LDAC goes low the DAC register is updated with the contents of the input register.

POWER-ON RESET

The AD5346/AD5347/AD5348 are provided with a power-on reset function, so that they power up in a defined state. The power-on state is:

- Normal operation

- Reference Input Buffered
- $0-\mathrm{V}_{\mathrm{REF}}$ output range
- Output voltage set to 0 V

Both input and DAC registers are filled with zeros and remain so until a valid write sequence is made to the device. This is particularly useful in applications where it is important to know the state of the DAC outputs while the device is powering up.

POWER-DOWN MODE

The AD5346/AD5347/AD5348 have low power consumption, dissipating typically 1.5 mW with a 3 V supply and 3 mW with a 5 V supply. Power consumption can be further reduced when the DACs are not in use by putting them into power-down mode, which is selected by taking pin $\overline{\mathrm{PD}}$ low.
When the $\overline{\mathrm{PD}}$ pin is high, the DACs work normally with a typical power consumption of 1 mA at $5 \mathrm{~V}(0.8 \mathrm{~mA}$ at 3 V$)$. In power-down mode, however, the supply current falls to 240 nA at $5 \mathrm{~V}(100 \mathrm{nA}$ at 3 V$)$ when the DACs are powered down. Not only does the supply current drop, but the output stage is also internally switched from the output of the amplifier, making it open-circuit. This has the advantage that the outputs are three-state while the part is in powerdown mode, and provides a defined input condition for whatever is connected to the outputs of the DAC amplifiers. The output stage is illustrated in Figure 7.

Figure 9. Output Stage During Power-Down
The bias generator, the output amplifier, the resistor string, and all other associated linear circuitry are all shut down when the power-down mode is activated. However, the contents of the registers are unaffected when in power-down. The time to exit power-down is typically $2.5 \mu \mathrm{~s}$ for $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ and $5 \mu \mathrm{~s}$ when $\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$. This is the time from a rising edge on the $\overline{\mathrm{PD}}$ pin to when the output voltage deviates from its power-down voltage. See TPC 15 .

AD5346/AD5347/AD5348

Table I. AD5346/AD5347/AD5348 Truth Table

$\overline{\bar{C}} \bar{L} \bar{R}$	$\overline{\mathrm{L}} \overline{\mathrm{D}} \overline{\mathrm{A}} \overline{\mathrm{C}}$	$\overline{\mathrm{C}} \overline{\mathbf{S}}$	$\overline{\mathbf{W}} \overline{\mathrm{R}}$	$\overline{\mathrm{R}} \overline{\mathrm{D}}$	A2	A1	A0	Function
1	1	1	X	X	X	X	X	No Data Transfer
1	1	X	1	1	X	X	X	No Data Transfer
0	X	X	X	X	X	X	X	Clear All Registers
1	1	0	$0 \rightarrow 1$	1	0	0	0	Load DAC A Input Register
1	1	0	$0 \rightarrow 1$	1	0	0	1	Load DAC B Input Register
1	1	0	$0 \rightarrow 1$	1	0	1	0	Load DAC C Input Register
1	1	0	$0 \rightarrow 1$	1	0	1	1	Load DAC D Input Register
1	1	0	$0 \rightarrow 1$	1	1	0	0	Load DAC E Input Register
1	1	0	$0 \rightarrow 1$	1	1	0	1	Load DAC F Input Register
1	1	0	$0 \rightarrow 1$	1	1	1	0	Load DAC G Input Register
1	1	0	$0 \rightarrow 1$	1	1	1	1	Load DAC H Input Register
1	X	0	1	$0 \rightarrow 1$	0	0	0	Readback DAC Register A
1	X	0	1	$0 \rightarrow 1$	0	0	1	Readback DAC Register B
1	X	0	1	$0 \rightarrow 1$	0	1	0	Readback DAC Register C
1	X	0	1	$0 \rightarrow 1$	0	1	1	Readback DAC Register D
1	X	0	1	$0 \mapsto 1$	1	0	0	Readback DAC Register E
1	X	0	1	$0 \rightarrow 1$	1	0	1	Readback DAC Register F
1	X	0	1	$0 \mapsto 1$	1	1	0	Readback DAC Register G
1	X	0	1	$0 \rightarrow 1$	1	1	1	Readback DAC Register H
1	0	X	X	1	X	X	X	Update DAC Registers
X	X	X	0	0	X	X	X	Invalid Operation

$\mathrm{X}=$ don't care.

