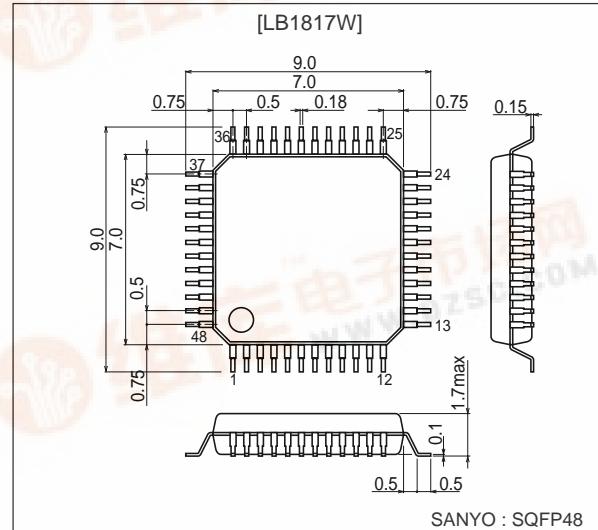


LB1817W**FDD Spindle Motor Driver**

Overview


The LB1817W is a spindle motor driver for low-profile floppy disk drives.

Functions and Features

- Three-phase full-wave linear drive (with external PNP transistor)
- Low saturation voltage
- Built-in digital speed control
- Start/stop circuit (Low active)
- Switchable rotation speed
- Current limiter circuit
- Built-in index processing circuit
- Index timing adjustable by VR
- AGC circuit
- Thermal protection circuit

Package Dimensions

unit: mm

3163A-SQFP48

Specifications

Absolute Maximum Ratings at $T_a = 25^\circ\text{C}$

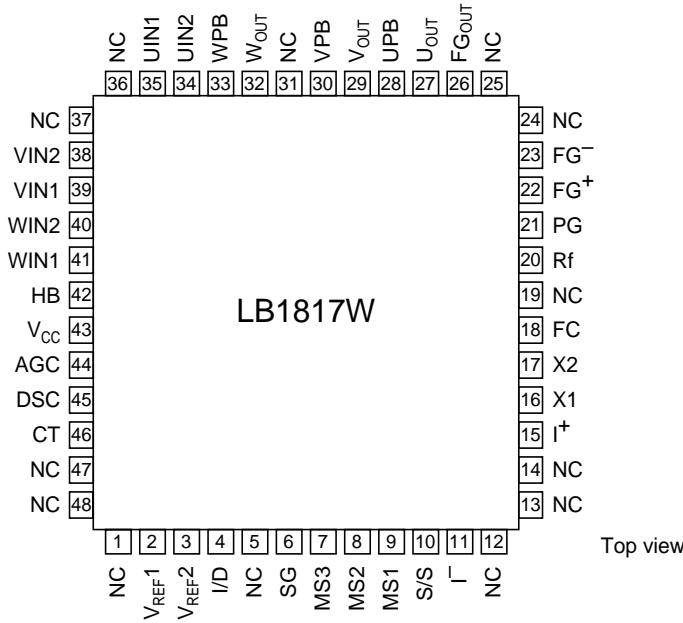
Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V_{CC} max		7.0	V
Maximum output current	I_{CC} max1	$t \leq 0.5\text{s}$	1.5	A
Maximum constant output current	I_O max2		1.0	A
Allowable power dissipation	P_d max1	IC only	0.45	W
Operating temperature	T_{opr}		-20 to +80	$^\circ\text{C}$
Storage temperature	T_{stg}		-40 to +150	$^\circ\text{C}$

