International **ICR** Rectifier **RADIATION HARDENED POWER MOSFET** THRU-HOLE (TO-39)

PD - 90672D

IRHF7230 JANSR2N7262 200V, N-CHANNEL REF: MIL-PRF-19500/601 **RAD Hard[™] HEXFET[®] TECHNOLOGY**

Product Summary

Part Number	Radiation Level	RDS(on)	lD	QPL Part Number
IRHF7230	100K Rads (Si)	0.35Ω	5.5A	JANSR2N7262
IRHF3230	300K Rads (Si)	0.35Ω	5.5A	JANSF2N7262
IRHF4230	600K Rads (Si)	0.35Ω	5.5A	JANSG2N7262
IRHF8230	1000K Rads (Si)	0.35Ω	5.5A	JANSH2N7262

International Rectifier's RADHard HEXFET® technology provides high performance power MOSFETs for space applications. This technology has over a decade of proven performance and reliability in satellite applications. These devices have been characterized for both Total Dose and Single Event Effects (SEE). The combination of low Rdson and low gate charge reduces the power losses in switching applications such as DC to DC converters and motor control. These devices retain all of the well established advantages of MOSFETs such as voltage control, fast switching, ease of paralleling and temperature stability of electrical parameters.

Absolute Maximum Ratings

TO-39

Pre-Irradiation

Features:

- Single Event Effect (SEE) Hardened
- Low RDS(on)
- Low Total Gate Charge
- Proton Tolerant
- Simple Drive Requirements DZSC.COM
- Ease of Paralleling
- Hermetically Sealed
- Light Weight

and the first	Parameter		Units
ID @ VGS = 12V, TC = 25°C	Continuous Drain Current	5.5	
ID @ VGS = 12V, TC = 100°C	Continuous Drain Current	3.5	A
IDM	Pulsed Drain Current ①	22	-18
P _D @ T _C = 25°C	Max. Power Dissipation	25	W
	Linear Derating Factor	0.2	W/°C
VGS	Gate-to-Source Voltage	±20	V
EAS	Single Pulse Avalanche Energy 2	240	mJ
IAR	Avalanche Current 1		A
EAR	Repetitive Avalanche Energy 1	-	mJ
dv/dt	Peak Diode Recovery dv/dt 3	5.0	V/ns
Тj	Operating Junction	-55 to 150	
TSTG	Storage Temperature Range		°C
10.1-2	Lead Temperature	300 (0.063 in. (1.6mm) from case for 10s)]
	Weight	0.98 (Typical)	g

For footnotes refer to the last page

1 03/07/01

Pre-Irradiation

	Parameter	Min	Тур	Max	Units	Test Conditions
BVDSS	Drain-to-Source Breakdown Voltage	200			V	V _{GS} =0 V, I _D = 1.0mA
ΔBV _{DSS} /ΔTJ	Temperature Coefficient of Breakdown Voltage		0.25	—	V/°C	Reference to 25°C, $I_D = 1.0$ mA
RDS(on)	Static Drain-to-Source		—	0.35		VGS = 12V, ID = 3.5A
× ,	On-State Resistance	_	—	0.36	Ω	VGS = 12V, ID = 5.5A ⁽⁴⁾
VGS(th)	Gate Threshold Voltage	2.0	_	4.0	V	$V_{DS} = V_{GS}, I_{D} = 1.0 mA$
9fs	Forward Transconductance	2.5	—	—	S (0)	V _{DS} > 15V, I _{DS} = 3.5A ④
IDSS	Zero Gate Voltage Drain Current		—	25	۸	VDS= 160V,VGS=0V
		—	—	250	μA	VDS = 160V
						VGS = 0V, TJ = 125°C
IGSS	Gate-to-Source Leakage Forward		—	100	0	VGS = 20V
IGSS	Gate-to-Source Leakage Reverse		_	-100	nA	VGS = -20V
Qg	Total Gate Charge		—	50		VGS = 12V, ID = 5.5A
Qgs	Gate-to-Source Charge	_	—	10	nC	VDS = 100V
Qgd	Gate-to-Drain ('Miller') Charge	_	—	25		
td(on)	Turn-On Delay Time	—	—	25		V _{DD} = 100V, I _D = 5.5A,
tr	Rise Time	—	—	40		VGS = 12V, RG = 7.5Ω
td(off)	Turn-Off Delay Time	_	—	60	ns	
tf	FallTime			45		
LS + LD	Total Inductance	_	7.0		nH	Measured from drain lead (6mm/0.25in. from package) to source lead (6mm/0.25in. from package)
Ciss	Input Capacitance	_	1100	_		VGS = 0V, VDS = 25V
Coss	Output Capacitance	_	250	—	pF	f = 1.0MHz
C _{rss}	Reverse Transfer Capacitance	—	55	—		

Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)

Source-Drain Diode Ratings and Characteristics

	Parameter	Min	Тур	Max	Units	Test Conditions	
IS	Continuous Source Current (Body Diode)	_	_	5.5	^		
ISM	Pulse Source Current (Body Diode) ①	—		22	A		
VSD	Diode Forward Voltage	—	_	1.4	V	Tj = 25°C, IS = 5.5A, VGS = 0V ④	
t _{rr}	Reverse Recovery Time	_		400	nS	Tj = 25°C, IF = 5.5A, di/dt ≥ 100A/μs	
QRR	Reverse Recovery Charge	—	_	3.0	μC	V _{DD} ≤ 25V ④	
ton	Forward Turn-On Time Intrinsic turn-on	Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by $L_S + L_D$.					

Thermal Resistance

	Parameter	Min	Тур	Max	Units	Test Conditions
R _{th} JC	Junction-to-Case	—	—	5.0	°C/W	
R _{th} JA	Junction-to-Ambient	—	—	175	C/W	Typical socket mount

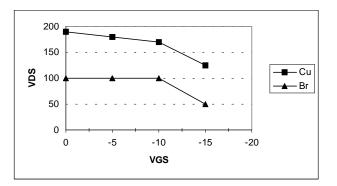
Note: Corresponding Spice and Saber models are available on the G&S Website. For footnotes refer to the last page

Radiation Characteristics

IRHF7230, JANSR2N7262

International Rectifier Radiation Hardened MOSFETs are tested to verify their radiation hardness capability. The hardness assurance program at International Rectifier is comprised of two radiation environments. Every manufacturing lot is tested for total ionizing dose (per notes 5 and 6) using the TO-3 package. Both pre- and post-irradiation performance are tested and specified using the same drive circuitry and test conditions in order to provide a direct comparison.

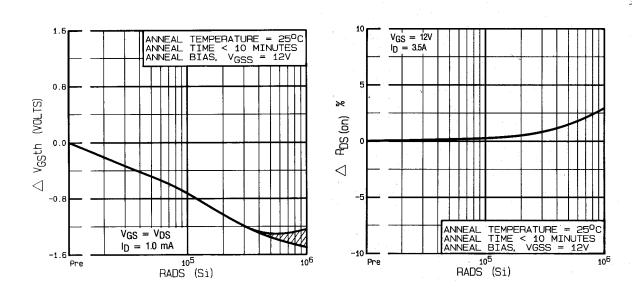
Parameter		100KR	ads(Si) ¹	600 to 1000K Rads (Si)2		Units	5 Test Conditions
		Min	Max	Min	Max		
BV _{DSS}	Drain-to-Source Breakdown Voltage	200		200	_	V	$V_{GS} = 0V, I_{D} = 1.0mA$
VGS(th)	Gate Threshold Voltage	2.0	4.0	1.25	4.5	Ī	$V_{GS} = V_{DS}, I_D = 1.0 \text{mA}$
I _{GSS}	Gate-to-Source Leakage Forward	_	100	—	100	nA	$V_{GS} = 20V$
IGSS	Gate-to-Source Leakage Reverse	—	-100	—	-100	Ī	V _{GS} = -20 V
IDSS	Zero Gate Voltage Drain Current	_	25	_	50	μA	V _{DS} =160V, V _{GS} =0V
R _{DS(on)}	Static Drain-to-Source ④	_	0.35	—	0.48	Ω	VGS = 12V, I _D =3.5A
	On-State Resistance (TO-3)						
R _{DS(on)}	Static Drain-to-Source ④	_	0.35	_	0.48	Ω	VGS = 12V, I _D =3.5A
	On-State Resistance (TO-39)						
V _{SD}	Diode Forward Voltage ④	—	1.4	—	1.4	V	$V_{GS} = 0V, I_{S} = 5.5A$


1. Part number IRHF7230 (JANSR2N7262)

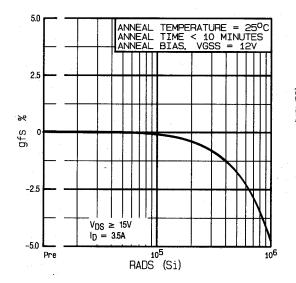
2. Part numbers IRHF3230 (JANSF2N7262), IRHF4230 (JANSG2N7262) and IRHF8230 (JANSH2N7262)

International Rectifier radiation hardened MOSFETs have been characterized in heavy ion environment for Single Event Effects (SEE). Single Event Effects characterization is illustrated in Fig. a and Table 2.

