

October 1986
Revised March 2000

DM74AS651 • DM74AS652 Octal Bus Transceiver and Register

General Description

These devices incorporate an octal transceiver and an octal D-type register configured to enable transmission of data from bus to bus or internal register to bus. The DM74AS651 offers 64-Industrial grade product guaranteeing performance from -40°C to $+85^{\circ}\text{C}$.

These bus transceivers feature totem-pole 3-STATE outputs designed specifically for driving highly-capacitive or relatively low-impedance loads. The high-impedance state and increased high-logic-level drive provide these devices with the capability of being connected directly to and driving the bus lines in a bus-organized system without need for interface or pull-up components. They are particularly attractive for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

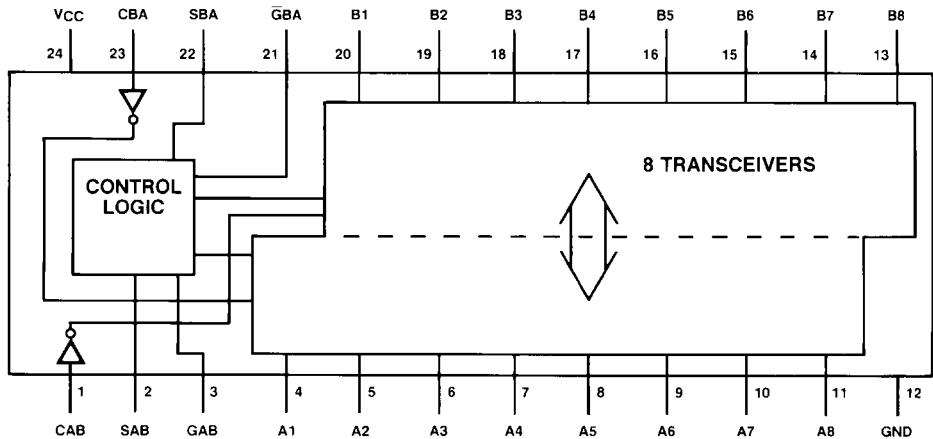
The registers in the DM74AS651 and DM74AS652 are edge-triggered D-type flip-flops. On the positive transition of the clock (CAB or CBA), the input data is stored.

The SAB and SBA control pins are provided to select whether real-time data or stored data is transferred. A LOW input level selects real-time data and a HIGH level selects stored data. The select controls have a "make before break" configuration to eliminate a glitch which would normally occur in a typical multiplexer during the transition between stored and real-time data.

The Enable (GAB and $\bar{G}\text{BA}$) control pins provide four modes of operation: real-time data transfer from bus A-to-B, real-time data transfer from bus B-to-A, real-time bus A and/or B data transfer to internal storage, or internal stored data transfer to bus A and/or B.

Ordering Code:

Order Number	Package Number	Package Description
DM74AS651WM	M24B	24-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
DM74AS651NT	N24C	24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-100, 0.300 Wide
DM74AS652WM	M24B	24-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
DM74AS652NT	N24C	24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-100, 0.300 Wide


Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Features

- Switching specifications at 50 pF
- Switching specifications guaranteed over full temperature and V_{CC} range
- Advanced oxide-isolated, ion-implanted Schottky TTL process
- 3-STATE buffer-type outputs drive bus lines directly
- Guaranteed performance over industrial temperature range (-40°C to $+85^{\circ}\text{C}$) in 64-grade products

