急出货 PD-91800

International TOR Rectifier

IR2153Z

Features

- Floating channel designed for bootstrap operation Fully operational to +600V Tolerant to negative transient voltage dV/dt immune
- · Undervoltage lockout
- · Programmable oscillator frequency

$$f = \frac{1}{1.4 \times (R_T + 75\Omega) \times C_T}$$

- Matched propagation delay for both channels
- Micropower supply startup current of 90 µA.
- Shutdown function turns off both channels
- Low side output in phase with RT

Product Summary

VOFFSET	600V max.
Duty Cycle	50%
IO+/-	200 mA / 400 mA
V _{clamp}	15.6V
Deadtime (typ.)	1.2 μs

SELF-OSCILLATING HALF-BRIDGE DRIVER

Description

The IR2153Z is a high voltage, high speed, self-oscillating power MOSFET and IGBT driver with both high and low side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The front end features a programmable oscillator which is similar to the 555 timer. The output drivers feature a high pulse current buffer stage and

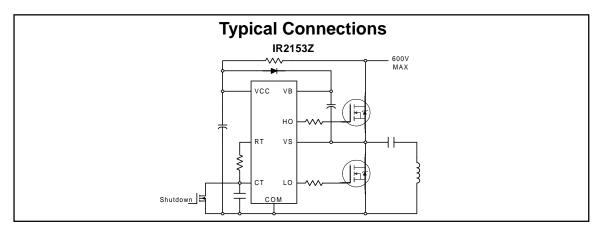
an internal deadtime designed for minimum driver crossconduction. Propagation delays for the two channels are matched to simplify use in 50% duty cycle applications. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration that operates off a high voltage rail up to 600 volts.

Absolute Maximum Ratings

Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The Thermal Resistance and Power Dissipation ratings are measured under board mounted and still air conditions.

Symbol	Parameter	Min.	Max.	Units
V _B	High Side Floating Supply Voltage	-0.3	625	W.M.
Vs	High Side Floating Supply Offset Voltage	V _B - 25	V _B + 0.3	
V _{HO}	High Side Floating Output Voltage	V _S - 0.3	V _B + 0.3	
V _{LO}	Low Side Output Voltage	-0.3	V _{CC} + 0.3	V
V _{RT}	R _T Voltage	-0.3	V _{CC} + 0.3	1
V _{CT}	C _T Voltage	-0.3	V _{CC} + 0.3	1
Icc	Supply Current (Note 1)	_	25	Ī
I _{RT}	R _T Output Current	-5	5	mA
dV _S /dt	Allowable Offset Supply Voltage Transient	_	50	V/ns
PD	Package Power Dissipation @ T _A £ +25°C	_	1.0	W
RthJA	Thermal Resistance, Junction to Ambient	_	100	°C/W
JA LIP	Junction Temperature	-55	125	
T集库	Storage Temperature	-55	150	°C
pd t dzsc.	Pead Temperature (Soldering, 10 seconds)	_	300	

Recommended Operating Conditions

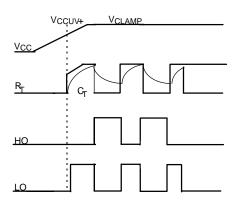

The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the recommended conditions. The V_S offset rating is tested with all supplies biased at 15V differential.

Symbol	Definition	Min.	Max.	Units
V _B	High Side Floating Supply Absolute Voltage	V _S + 10	V _S + 20	
Vs	High Side Floating Supply Offset Voltage	_	600	\ \ \
V _{HO}	High Side Floating Output Voltage	٧s	V _B	V
V_{LO}	Low Side Output Voltage	0	Vcc	
Icc	Supply Current (Note 1)	_	5	mA

Dynamic Electrical Characteristics

 V_{BIAS} (V_{CC}, V_{BS}) = 12V, C_L = 1000 pF and T_A = 25°C unless otherwise specified.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
t _r	Turn-On Rise Time	l —	80	165		
t _f	Turn-Off Fall Time	_	35	100	ns	
t _{sd}	Shutdown Propagation Delay	_	660	_		
DT	Deadtime	—	1.2	—	μs	
D	R _T Duty Cycle	_	50	_	%	



Note 1: Because of the IR2153's application specificity toward off-line supply systems, this IC contains a zener clamp structure between the chip V_{CC} and COM which has a nominal breakdown voltage of 15.6V. Therefore, the IC supply voltage is normally derived by forcing current into the supply lead (typically by means of a high value resistor connected between the chip V_{CC} and the rectified line voltage and a local decoupling capacitor from V_{CC} to COM) and allowing the internal zener clamp circuit to determine the nominal supply voltage. Therefore, this circuit should not be driven by a DC, low impedance power source of greater than V_{CL AMP}.