Table 2. Single Event Effect Safe Operating Area


lon	LET	Energy	Range	VDS(V)							
	MeV/(mg/cm ²))	(MeV)	(µm)	@Vgs=0V	@VGS=-5V	@VGS=-10V	@VGS=-15V	@VGS=-20V			
Cu	28	285	43	190	180	170	125	_			
Br	36.8	305	39	100	100	100	50	—			




For footnotes refer to the last page

Post-Irradiation

Voltage Vs. Total Dose Exposure

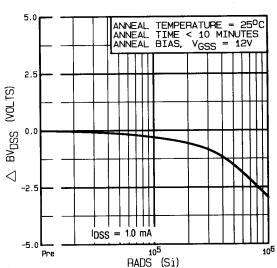
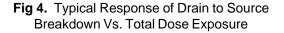



Fig 3. Typical Response of Transconductance Vs. Total Dose Exposure

Post-Irradiation

IRHF7230, JANSR2N7262

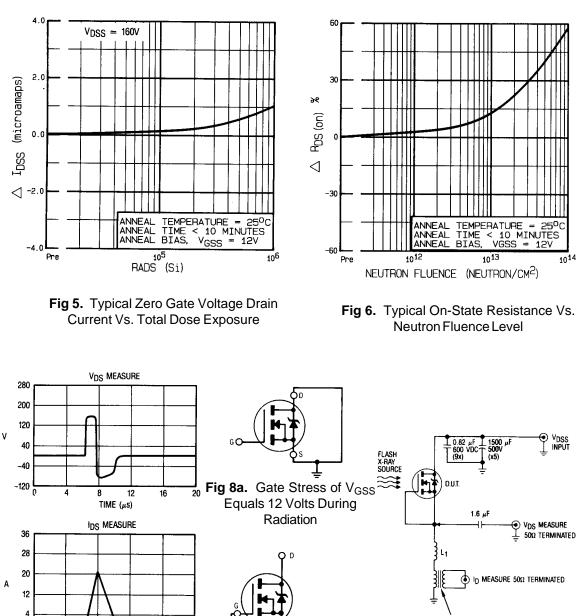


Fig 8b. V_{DSS} Stress Equals

PEARSON PULSE CURRENT TRANSFORMER MODEL 411 0.1 VOLT/AMP WITH LOAD IMPEDANCE OF 1 MEGOHM WITH 20 pF 0.05 VOLT/AMP WITH 50Ω TERMINATION 5000 AMPS MAX. PEAK OUTPUT

Fig 9. High Dose Rate 80% of B_{VDSS} During Radiation (Gamma Dot) Test Circuit

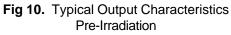
Fig 7. Typical Transient Response of Rad Hard HEXFET During 1x10¹² Rad (Si)/Sec Exposure

TIME (µs)

8

12

16


20

-4 ò

Radiation Characteristics

Note: Bias Conditions during radiation: VGS = 12 Vdc, VDS = 0 Vdc

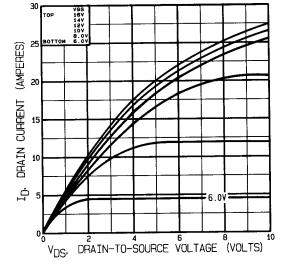
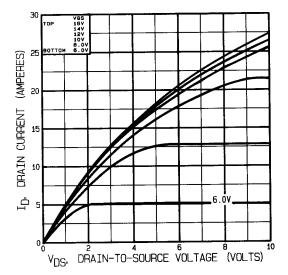
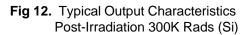
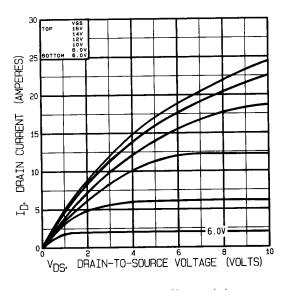
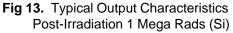
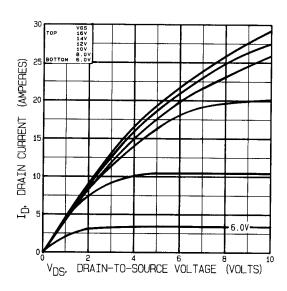
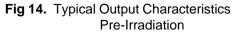
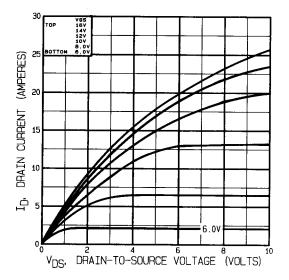
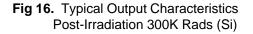






