查询IRFY430C供应商

捷多邦,专业PCB打样工厂,24小时加

IRFY430C, IRFY430CM

HEXFET[®] MOSFET TECHNOLOGY

<u>急出货</u> PD - 91291C

W.DZ

500V, N-CHANNEL

International ICR Rectifier **POWER MOSFET** THRU-HOLE (TO-257AA)

Product Summary

Part Number	RDS(on)	ID	Eyelets	
IRFY430C	1.5 Ω	4.5A	Ceramic	
IRFY430CM	1.5 Ω	4.5A	Ceramic	

HEXFET[®] MOSFET technology is the key to International Rectifier's advanced line of power MOSFET transistors. The efficient geometry design achieves very low on-state resistance combined with high transconductance. HEXFET transistors also feature all of the well-established advantages of MOSFETs, such as voltage control, very fast switching, ease of paralleling and electrical parameter temperature stability. They are well-suited for applications such as switching power supplies, motor controls, inverters, choppers, audio amplifiers, high energy pulse circuits, and virtually any application where high reliability is required. The HEXFET transistor's totally isolated package eliminates the need for additional isolating material between the device and the heatsink. This improves thermal efficiency and reduces drain capacitance.

TO-257AA

Features:

- Simple Drive Requirements
- Ease of Paralleling
- Hermetically Sealed
- Electrically Isolated
- Ceramic Eyelets
- Ideally Suited For Space Level Applications

	Parameter		Units
ID @ VGS = 10V, TC = 25°C	Continuous Drain Current	4.5	
$I_D @ V_{GS} = 10V, T_C = 100^{\circ}C$	Continuous Drain Current	2.8	A
IDM	Pulsed Drain Current 1	18	
P _D @ T _C = 25°C	Max. Power Dissipation	75	W
	Linear Derating Factor	0.6	W/°C
VGS	Gate-to-Source Voltage	±20	V
EAS	Single Pulse Avalanche Energy 2	280	mJ
IAR	Avalanche Current ①	4.5	A
EAR	Repetitive Avalanche Energy ①	7.5	mJ
dv/dt	Peak Diode Recovery dv/dt 3	3.5	V/ns
ТJ	Operating Junction	-55 to 150	
P TSTG	Storage Temperature Range		°C
,找 🔁 PDF	Lead Temperature	300(0.063in./1.6mm from case for 10 sec)	
	Weight	4.3 (Typical)	g

Absoluto Maximum Patings

odt.dzsc.com For footnotes refer to the last page

IRFY430C, IRFY430CM

International

Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)

	Parameter	Min	Тур	Max	Units	Test Conditions
BVDSS	Drain-to-Source Breakdown Voltage	500	_	_	V	VGS = 0V, ID = 1.0mA
ΔBV _{DSS} /ΔTJ	Temperature Coefficient of Breakdown Voltage	_	0.78	_	V/°C	Reference to 25°C, ID = 1.0mA
RDS(on)	Static Drain-to-Source On-State Resistance	—	—	1.5	Ω	VGS = 10V, ID = 2.8A ④
VGS(th)	Gate Threshold Voltage	2.0	_	4.0	V	$V_{DS} = V_{GS}$, $I_{D} = 250 \mu A$
9fs	Forward Transconductance	1.5	—	—	S (ひ)	V _{DS} > 15V, I _{DS} = 2.8A ④
IDSS	Zero Gate Voltage Drain Current	_	_	25		VDS= 400V ,VGS=0V
		_	—	250	μA	VDS = 400V,
						VGS = 0V, TJ = 125°C
IGSS	Gate-to-Source Leakage Forward	_	—	100		VGS = 20V
IGSS	Gate-to-Source Leakage Reverse		—	-100	nA	VGS = -20V
Qg	Total Gate Charge		—	29.5		VGS =10V, ID = 4.5A
Qgs	Gate-to-Source Charge	_	—	4.6	nC	VDS = 250V
Qgd	Gate-to-Drain ('Miller') Charge		—	19.7	1	
td(on)	Turn-On Delay Time	—	—	35		$V_{DD} = 250V, I_D = 4.5A,$
tr	Rise Time	_	—	30		RG = 7.5Ω
td(off)	Turn-Off Delay Time		—	55	ns	
tf	Fall Time	—	—	30		
LS+LD	Total Inductance	_	6.8	_	nH	Measured from drain lead (6mm/0.25in. from package) to source lead (6mm/0.25in. from package)
Ciss	Input Capacitance	_	650	_		VGS = 0V, VDS = 25V
Coss	Output Capacitance	—	135	—	pF	f = 1.0MHz
C _{rss}	Reverse Transfer Capacitance	_	65	_		

