International IOR Rectifier

POWER MOSFET THRU-HOLE (TO-257AA)

IRFY440C, IRFY440CM 500V, N-CHANNEL

HEXFET® MOSFET TECHNOLOGY

Product Summary

Part Number	RDS(on)	ΙD	Eyelets
IRFY440C	0.85 Ω	7.0A	Glass
IRFY440CM	0.85 Ω	7.0A	Glass

HEXFET® MOSFET technology is the key to International Rectifier's advanced line of power MOSFET transistors. The efficient geometry design achieves very low on-state resistance combined with high transconductance. HEXFET transistors also feature all of the well-established advantages of MOSFETs, such as voltage control, very fast switching, ease of paralleling and electrical parameter temperature stability. They are well-suited for applications such as switching power supplies, motor controls, inverters, choppers, audio amplifiers, high energy pulse circuits, and virtually any application where high reliability is required. The HEXFET transistor's totally isolated package eliminates the need for additional isolating material between the device and the heatsink. This improves thermal efficiency and reduces drain capacitance.

Features:

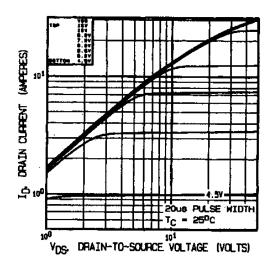
- Simple Drive Requirements
- Ease of Paralleling
- Hermetically Sealed
- Electrically Isolated
- Ceramic Eyelets
- Ideally Suited For Space Level **Applications**

Absolute Maximum Ratings

, and the second							
	Parameter		Units				
I _D @ V _G S = 10V, T _C = 25°C	Continuous Drain Current	7.0					
$I_D @ V_{GS} = 10V, T_C = 100^{\circ}C$	Continuous Drain Current	4.4	Α				
IDM	Pulsed Drain Current ①	28					
P _D @ T _C = 25°C	Max. Power Dissipation	100	W				
	Linear Derating Factor	0.8	W/°C				
VGS	Gate-to-Source Voltage	±20	V				
EAS	Single Pulse Avalanche Energy ②	510	mJ				
IAR	Avalanche Current ①	7.0	Α				
EAR	Repetitive Avalanche Energy ①	10	mJ				
dv/dt	Peak Diode Recovery dv/dt 3	3.5	V/ns				
TJ	Operating Junction	-55 to 150					
√ TSTG	Storage Temperature Range		°C				
找一PDF	Lead Temperature	300(0.063in./1.6mm from case for 10 sec)					
维库一	Weight	4.3 (Typical)	g				

For footnotes refer to the last page

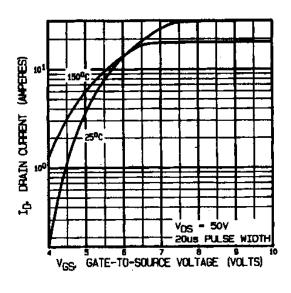
Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)


