

捷多邦,专业PCB打样工厂,24小时加

<u>急出货</u> PD - 90711B

International ICR Rectifier **POWER MOSFET** THRU-HOLE (TO-254AA)

Product Summary

Part Number	RDS(on)	ID	
IRFMG50	2.0Ω	5.6A	

HEXFET[®] MOSFET technology is the key to International Rectifier's advanced line of power MOSFET transistors. The efficient geometry design achieves very low on-state resistance combined with high transconductance. HEXFET transistors also feature all of the well-established advantages of MOSFETs, such as voltage control, very fast switching, ease of paralleling and electrical parameter temperature stability. They are well-suited for applications such as switching power supplies, motor controls, inverters, choppers, audio amplifiers, high energy pulse circuits, and virtually any application where high reliability is required. The HEXFET transistor's totally isolated package eliminates the need for additional isolating material between the device and the heatsink. This improves thermal efficiency and reduces drain capacitance.

IRFMG50 1000V, N-CHANNEL **HEXFET[®] MOSFET TECHNOLOGY**

Features:

- Simple Drive Requirements
- Ease of Paralleling
- Hermetically Sealed
- Electrically Isolated
- Ceramic Eyelets

Absolute Maximum Ratings						
	Parameter		Units			
ID @ VGS = 10V, TC = 25°C	Continuous Drain Current	5.6				
$I_D @ V_{GS} = 10V, T_C = 100^{\circ}C$	Continuous Drain Current	3.5				
IDM	Pulsed Drain Current 1	22]			
P _D @ T _C = 25°C	Max. Power Dissipation	150	W			
	Linear Derating Factor	1.2	W/°C			
VGS	Gate-to-Source Voltage	±20	V			
EAS	Single Pulse Avalanche Energy 2	860	mJ			
IAR	Avalanche Current ①	5.6	Α			
EAR	Repetitive Avalanche Energy ①	15	mJ			
dv/dt	Peak Diode Recovery dv/dt 3	1.0	V/ns			
TJ	Operating Junction	-55 to 150				
TSTG Storage Temperature Range			°C			
)找 mPDF	Lead Temperature	300(0.063in./1.6mm from case for 10 sec)				
	Weight	9.3 (Typical)	g			

dt.dzsc.com For footnotes refer to the last page

IRFMG50

Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)

	Parameter	Min	Тур	Max	Units	Test Conditions
BVDSS	Drain-to-Source Breakdown Voltage	1000	_	_	V	VGS = 0V, ID = 1.0mA
ΔBV _{DSS} /ΔTJ	Temperature Coefficient of Breakdown Voltage	_	1.4	_	V/°C	Reference to 25°C, ID = 1.0mA
RDS(on)	Static Drain-to-Source On-State Resistance	_	—	2.0	Ω	VGS = 10V, ID = 3.5A
VGS(th)	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}$, $I_{D} = 250 \mu A$
9fs	Forward Transconductance	5.2	_	—	S (7)	V _{DS} > 15V, I _{DS} = 3.5A ④
IDSS	Zero Gate Voltage Drain Current	—		25		VDS= 800V ,VGS=0V
		—	_	250] μΑ	VDS = 800V,
						VGS = 0V, TJ = 125°C
IGSS	Gate-to-Source Leakage Forward	—	—	100		VGS = 20V
IGSS	Gate-to-Source Leakage Reverse	—	_	-100	† nA	VGS = -20V
Qg	Total Gate Charge	_	_	200		VGS =10V, ID =5.6A
Qgs	Gate-to-Source Charge	—	—	20	nC	$V_{DS} = 400V$
Qgd	Gate-to-Drain ('Miller') Charge	—	—	—	1	
td(on)	Turn-On Delay Time	—		30		$V_{DD} = 400V, I_D = 5.6A,$
tr	Rise Time	—	_	44	1	RG = 2.35Ω
td(off)	Turn-Off Delay Time	_	_	210	ns	
tf	Fall Time	—	—	60	1	
L _S +L _D	Total Inductance	-	6.8	—	nH	Measured from Drain lead (6mm /0.25in. from package) to Source lead (6mm /0.25in. from
						package)
C _{iss}	Input Capacitance	_	2400	—		$V_{GS} = 0V, V_{DS} = 25V$
Coss	Output Capacitance	—	240	—	pF	f = 1.0MHz
C _{rss}	Reverse Transfer Capacitance	—	80	—		
CDC	Drain-to-Case Capacitance	—	12	—		