DM74AS651 • DM74AS652 Octal Bus Transceiver and Register

Connection Diagram

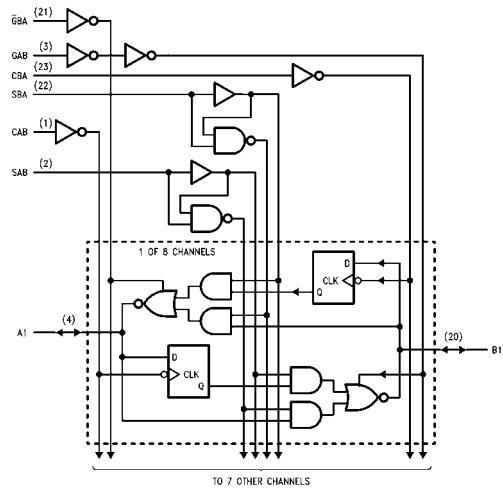
Function Table

INPUTS					DATA I/O (Note 1)		OPERATION OR FUNCTION	
GAB	GBA	CAB	CBA	SAB	A1	B1	DM74AS651	DM74AS652
L	H	H or L	H or L	X	X	Input	Input	Isolation
L	H	↑	↑	X	X			Store A and B Data
L	L	X	X	X	L	Output	Input	Real Time \bar{B} Data to A Bus
L	L	X	H or L	X	H			Stored \bar{B} Data to A Bus
H	H	X	X	L	X	Input	Output	Real Time \bar{A} Data to B Bus
H	H	H or L	X	H	X			Stored \bar{A} Data to B Bus
H	L	H or L	H or L	H	H	Output	Output	Stored \bar{A} Data to B Bus & Stored \bar{B} Data to A Bus
X	H	↑	H or L	X	X	Input	Unspecified (Note 1)	Store A, Hold B
H	H	↑	↑	X (Note 2)	X	Input	Output	Store A in both registers
L	X	H or L	↑	X	X	Unspecified (Note 1)	Input	Hold A, Store B
L	L	↑	↑	X	X (Note 2)	Output	Input	Store B in both registers

H = HIGH Level

L = LOW Level

X = Irrelevant

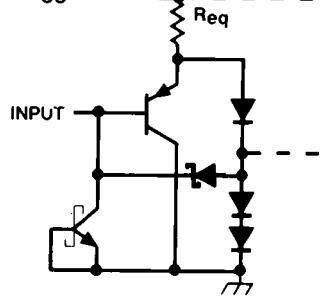

↑ = LOW-to-HIGH Transition

Note 1: The data output functions may be enabled or disabled by various signals at the GAB and $\bar{G}BA$ inputs. Data input functions are always enabled, i.e., data at the bus pins will be stored on every LOW-to-HIGH transition on the clock inputs.

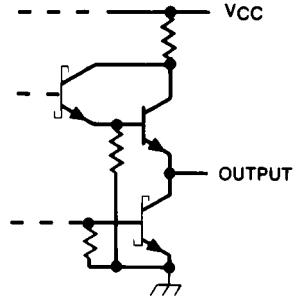

Note 2: If the select control is LOW, the clocks can occur simultaneously. If the select control is HIGH, the clocks must be staggered in order to load both registers.

Logic Diagrams

DM74AS651



DM74AS652



Schematics of Inputs and Outputs

Equivalent of All Other Inputs

Typical of All DM74AS651, DM74AS652 Outputs

Absolute Maximum Ratings^(Note 3)

Supply Voltage	7V
Input Voltage	
Control Inputs	7V
I/O Ports	5.5V
Operating Free Air Temperature Range	0°C to +70°C
Storage Temperature Range	-65°C to +150°C
Typical θ_{JA}	
N Package	41.1°C/W
M Package	81.5°C/W

Note 3: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		Min	Nom	Max	Units
V_{CC}	Supply Voltage		4.5	5	5.5	V
V_{IH}	HIGH Level Input Voltage		2			V
V_{IL}	LOW Level Input Voltage				0.8	V
I_{OH}	HIGH Level Output Current				-15	mA
I_{OL}	LOW Level Output Current				48	mA
f_{CLK}	Clock Frequency		0		90	MHz
t_{WCLK}	Width of Enable Pulse	HIGH	5			ns
		LOW	6			
t_{SU}	Data Setup Time		6			ns
t_H	Data Hold Time		0			ns
T_A	Operating Free Air Temperature		0		70	°C