SUGGESTED DATABUS FORMATS

In many applications the GAIN and BUF are hardwired. However, if more flexibility is required, they can be included in a data bus. This enables the user to software program GAIN, giving the option of doubling the resolution in the lower half of the DAC range. In a bused system GAIN and BUF may be treated as data inputs since it is written to the device during a write operation and takes effect when $\overline{\mathrm{LDAC}}$ is taken low. This means that the reference buffers and the output amplifier gain of multiple DAC devices can be controlled using common GAIN and BUF lines.

The AD5347 and AD5348 databus must be at least 10, and 12 bits wide respectively, and are best suited to a 16 bit databus system.

Examples of data formats for putting GAIN and BUF on a 16 -bit databus are shown in Figure 8. Note that any unused bits above the actual DAC data may be used for GAIN and BUF.

AD5347

X	X	X	X	BUF	GAIN	DB9	DB8	DB7	DB6	DB5	DB 4	$\mathrm{DB3}$	DB 2	DB 1	$\mathrm{DB0}$

AD5348
 $\mathrm{X}=$ UNUSED BIT

Figure 10. AD5347/AD5348 Data Format for Word Load with GAIN and BUF Data on 16-Bit Bus

APPLICATIONS INFORMATION

Typical Application Circuits

The AD5346/AD5347/AD5348 can be used with a wide range of reference voltages, especially if the reference inputs are configured as unbuffered, in which case the devices offer full, one-quadrant multiplying capability over a reference range of 0.25 V to V_{DD}. More typically, these devices may be used with a fixed, precision reference voltage. Figure 11 shows a typical setup for the devices when using an external reference connected to the reference inputs. Suitable references for 5 V operation are the AD780,
ADR381 and REF192 (2.5 V references). For 2.5 V operation, suitable external references would be the AD589 and the AD1580 (1.2 V bandgap references).

AD5346/AD5347/AD5348

Driving $V_{D D}$ from the Reference Voltage

If an output range of zero to V_{DD} is required, the simplest solution is to connect the reference inputs to V_{DD}. As this supply may not be very accurate, and may be noisy, the devices may be powered from the reference voltage, for example using a 5 V reference such as the ADM663 or ADM666, as shown in Figure 12.

*ONLY ONE CHANNEL OF V $\mathrm{V}_{\text {REF }}$ AND $\mathrm{V}_{\text {OUT }}$ SHOWN

Figure 12. Using an ADM663/ADM666 as Power and Reference to the AD5346/AD5347/AD5348

Bipolar Operation Using the AD5346/AD5347/AD5348

The AD5346/AD5347/AD5348 have been designed for single-supply operation, but a bipolar output range is also possible using the circuit in Figure 13. This circuit will give an output voltage range of $\pm 5 \mathrm{~V}$. Rail-to-rail operation at the amplifier output is achievable using an AD820, the AD8519 or an OP196 as the output amplifier.