Allowable Operating Ranges at $T_a = 25^\circ\text{C}$

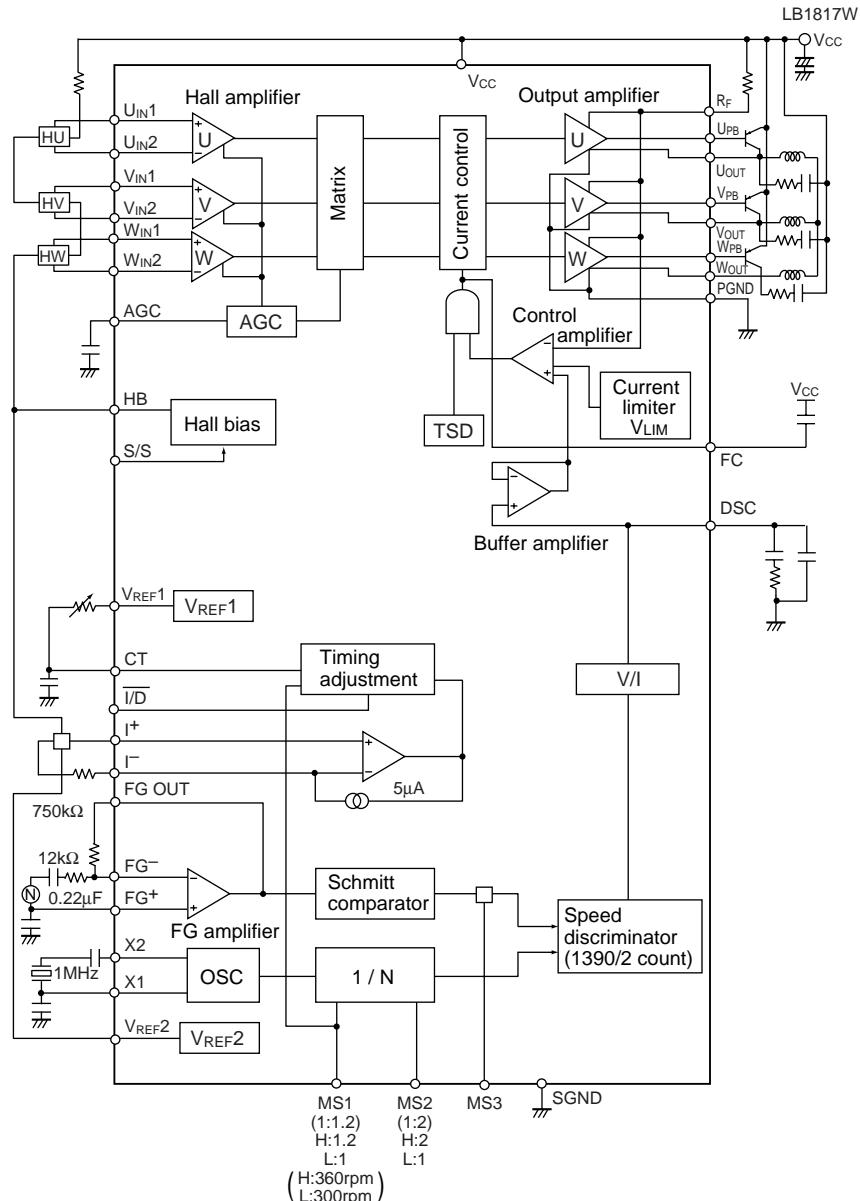
Parameter	Symbol	Conditions	Ratings	Unit
Power supply voltage	V_{CC}		4.2 to 6.5	V

- Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
- SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