Source-Drain Diode Ratings and Characteristics

	Parameter	Min	Тур	Max	Units	Test Conditions
IS	Continuous Source Current (Body Diode)	_	_	4.5	^	
ISM	Pulse Source Current (Body Diode) ①	—	—	18	A	
VSD	Diode Forward Voltage	—	—	1.4	V	$T_j = 25^{\circ}C$, $I_S = 4.5A$, $V_{GS} = 0V$ (4)
trr	Reverse Recovery Time		—	900	nS	Tj = 25°C, IF = 4.5A, di/dt ≤ 100A/μs
QRR	Reverse Recovery Charge	—	—	7.0	μC	$V_{DD} \le 50V $
ton	Forward Turn-On Time Intrinsic turn-on	Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD.				

Thermal Resistance

	Parameter	Min	Тур	Max	Units	Test Conditions
RthJC	Junction-to-Case	—	—	1.67		
RthCS	Case-to-sink	—	0.21	—	°C/W	
RthJA	Junction-to-Ambient	—	—	80		Typical socket mount

Note: Corresponding Spice and Saber models are available on the G&S Website.

For footnotes refer to the last page

International **tor** Rectifier

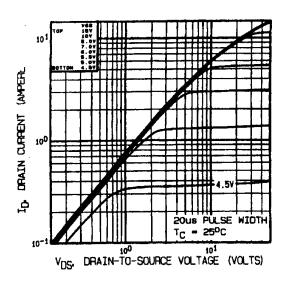


Fig 1. Typical Output Characteristics

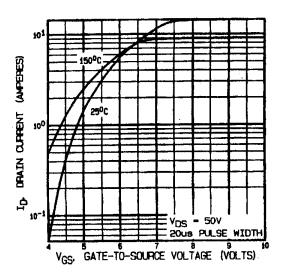


Fig 3. Typical Transfer Characteristics

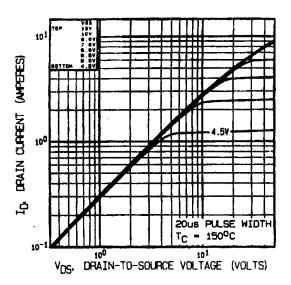


Fig 2. Typical Output Characteristics

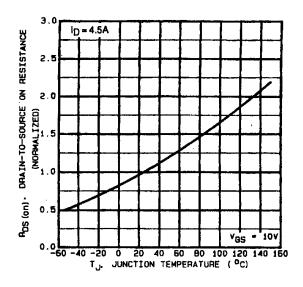


Fig 4. Normalized On-Resistance Vs. Temperature

IRFY430C, IRFY430CM

International

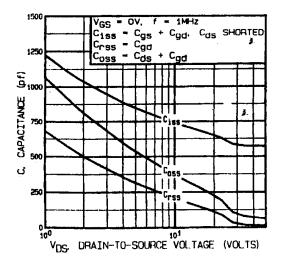
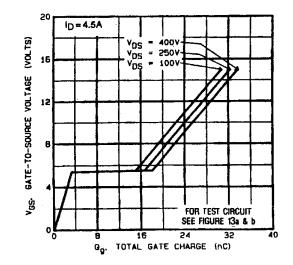
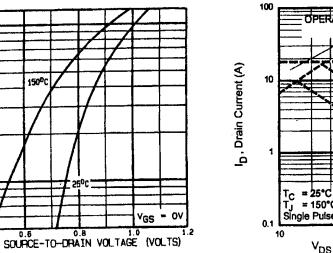
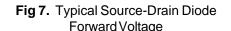


Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage


REVERSE CRAIN CURRENT (AMPERES)