*ONLY ONE CHANNEL OF $\mathrm{V}_{\text {REF }}$ AND $\mathrm{V}_{\text {out }}$ SHOWN

Figure 13. Bipolar operation with the AD5346/AD5347/ AD5348

The output voltage for any input code can be calculated as follows:

V out $=\left[\left(\operatorname{REFIN} \times \mathrm{D} / 2^{\mathrm{N}}\right) \times(\mathrm{R} 1+\mathrm{R} 2) / \mathrm{R} 1-\mathrm{REFIN} \times(\mathrm{R} 2 /\right.$
where:
D is the decimal equivalent of the code loaded to the DAC.
N is the DAC resolution.
REFIN is the reference voltage input.

$$
\begin{aligned}
\text { With REFIN }= & 5 \mathrm{~V}, \mathrm{R} 1=\mathrm{R} 2=10 \mathrm{k} \Omega: \\
& \mathrm{V}_{\text {OUT }}=\left(10 \times \mathrm{D} / 2^{\mathrm{N}}\right)-5 \mathrm{~V}
\end{aligned}
$$

Decoding Multiple AD5346/AD5347/AD5348

The $\overline{\mathrm{CS}}$ pin on these devices can be used in applications to decode a number of DACs. In this application, all DACs in the system receive the same data and $\overline{\mathrm{WR}}$ pulses, but only the $\overline{\mathrm{CS}}$ to one of the DACs will be active at any one time, so data will only be written to the DAC whose $\overline{\mathrm{CS}}$ is low.
The 74 HC 139 is used as a 2 - to 4 -line decoder to address any of the DACs in the system. To prevent timing errors from occurring, the enable input should be brought to its inactive state while the coded address inputs are changing state. Figure 14 shows a diagram of a typical setup for decoding multiple devices in a system. Once data has been written sequentially to all DACs in a system, all the DACs can be updated simultaneously using a common LDAC line. A common $\overline{\mathrm{CLR}}$ line can also be used to reset all DAC outputs to zero.

AD5334/AD5335/AD5336/AD5344 as a Digitally Program-

mable Window Detector

A digitally programmable upper/lower limit detector using two of the DACs in the AD5346/AD5347/AD5348 is shown in Figure 15. Any pair of DACs in the device may be used, but for simplicity the description will refer to DACs A and B.
The upper and lower limits for the test are loaded to DACs A and B which, in turn, set the limits on the CMP04. If a signal at the $\mathrm{V}_{\text {IN }}$ input is not within the programmed window, an LED will indicate the fail condition.

Figure 15. Programmable Window Detector

Programmable Current Source

Figure 16 shows the AD5346/AD5347/AD5348 used as the control element of a programmable current source. In this example, the full-scale current is set to 1 mA . The output voltage from the DAC is applied across the current setting resistor of $4.7 \mathrm{k} \Omega$ in series with the 470Ω adjustment potentiometer, which gives an adjustment of about $\pm 5 \%$. Suitable transistors to place in the feedback loop of the amplifier include the BC107 and the 2 N3904, which enable the current source to operate from a minimum $V_{\text {source }}$ of 6 V . The operating range is determined by the operating characteristics of the transistor. Suitable amplifiers include the AD820 and the OP295, both having rail-to-rail operation on their outputs. The current for any digital input code and resistor value can be calculated as follows:

$$
I=G \times V_{R E F} \times \frac{D}{\left(2^{N} \times R\right)} m A
$$

Where:
G is the gain of the buffer amplifier (1 or 2)
D is the digital input code
N is the DAC resolution (8,10 , or 12 bits)
R is the sum of the resistor plus adjustment potentiometer in $\mathrm{k} \Omega$

Figure 16. Programmable Current Source

Coarse and Fine Adjustment Using the AD5346/AD53471 AD5348

Two of the DACs in the AD5346/AD5347/AD5348 can be paired together to form a coarse and fine adjustment function, as shown in Figure 17. As with the window comparator previously described, the description will refer to DACs A and B.
DAC A is used to provide the coarse adjustment while DAC B provides the fine adjustment. Varying the ratio of R1 and R2 will change the relative effect of the coarse and fine adjustments. With the resistor values shown the output amplifier has unity gain for the DAC A output, so the output range is zero to ($\mathrm{V}_{\text {REF }}-1 \mathrm{LSB}$). For DAC B the amplifier has a gain of 7.6×10^{-3}, giving DAC B a range equal to 2 LSBs of DAC A.
The circuit is shown with a 2.5 V reference, but reference voltages up to V_{DD} may be used. The op amps indicated will allow a rail-to-rail output swing.