LB1817W


Electrical Characteristics at $T_a = 25^\circ\text{C}$, $V_{CC} = 5\text{V}$

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Current drain	I_{CC0}	S/S = 5V (Standby)		70	100	μA
	I_{CC}	S/S = 0V (Normal)		25	35	mA
MS1 bias current	I_{MS1}	$V_{MS1} = 5\text{V}$		180	270	μA
MS1 Low input voltage	V_{MS1L}		0.0		0.8	V
MS1 High input voltage	V_{MS1H}			2		V_{CC}
MS2 bias current	I_{MS2}	$V_{MS2} = 5\text{V}$		90	135	μA
MS2 Low input voltage	V_{MS2L}		0.0		0.8	V
MS2 High input voltage	V_{MS2H}			2		V_{CC}
MS3 bias current	I_{MS3}	$V_{MS3} = 5\text{V}$		90	135	μA
MS3 Low input voltage	V_{MS3L}		0.0		0.8	V
MS3 High input voltage	V_{MS3H}			2		V_{CC}
S/S bias current	$I_{S/S}$				20	μA
S/S Low voltage	$V_{S/SL}$		0.0		0.8	V
S/S High voltage	$V_{S/SH}$			2		V_{CC}
Hall amplifier input bias current	I_{HB}				15	μA
Common mode input voltage range	V_h		2.0		$V_{CC}-0.7$	V
Differential input voltage range	V_{dif}			50	200	$\text{mV}_{\text{p-p}}$
Input offset voltage	V_{ho}	*			± 10	mV
Hall bias output voltage	V_H	$I_H = 5\text{ mA}$	0.5	0.8	1.1	V
Leakage current	V_{HL}	S/S = 5V			± 10	μA
Output saturation voltage	$V(\text{sat})$	$I_O = 0.8\text{A}$		0.45	0.64	V
Output leakage current	I_{OL}				1	mA
Current limiter	I_{lim}	$R_F = 3\text{ k}\Omega$, $R_{OUT} = 100\Omega$	6.3	7.5	8.7	mA
Control amplifier voltage gain	G_C		-7.5	-5.5	-3.5	dB
Voltage gain phase differential	ΔG_C				± 1	dB
V/I conversion source current	I^+		19	28	37	μA
V/I conversion sink current	I^-		-19	-28	-37	μA
V/I conversion current ratio	I^+/I^-		0.8	1.0	1.2	
DSC buffer input current	I_{DSC}				1	μA
FG amplifier input voltage	V_{FG}	$f_{FG} = 300\text{ Hz}$	2		20	$\text{mV}_{\text{p-p}}$
FG amplifier voltage gain	G_{FG}	Open loop*		60		dB
FG amplifier input offset	V_{FGO}	*			± 10	mV
FG amplifier internal reference voltage	V_{FGB}		2.2	2.5	2.8	V
FG Schmitt hysteresis width	ΔV_{sh1}	High \rightarrow Low*		25		mV
	ΔV_{sh2}	Low \rightarrow High*		25		mV
Speed discriminator count	N			1390/2		
Discriminator operating frequency	F_D	*			1.1	MHz
Oscillator frequency	F_{OSC}	*			1.1	MHz
Oscillator frequency tolerance	ΔF_{OSC}				± 0.2	$\%$
Index output Low voltage	V_{IDL}	$I_O = 2\text{ mA}$			0.4	V
Index output leakage current	I_{IDL}				± 10	μA
Index amplifier common mode input voltage range	V_I		0.2		$V_{CC}-0.7$	V
Index amplifier differential input voltage range	V_{DIF}	Hysteresis width $< 25\text{ mA}$	25		100	mV
Index amplifier hysteresis set current	I_{HYS}		2.9	4.2	5.5	μA
Timing adjustment at High level	V_{TH}	MS1 = L	1.15	1.26	1.35	V
Timing adjustment at Low level	V_{TL}	MS1 = L	0.40	0.52	0.60	V
Timing adjustment ratio	T_{HL}	V_{TH} (MS1 = L) / V_{TH} (MS1 = H)		1.148		
Reference voltage	V_{REF1}		2.20	2.50	2.80	V
	V_{REF2}		1.85	2.15	2.45	V
Thermal protection operating temperature	T_{SD}	*	150	180		$^\circ\text{C}$
Hysteresis width	ΔT_{SD}	*		10		$^\circ\text{C}$


Note: Items shown to be “*” are not measured.

LB1817W

Pin Assignment

Block Diagram

LB1817W

Pin Descriptions

Pin number	Pin name	Pin voltage	Equivalent circuit	Pin function
1, 5 12, 13 14, 19 24, 25 31, 36 37, 47 48	NC			<ul style="list-style-type: none"> Pins not used
2	V _{REF1}	2.5V typ		<ul style="list-style-type: none"> V_{REF1} pin. Used as power supply for external CR serving for index timing adjustment.
3	V _{REF2}	2.15V typ		<ul style="list-style-type: none"> V_{REF2} pin. Used as bias pin for external index sensor.
4	I/D			<ul style="list-style-type: none"> Index pulse output pin.
6	SG			<ul style="list-style-type: none"> Signal ground pin. Connect to ground together with pin 21.
7	MS3	H: 2.0V min L: 0.8V max		<ul style="list-style-type: none"> FG switching pin. High: FG set to through Low: FG set to 1-stage division
8	MS2	H: 2.0V min L: 0.8V max		<ul style="list-style-type: none"> CLK switching pin. High: Clock set to through Low: Clock set to 1-stage division