100


٥.٦ ۷_{SD},


ទ្រុ

101

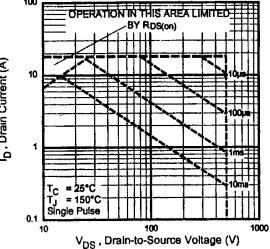


Fig 8. Maximum Safe Operating Area

International

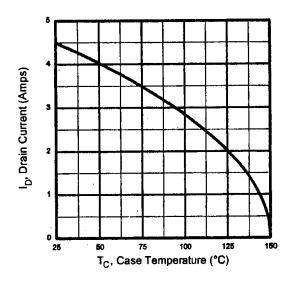


Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10a. Switching Time Test Circuit

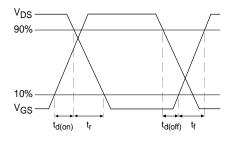


Fig 10b. Switching Time Waveforms

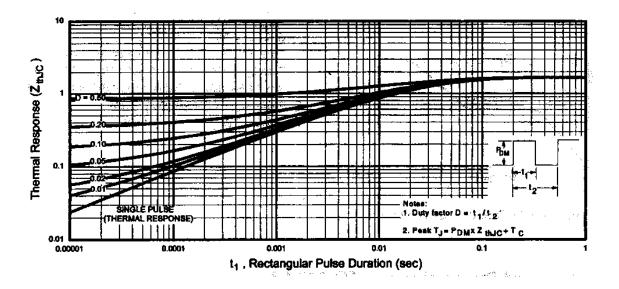


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

IRFY430C, IRFY430CM

IRFY430C, IRFY430CM

International

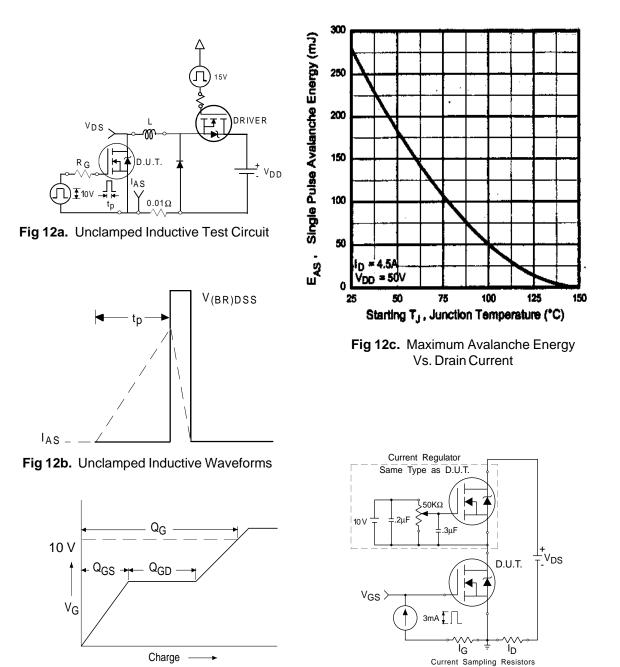
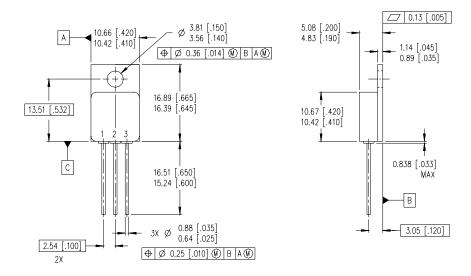


Fig 13a. Basic Gate Charge Waveform

Fig 13b. Gate Charge Test Circuit

International **tor** Rectifier

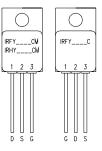

IRFY430C, IRFY430CM

Footnotes:

- Repetitive Rating; Pulse width limited by maximum junction temperature.
- V_{DD} = 50V, starting T_J = 25°C, L= 28mH
 Peak I_L = 4.5A, V_{GS} = 10V

- ④ Pulse width \leq 300 µs; Duty Cycle \leq 2%

Case Outline and Dimensions — TO-257AA



NOTES:

- 1. DIMENSIONING & TOLERANCING PER ANSI Y14.5M-1994.
- 2. CONTROLLING DIMENSION: INCH.
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE TO-257AA.

LEGEND

- D DRAIN
- S SOURCE
- G GATE

CERAMIC EYELETS

International

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.if.com for sales contact information.

Data and specifications subject to change without notice. 04/01