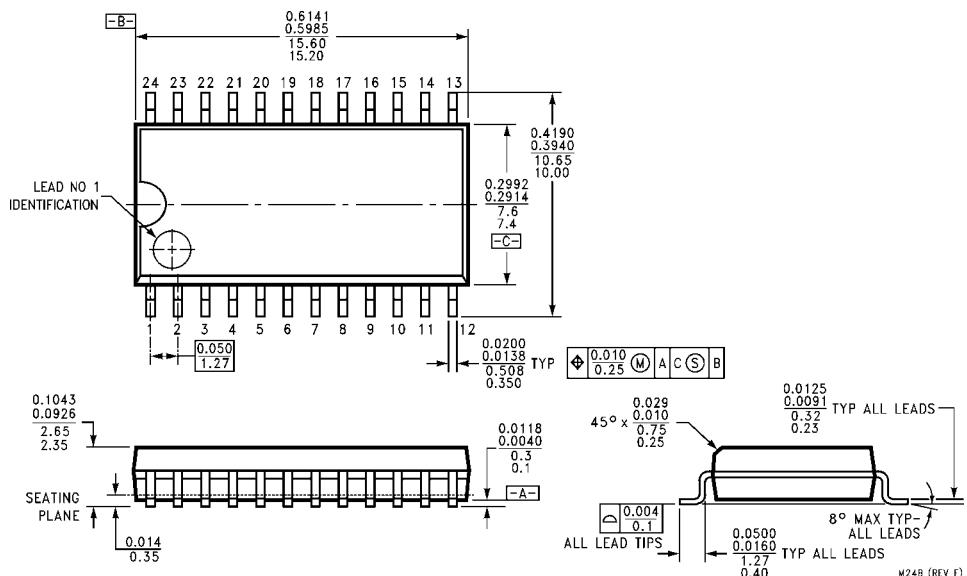
Electrical Characteristics

over recommended operating free air temperature range. All typical values are measured at $V_{CC} = 5V$, $T_A = 25^\circ C$.

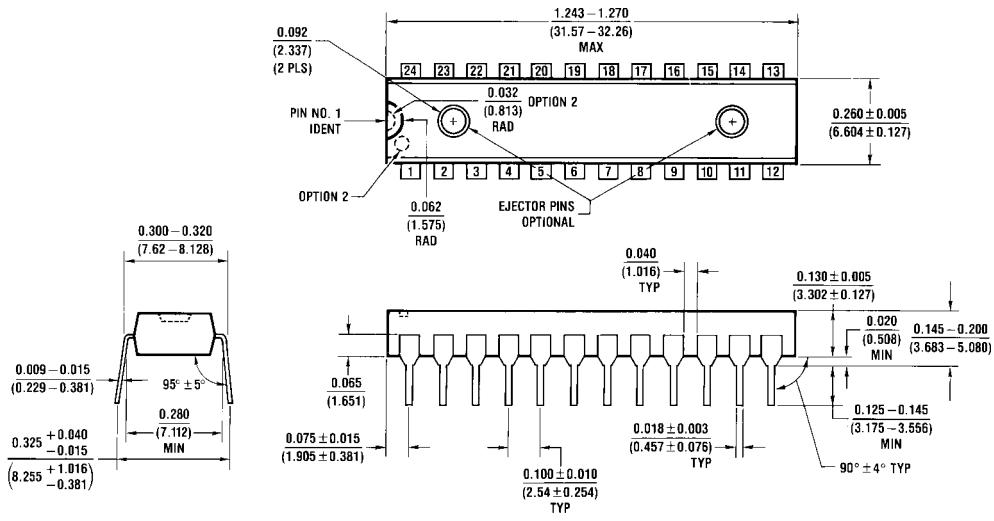
Symbol	Parameter		Conditions			Min	Typ	Max	Units
V_{IK}	Input Clamp Voltage		$V_{CC} = 4.5V$, $I_I = -18$ mA					-1.2	V
V_{OH}	HIGH Level Output Voltage	$V_{CC} = 4.5V$	$I_{OH} = \text{Max}$	2					V
			$I_{OH} = -3$ mA	2.4	3.2				
		$V_{CC} = 4.5V$ to $5.5V$	$I_{OH} = -2$ mA	$V_{CC} - 2$					
V_{OL}	LOW Level Output Voltage		$V_{CC} = 4.5V$, $I_{OL} = \text{Max}$				0.35	0.5	V
I_I	Input Current at Max Input Voltage	$V_{CC} = 5.5V$	$V_I = 7V$	Control Inputs			0.1		mA
			$V_I = 5.5V$	A or B Ports			0.1		
I_{IH}	HIGH Level Input Current	$V_{CC} = 5.5V$, $V_{IH} = 2.7V$		Control Inputs			20		μA
		A or B Ports					70		
I_{IL}	LOW Level Input Current	$V_{CC} = 5.5V$, $V_{IL} = 0.4V$		Control Inputs			-0.5		mA
		A or B Ports					-0.75		
I_O	Output Drive Current		$V_{CC} = 5.5V$, $V_O = 2.25V$			-30		-112	mA
I_{CC}	Supply Current	$V_{CC} = 5.5V$	DM74AS651	Outputs HIGH		110	185		mA
				Outputs LOW		120	195		
				Outputs Disabled		130	195		
			DM74AS652	Outputs HIGH		120	195		
				Outputs LOW		130	211		
				Outputs Disabled		130	211		