Static Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS}) = 12V, C_L = 1000 pF, C_T = 1 nF and T_A = 25°C unless otherwise specified. The V_{IN} , V_{TH} and I_{IN} parameters are referenced to COM. The V_O and I_O parameters are referenced to COM and are applicable to the respective output leads: HO or LO.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
fosc	Oscillator Frequency	_	20.0	_	ld l=	R _T = 35.7 kw
		_	100	_	kHz	R _T = 7.04 kw
V _{CLAMP}	V _{CC} Zener Shunt Clamp Voltage	_	15.6	_		$I_{CC} = 5 \text{ mA}$
V _{CT+}	2/3 V _{CC} Threshold	_	8.0	_	V	
V _{CT-}	1/3 V _{CC} Threshold	_	4.0	_	V	
V _{CTSD}	C _T shutdown Input Threshold	_	2.2	_		
V _{RT+}	R_T High Level Output Voltage, V_{CC} - R_T		0	100		I _{RT} = -100 μA
		_	200	300		I _{RT} = -1 mA
V _{RT-}	R _T Low Level Output Voltage	_	20	50		I _{RT} = 100 μA
		_	200	300	mV	I _{RT} = 1 mA
V _{OH}	High Level Output Voltage, V _{BIAS} - V _O	_	_	100	IIIV	I _O = 0A
V _{OL}	Low Level Output Voltage, V _O	_	_	100		I _O = 0A
I _{LK}	Offset Supply Leakage Current	_	_	50		$V_{B} = V_{S} = 600V$
I _{QBS}	Quiescent V _{BS} Supply Current	_	10	_		
I _{QCCUV}	Micropower V _{CC} Supply Startup Current	_	90	_	μΑ	V _{CC} < V _{CCUV}
I _{QCC}	Quiescent V _{CC} Supply Current	_	400	_		V _{CC} > V _{CCUV}
I _{CT}	C _T Input Current	_	0.001	1.0		
V _{CCUV+}	V _{CC} Supply Undervoltage Positive Going	_	9.0	_		
	Threshold				V	
V _{CCUV-}	V _{CC} Supply Undervoltage Negative Going	_	8.0	_	,	
	Threshold					
V _{CCUVH}	V _{CC} Supply Undervoltage Lockout Hysteresis	_	1.0	_	V	
I _{O+}	Output High Short Circuit Pulsed Current	T —	200	_	mA	$V_O = 0V$
I _{O-}	Output Low Short Circuit Pulsed Current	T —	400	_		V _O = 15V

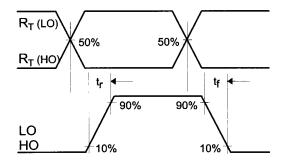


Figure 1. Input/Output Timing Diagram

Figure 2. Switching Time Waveform Definitions

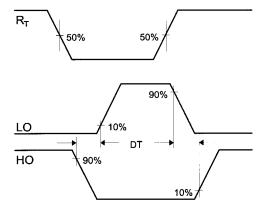
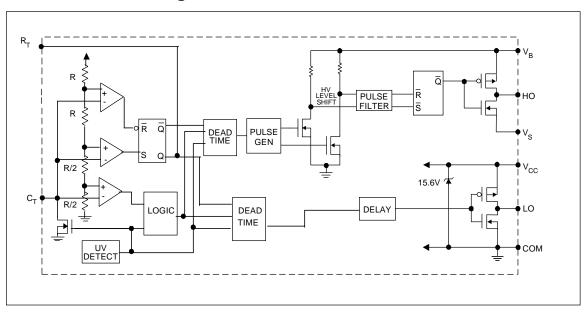
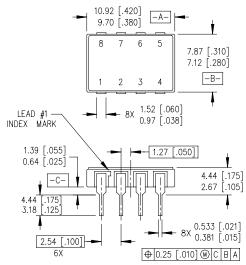
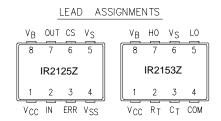



Figure 3. Deadtime Waveform Definitions


Functional Block Diagram




Lead Definitions

Le	Lead		
Symbol	Description		
R _T	Oscillator timing resistor input,in phase with HO for normal IC operation		
C _T	Oscillator timing capacitor input, the oscillator frequency according to the following equation:		
	$f = \frac{1}{1.4 \times (R_T + 75\Omega) \times C_T}$		
	where 75w is the effective impedance of the R _T output stage		
V _B	High side floating supply		
НО	High side gate drive output		
Vs	High side floating supply return		
V _{CC}	Low side and logic fixed supply		
LO	Low side gate drive output		
COM	Low side return		

Case Outline and Dimensions MO-036AA

NOTES:

- DIMENSIONING & TOLERANCING PER ANSI Y14.5M-1982.
- 2. CONTROLLING DIMENSION: INCH.
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE MO-036AA.
- MEASURED WITH THE LEADS CONSTRAINED TO BE PERPENDICULAR TO DATUM PLANE C.

International Rectifier

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331

IR GREAT BRITAIN: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020

IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200

IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590

IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111

IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086 IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 221 8371 IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673, Taiwan Tel: 886-2-2377-9936 http://www.irf.com/ Data and specifications subject to change without notice. 8/27