Figure 17. Coarse and Fine Adjustment

AD5346/AD5347/AD5348

Power Supply Bypassing and Grounding

In any circuit where accuracy is important, careful consideration of the power supply and ground return layout helps to ensure the rated performance.
The printed circuit board on which the AD5346/AD5347/ AD5348 is mounted should be designed so that the ana\log and digital sections are separated, and confined to certain areas of the board. This facilitates the use of ground planes which can be separated easily. A minimum etch technique is generally best for ground planes as it gives the best shielding. Digital and analog ground planes should only be joined in one place. If the AD5346/
AD5347/AD5348 is the only device requiring an AGND to DGND connection, then the ground planes should be connected at the AGND and DGND pins of the AD5346/ AD5347/AD5348. If the AD5346/AD5347/AD5348 is in a system where multiple devices require AGND to DGND connections, the connection should be made at one point only, a star ground point that should be established as close as possible to the AD5346/AD5347/ AD5348.
The AD5346/AD5347/AD5348 should have ample supply bypassing of $10 \mu \mathrm{~F}$ in parallel with $0.1 \mu \mathrm{~F}$ on the supply located as close to the package as possible, ideally right up against the device. The $10 \mu \mathrm{~F}$ capacitors are the tantalum bead type. The $0.1 \mu \mathrm{~F}$ capacitor should have low Effective Series Resistance (ESR) and Effective Series Inductance (ESI), like the common ceramic types that provide a low impedance path to ground at high frequencies to handle transient currents due to internal logic switching.
The power supply lines of the device should use as large a trace as possible to provide low impedance paths and reduce the effects of glitches on the power supply line. Fast switching signals such as clocks should be shielded with digital ground to avoid radiating noise to other parts of the board, and should never be run near the reference inputs. Avoid crossover of digital and analog signals. Traces on opposite sides of the board should run at right angles to each other. This reduces the effects of feedthrough through the board. A microstrip technique is by far the best, but not always possible with a double-sided board. In this technique, the component side of the board is dedicated to ground plane while signal traces are placed on the solder side.

Table III. Overview of AD53xx Parallel Devices

Part No.	Resolution	DNL	$\mathbf{V}_{\text {REF }}$ Pins	Settling Time	Additional Pin Functions				Package	Pins
SINGLES					BUF	GAIN	HBEN	CLR		
AD5330	8	± 0.25	1	$6 \mu \mathrm{~s}$	3	3		3	TSSOP	20
AD5331	10	± 0.5	1	$7 \mu \mathrm{~s}$		3		3	TSSOP	20
AD5340	12	± 1.0	1	$8 \mu \mathrm{~s}$	3	3		3	TSSOP	24
AD5341	12	± 1.0	1	$8 \mu \mathrm{~s}$	3	3	3	3	TSSOP	20
DUALS										
AD5332	8	± 0.25	2	$6 \mu \mathrm{~s}$				3	TSSOP	20
AD5333	10	± 0.5	2	$7 \mu \mathrm{~s}$	3	3		3	TSSOP	24
AD5342	12	± 1.0	2	$8 \mu \mathrm{~s}$	3	3		3	TSSOP	28
AD5343	12	± 1.0	1	$8 \mu \mathrm{~s}$			3	3	TSSOP	20
QUADS										
AD5334	8	± 0.25	2	$6 \mu \mathrm{~s}$		3		3	TSSOP	24
AD5335	10	± 0.5	2	$7 \mu \mathrm{~s}$			3	3	TSSOP	24
AD5336	10	± 0.5	4	$7 \mu \mathrm{~s}$		3		3	TSSOP	28
AD5344	12	± 1.0	4	$8 \mu \mathrm{~s}$					TSSOP	28
OCTALS										
AD5346	8	± 0.25	4	$6 \mu \mathrm{~s}$	3	3		3	TSSOP, CSP	38, 40
AD5347	10	± 0.5	4	$7 \mu \mathrm{~s}$	3	3		3	TSSOP, CSP	38, 40
AD4348	12	± 1.0	4	$8 \mu \mathrm{~s}$	3	3		3	TSSOP, CSP	38, 40