DM74AS651 Switching Characteristics

Symbol	Parameter	Conditions	From	To	Min	Max	Units
f_{MAX}	Maximum Clock Frequency	$V_{CC} = 4.5V$ to $5.5V$			90		MHz
t_{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	$R_1 = R_2 = 500\Omega$ $C_L = 50\text{ pF}$	CBA or CAB	A or B	2	8.5	ns
t_{PHL}	Propagation Delay Time HIGH-to-LOW Level Output				2	9	ns
t_{PLH}	Propagation Delay Time LOW-to-HIGH Level Output		A or B	B or A	2	8	ns
t_{PHL}	Propagation Delay Time HIGH-to-LOW Level Output				1	7	ns
t_{PLH}	Propagation Delay Time LOW-to-HIGH Level Output		SBA or SAB (Note 4)	A or B	2	11	ns
t_{PHL}	Propagation Delay Time HIGH-to-LOW Level Output				2	9	ns
t_{PZH}	Output Enable Time to HIGH Level Output		Enable \overline{GBA}	A	2	10	ns
t_{PZL}	Output Enable Time to LOW Level Output				3	16	ns
t_{PHZ}	Output Disable Time from HIGH Level Output				2	9	ns
t_{PLZ}	Output Disable Time from LOW Level Output				2	9	ns
t_{PZH}	Output Disable Time to HIGH Level Output		Enable GAB	B	3	11	ns
t_{PZL}	Output Disable Time to LOW Level Output				3	16	ns
t_{PHZ}	Output Disable Time from HIGH Level Output				2	10	ns
t_{PLZ}	Output Disable Time from LOW Level Output				2	11	ns


Note 4: These parameters are measured with the internal output state of the storage register opposite to that of the bus input.

DM74AS652 Switching Characteristics


Symbol	Parameter	Conditions	From	To	Min	Max	Units
t_{MAX}	Maximum Clock Frequency	$V_{CC} = 4.5V$ to $5.5V$			90		MHz
t_{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	$R_1 = R_2 = 500\Omega$ $C_L = 50\text{ pF}$	CBA or CAB	A or B	2	8.5	ns
t_{PHL}	Propagation Delay Time HIGH-to-LOW Level Output				2	9	ns
t_{PLH}	Propagation Delay Time LOW-to-HIGH Level Output		A or B	B or A	2	9	ns
t_{PHL}	Propagation Delay Time HIGH-to-LOW Level Output				1	7	ns
t_{PLH}	Propagation Delay Time LOW-to-HIGH Level Output		SBA or SAB (Note 5)	A or B	2	11	ns
t_{PHL}	Propagation Delay Time HIGH-to-LOW Level Output				2	9	ns
t_{PZH}	Output Enable Time to HIGH Level Output		Enable \overline{G}_{BA}	A	2	10	ns
t_{PZL}	Output Enable Time to LOW Level Output				3	16	ns
t_{PHZ}	Output Disable Time from HIGH Level Output				2	9	ns
t_{PLZ}	Output Disable Time from LOW Level Output				2	9	ns
t_{PZH}	Output Disable Time to HIGH Level Output		Enable GAB	B	3	11	ns
t_{PZL}	Output Disable Time to LOW Level Output				3	16	ns
t_{PHZ}	Output Disable Time from HIGH Level Output				2	10	ns
t_{PLZ}	Output Disable Time from LOW Level Output				2	11	ns

Note 5: These parameters are measured with the internal output state of the storage register opposite to that of the bus input.

Physical Dimensions inches (millimeters) unless otherwise noted

**24-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
Package Number M24B**

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-100, 0.300 Wide
Package Number N24C

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com