Fig 11. Typical Output Characteristics Post-Irradiation 100K Rads (Si)






Radiation Characteristics


IRHF7230, JANSR2N7262

Note: Bias Conditions during radiation: VGS = 0 Vdc, VDS = 160 Vdc

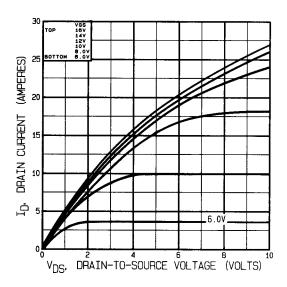


Fig 15. Typical Output Characteristics Post-Irradiation 100K Rads (Si)

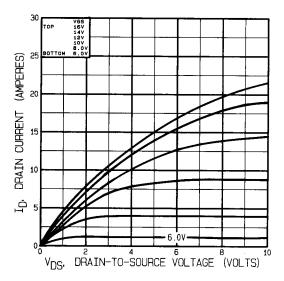


Fig 17. Typical Output Characteristics Post-Irradiation 1 Mega Rads (Si)

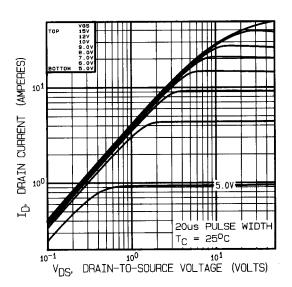
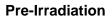



Fig 18. Typical Output Characteristics

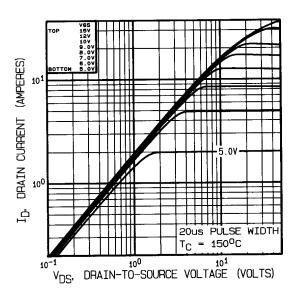
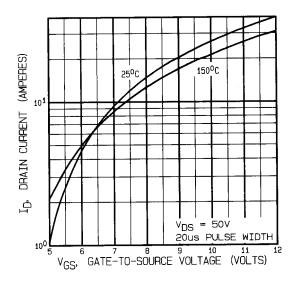
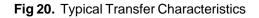




Fig 19. Typical Output Characteristics

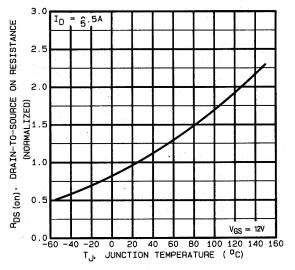
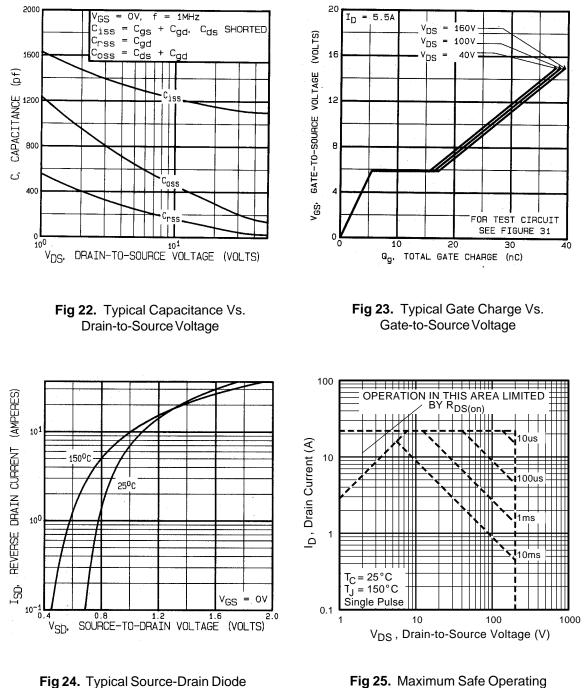
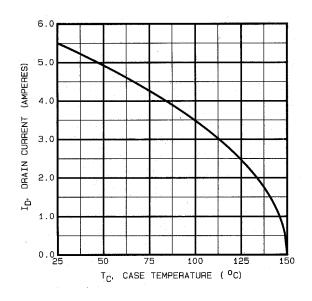
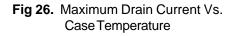
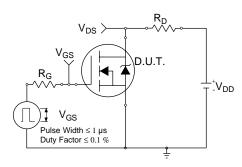
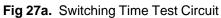