Table IV. Overview of AD53xx Serial Devices

Part No.	Resolution	DNL	VREF Pins	Settling Time	Interface	Package	Pins
SINGLES							
AD5300	8	± 0.25	0 (Vref = VDD)	$4 \mu \mathrm{~s}$	SPI	SOT-23, MicroSOIC	6, 8
AD5310	10	± 0.5	0 (Vref = VDD)	$6 \mu \mathrm{~s}$	SPI	SOT-23, MicroSOIC	6, 8
AD5320	12	± 1.0	0 (Vref = VDD)	$8 \mu \mathrm{~s}$	SPI	SOT-23, MicroSOIC	6, 8
AD5301	8	± 0.25	0 (Vref = VDD)	$6 \mu \mathrm{~s}$	2-Wire	SOT-23, MicroSOIC	6, 8
AD5311	10	± 0.5	0 (Vref = VDD)	$7 \mu \mathrm{~s}$	2-Wire	SOT-23, MicroSOIC	6, 8
AD5321	12	± 1.0	0 (Vref = VDD)	$8 \mu \mathrm{~s}$	2-Wire	SOT-23, MicroSOIC	6, 8
DUALS							
AD5302	8	± 0.25	2	$6 \mu \mathrm{~s}$	SPI	MicroSOIC	8
AD5312	10	± 0.5	2	$7 \mu \mathrm{~s}$	SPI	MicroSOIC	8
AD5322	12	± 1.0	2	$8 \mu \mathrm{~s}$	SPI	MicroSOIC	8
AD5303	8	± 0.25	2	$6 \mu \mathrm{~s}$	SPI	TSSOP	16
AD5313	10	± 0.5	2	$7 \mu \mathrm{~s}$	SPI	TSSOP	16
AD5323	12	± 1.0	2	$8 \mu \mathrm{~s}$	SPI	TSSOP	16
QUADS							
AD5304	8	± 0.25	1	$6 \mu \mathrm{~s}$	SPI	MicroSOIC	10
AD5314	10	± 0.5	1	$7 \mu \mathrm{~s}$	SPI	MicroSOIC	10
AD5324	12	± 1.0	1	$8 \mu \mathrm{~s}$	SPI	MicroSOIC	10
AD5305	8	± 0.25	1	$6 \mu \mathrm{~s}$	2-Wire	MicroSOIC	10
AD5315	10	± 0.5	1	$7 \mu \mathrm{~s}$	2-Wire	MicroSOIC	10
AD5325	12	± 1.0	1	$8 \mu \mathrm{~s}$	2-Wire	MicroSOIC	10
AD5306	8	± 0.25	4	$6 \mu \mathrm{~s}$	2-Wire	TSSOP	16
AD5316	10	± 0.5	4	$7 \mu \mathrm{~s}$	2-Wire	TSSOP	16
AD5326	12	± 1.0	4	$8 \mu \mathrm{~s}$	2-Wire	TSSOP	16
AD5307	8	± 0.25	2	$6 \mu \mathrm{~s}$	SPI	TSSOP	16
AD5317	10	± 0.5	2	$7 \mu \mathrm{~s}$	SPI	TSSOP	16
AD5327	12	± 1.0	2	$8 \mu \mathrm{~s}$	SPI	TSSOP	16
OCTALS							
AD5308	8	± 0.25	2	$6 \mu \mathrm{~s}$	SPI	TSSOP	16
AD5318	10	± 0.5	2	$7 \mu \mathrm{~s}$	SPI	TSSOP	16
AD5328	12	± 1.0	2	$8 \mu \mathrm{~s}$	SPI	TSSOP	16

PRELIMINARY TECHNICAL DATA

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

[^0]: ＊Protected by U．S．Patent Number 5，969，657；other patents pending．