Source-Drain Diode Ratings and Characteristics

	Parameter	Min	Тур	Max	Units	Test Conditions
IS	Continuous Source Current (Body Diode)	_	_	5.6	Α	
ISM	Pulse Source Current (Body Diode) ①	_	_	22		
VSD	Diode Forward Voltage		—	1.8	V	Tj = 25°C, IS = 5.6A, VGS = 0V ④
trr	Reverse Recovery Time	—	—	1200	nS	Tj = 25°C, IF = 5.6A, di/dt ≤ 100A/μs
QRR	Reverse Recovery Charge	_	—	8.4	μC	$V_{DD} \le 50V $ (4)
ton	Forward Turn-On Time Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD.					

Thermal Resistance

	Parameter	Min	Тур	Max	Units	Test Conditions
RthJC	Junction-to-Case	—	—	0.83		
RthCS	Case-to-sink	—	0.21	—	°C/W	
R _{th} JA	Junction-to-Ambient	—	—	48		Typical socket mount

For footnotes refer to the last page

International **ICR** Rectifier

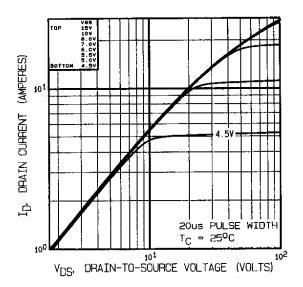


Fig 1. Typical Output Characteristics

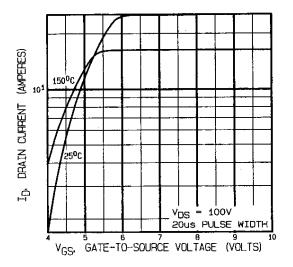


Fig 3. Typical Transfer Characteristics

OP DRAIN CURRENT (AMPERES) 10¹ ġ 20us PULSE WIDTH $T_{\rm C} = 150^{\circ}{\rm C}$ 100 DRAIN-TO-SOURCE VOLTAGE (VOLTS) 102

Fig 2. Typical Output Characteristics

V_{DS},

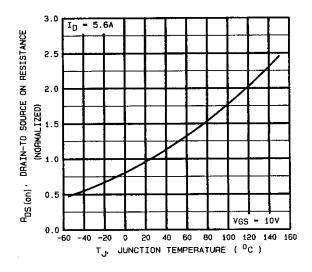


Fig 4. Normalized On-Resistance Vs. Temperature

IRFMG50

IRFMG50

International

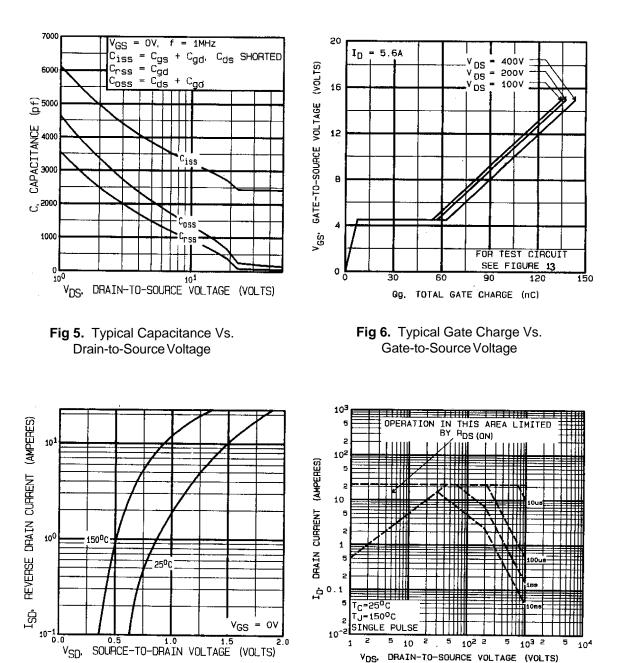
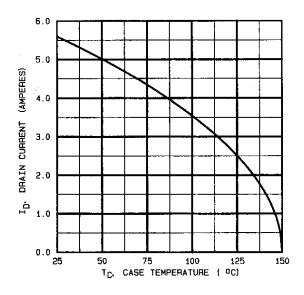