	Parameter	Min	Тур	Max	Units	Test Conditions
BVDSS	Drain-to-Source Breakdown Voltage	500	_	_	V	VGS = 0V, ID = 1.0mA
ΔBV _{DSS} /ΔT _J	Temperature Coefficient of Breakdown Voltage	_	0.78	_	V/°C	Reference to 25°C, I _D = 1.0mA
RDS(on)	Static Drain-to-Source On-State Resistance	_	_	0.85	Ω	VGS = 10V, ID = 4.4A (4)
VGS(th)	Gate Threshold Voltage	2.0	_	4.0	V	VDS = VGS, ID = 250μA
9fs	Forward Transconductance	4.7	_	_	S (7)	V _{DS} > 15V, I _{DS} = 4.4A ④
IDSS	Zero Gate Voltage Drain Current		_	25	μΑ	VDS= 400V ,VGS=0V
		_	_	250	μΑ	VDS = 400V,
						V _G S = 0V, T _J = 125°C
IGSS	Gate-to-Source Leakage Forward	_	_	100	nA	VGS = 20V
IGSS	Gate-to-Source Leakage Reverse	_	_	-100	I IIA	VGS = -20V
Qg	Total Gate Charge		_	68.5		VGS =10V, ID = 7.0A
Qgs	Gate-to-Source Charge	_	_	12.5	nC	VDS = 250V
Qgd	Gate-to-Drain ('Miller') Charge		_	42.4		see figures 6 and 13
td(on)	Turn-On Delay Time	_	_	21		$V_{DD} = 250V, I_{D} = 7.0A,$
tr	Rise Time	_	_	73	ns	$RG = 9.1\Omega$
td(off)	Turn-Off Delay Time	_	_	72	115	
tf	Fall Time		_	51		see figure 10
LS+LD	Total Inductance	_	6.8	_	nH	Measured from drain lead (6mm/0.25in. from
						package) to source lead (6mm/0.25in. from
						package)
Ciss	Input Capacitance	_	1300	_		VGS = 0V, VDS = 25V
Coss	Output Capacitance	_	310	_	pF	f = 1.0MHz
C _{rss}	Reverse Transfer Capacitance	_	120	_		see figure 5

Source-Drain Diode Ratings and Characteristics

	Parameter		Min	Тур	Max	Units	Test Conditions
IS	Continuous Source Current (Body Diode)		_	_	7.0	_	
ISM	Pulse Source Current (Body Diode) ①		_	_	28	Α	
VSD	Diode Forward Voltage		_	_	1.5	V	$T_j = 25$ °C, $I_S = 7.0A$, $V_{GS} = 0V$ ④
trr	Reverse Recovery Time		_	_	700	nS	T_j = 25°C, I_F = 7.0A, di/dt ≤ 100A/μs
QRR	Reverse Recovery Charge		_	_	8.9	μC	V _{DD} ≤ 50V ④
ton	Forward Turn-On Time	Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD.					

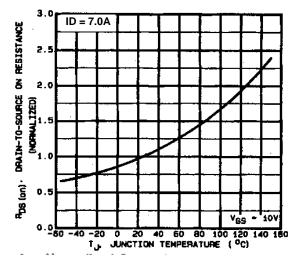
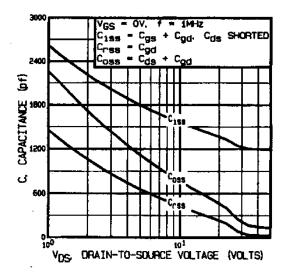
Thermal Resistance


	Parameter	Min	Тур	Max	Units	Test Conditions
R _{th} JC	Junction-to-Case	_	_	1.25		
RthCS	Case-to-sink	_	0.21	_	°C/W	
RthJA	Junction-to-Ambient	_	_	80		Typical socket mount

VDS- DRAIN-TO-SOURCE VOLTAGE (VOLTS)

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

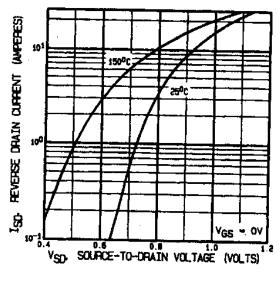

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

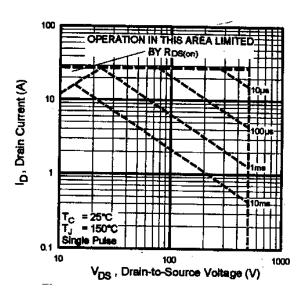
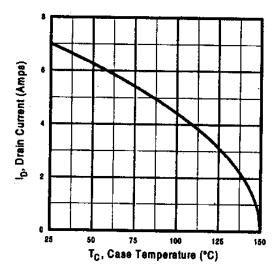



Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Case Temperature

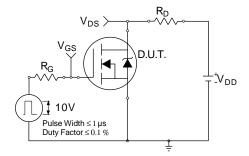


Fig 10a. Switching Time Test Circuit

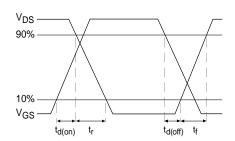


Fig 10b. Switching Time Waveforms

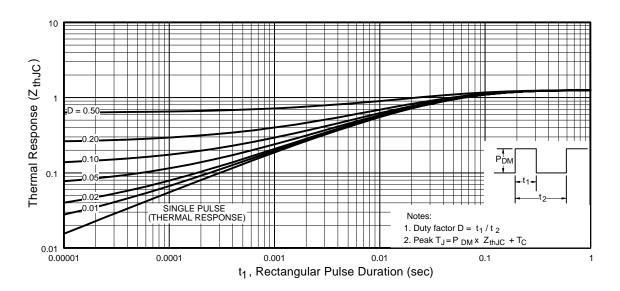


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

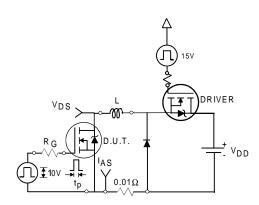


Fig 12a. Unclamped Inductive Test Circuit

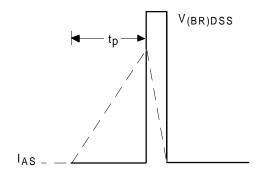


Fig 12b. Unclamped Inductive Waveforms

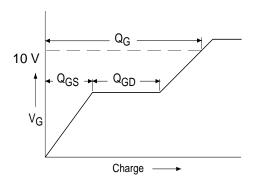


Fig 13a. Basic Gate Charge Waveform

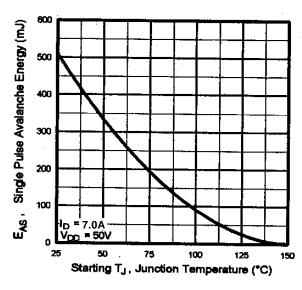
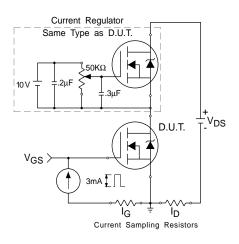
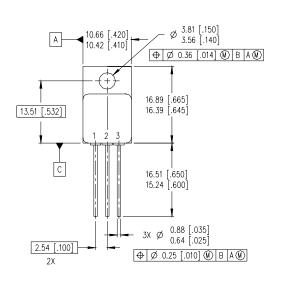
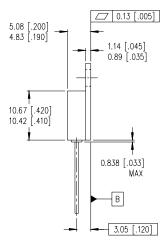


Fig 12c. Maximum Avalanche Energy Vs. Drain Current



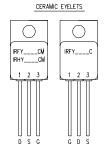

Fig 13b. Gate Charge Test Circuit


Footnotes:

- ① Repetitive Rating; Pulse width limited by maximum junction temperature.
- $^{\circ}$ V_{DD} = 50V, starting T_J = 25°C, L= 20mH Peak I_L = 7.0A, V_{GS} = 10V

- $\label{eq:local_local_spin_spin} \begin{array}{ll} \text{(3)} & I_{SD} \leq 7.0\text{A}, \ di/dt \leq 100\text{A}/\mu\text{s}, \\ & V_{DD} \leq 500\text{V}, \ T_{J} \leq 150^{\circ}\text{C} \end{array}$
- ④ Pulse width ≤ 300 μ s; Duty Cycle ≤ 2%

Case Outline and Dimensions — TO-257AA



NOTES:

- 1. DIMENSIONING & TOLERANCING PER ANSI Y14.5M-1994.
- 2. CONTROLLING DIMENSION: INCH.
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE TO-257AA.

<u>LEGEND</u>
D - DRAIN
S - SOURCE

G - GATE

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903