Fig 21. Normalized On-Resistance Vs. Temperature




Forward Voltage


www.irf.com


Area

Pre-Irradiation

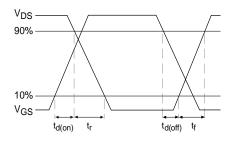


Fig 27b. Switching Time Waveforms

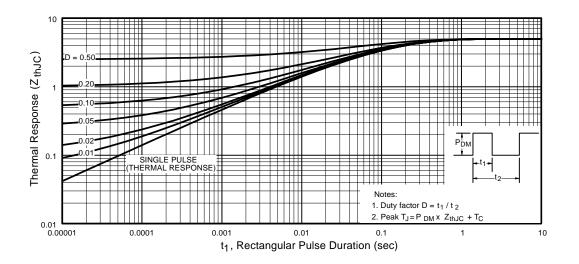


Fig 28. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Pre-Irradiation

IRHF7230, JANSR2N7262

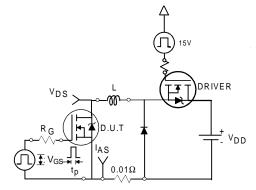


Fig 29a. Unclamped Inductive Test Circuit

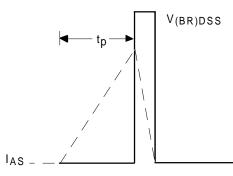


Fig 29b. Unclamped Inductive Waveforms

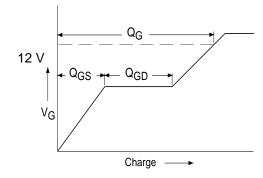
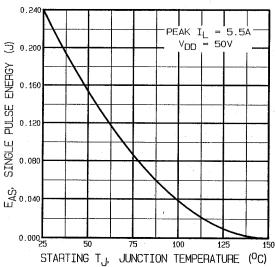
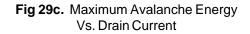




Fig 30a. Basic Gate Charge Waveform

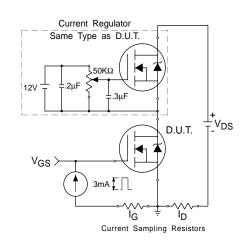
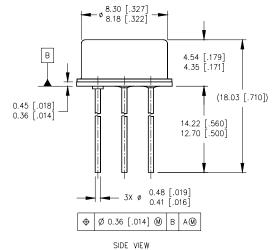
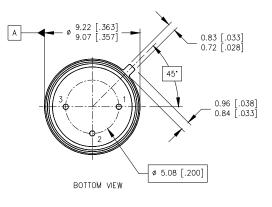


Fig 30b. Gate Charge Test Circuit


Pre-Irradiation

Foot Notes:

- ① Repetitive Rating; Pulse width limited by maximum junction temperature.
- V_{DD} = 25V, starting T_J = 25°C, L= 15.9mH
 Peak I_L = 5.5A, V_{GS} = 12V


- ④ Pulse width \leq 300 µs; Duty Cycle \leq 2%
- Total Dose Irradiation with V_{GS} Bias.
 12 volt V_{GS} applied and V_{DS} = 0 during irradiation per MIL-STD-750, method 1019, condition A.
- Total Dose Irradiation with V_{DS} Bias.
 160 volt V_{DS} applied and V_{GS} = 0 during irradiation per MIL-STD-750, method 1019, condition A.

Case Outline and Dimensions — TO-39

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME 14.5M-1994.
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 3. CONTROLLING DIMENSION: INCH.
- 4. CONFORMS TO JEDEC OUTLINE TO-205AF (TO-39).

LEGEND 1- SOURCE 2- GATE 3- DRAIN

International

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. Data and specifications subject to change without notice. 03/01

www.irf.com