Fig 8. Maximum Safe Operating Area

International **tor** Rectifier

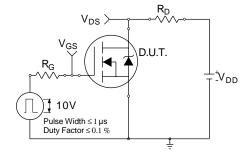


Fig 10a. Switching Time Test Circuit

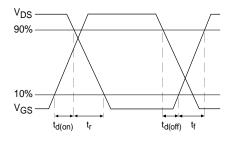


Fig 10b. Switching Time Waveforms

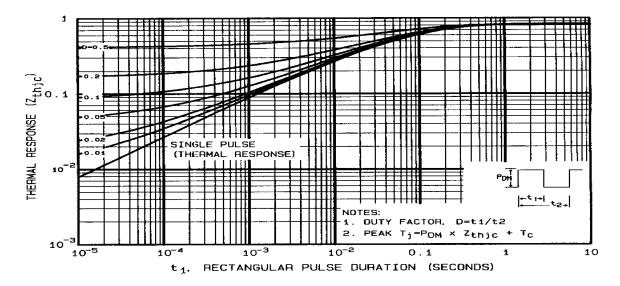


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

IRFMG50

IRFMG50

International

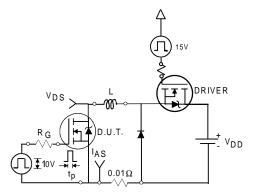


Fig 12a. Unclamped Inductive Test Circuit

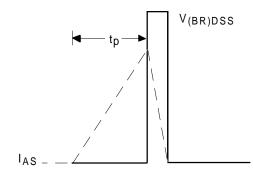
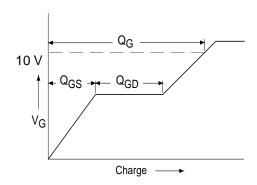



Fig 12b. Unclamped Inductive Waveforms

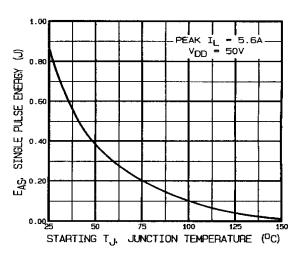


Fig 12c. Maximum Avalanche Energy Vs. Drain Current

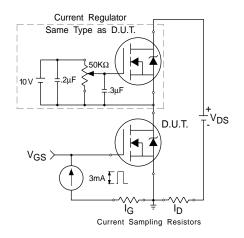
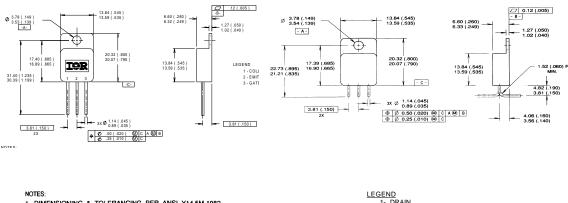


Fig 13b. Gate Charge Test Circuit


International TOR Rectifier

Footnotes:

- ① Repetitive Rating; Pulse width limited by maximum junction temperature.
- ② V_{DD} = 50V, starting T_J = 25°C, L= 54mH Peak II = 5.6A, $V_{GS} = 10V$

- ③ ISD \leq 5.6A, di/dt \leq 120A/ μ s, $V_{DD} \le 1000V, T_{J} \le 150^{\circ}C$
- ④ Pulse width \leq 300 µs; Duty Cycle \leq 2%

Case Outline and Dimensions — TO-254AA

1. DIMENSIONING & TOLERANCING PER ANSI Y14.5M-1982.

2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].

3. LEADFORM IS AVAILABLE IN EITHER ORIENTATION:

1- DRAIN 2- SOURCE 3- GATE

CAUTION **BERYLLIA WARNING PER MIL-PRF-19500**

Packages containing beryllia shall not be ground, sandblasted, machined or have other operations performed on them which will produce beryllia or beryllium dust. Furthermore, beryllium oxide packages shall not be placed in acids that will produce fumes containing beryllium.

International **IGR** Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. Data and specifications subject to change without notice 04/01

IRFMG50