Continued on next page

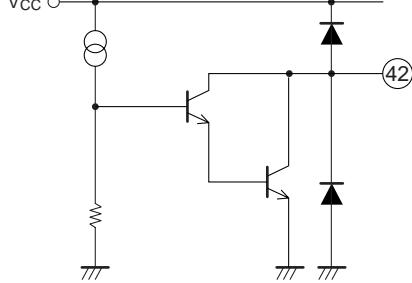
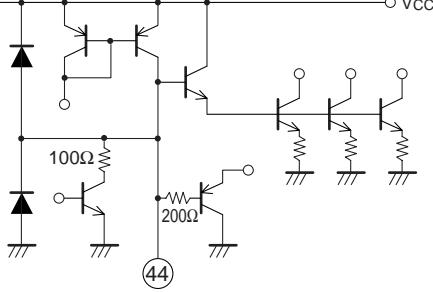
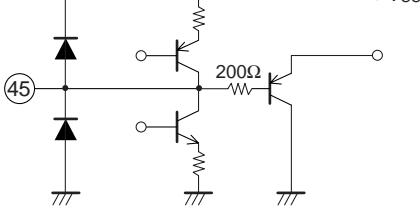
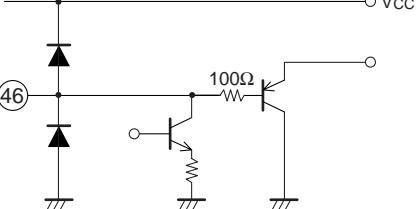
LB1817W

Continued from preceding page

Pin number	Pin name	Pin voltage	Equivalent circuit	Pin function
9	MS1	H: 2.0V min L: 0.8V max		<ul style="list-style-type: none"> Rotation speed switching pin. High: 360 rpm Low: 300 rpm For details, see rotation speed switching table.
10	S/S	H: 2.0V min L: 0.8V max		<ul style="list-style-type: none"> Start/stop switching pin. Low: active
11 15	I ⁻ I ⁺			<ul style="list-style-type: none"> External index – input pin. External index + input pin. When I⁻ pin is High, constant current I1 flows. When pin is Low, constant current I1 is cut off. Resistor externally connected to I⁻ pin determines hysteresis width.
16	X1			<ul style="list-style-type: none"> Reference clock generator pin.
17	X2			
18	FC			<ul style="list-style-type: none"> Frequency characteristics compensation pin. To prevent current control loop oscillation, insert a capacitor between this pin and V_{CC}.

Continued on next page

LB1817W





Continued from preceding page

Pin number	Pin name	Pin voltage	Equivalent circuit	Pin function
20	RF			<ul style="list-style-type: none"> Output current detection pin. To detect output current as a voltage, insert a resistor R_f between this pin and V_{CC}. The voltage is used for the current limiter. The detection level is about 1/50 of the output current.
21	PG			<ul style="list-style-type: none"> Output transistor ground pin. Connect to ground together with pin 6.
22 23	FG+ FG-	2.5V typ		<ul style="list-style-type: none"> FG amplifier + pin FG amplifier – pin
26	FGout			<ul style="list-style-type: none"> FG amplifier output pin.
27 28 29 30 32 33	UOUT UPB VOUT VPB WOUT WPB			<ul style="list-style-type: none"> U phase output pin. U phase external PNP transistor base connection. V phase output pin. V phase external PNP transistor base connection. W phase output pin. W phase external PNP transistor base connection.
34 35 38 39 40 41	U _{IN} 2 U _{IN} 1 V _{IN} 2 V _{IN} 1 W _{IN} 2 W _{IN} 1			<ul style="list-style-type: none"> U phase Hall input pin. Logic High means $U_{IN1} > U_{IN2}$. V phase Hall input pin. Logic High means $V_{IN1} > V_{IN2}$. W phase Hall input pin. Logic High means $W_{IN1} > W_{IN2}$.

Continued on next page

LB1817W

Continued from preceding page

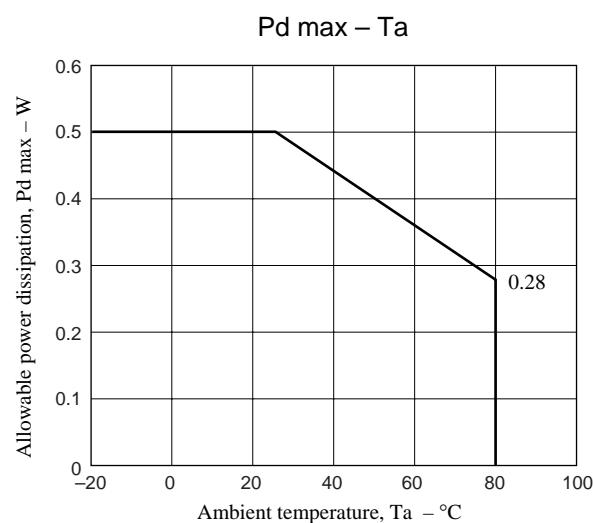
Pin number	Pin name	Pin voltage	Equivalent circuit	Pin function
42	HB			<ul style="list-style-type: none"> • Hall bias negative-side pin. In stop mode, the pin is open and Hall bias is cut off.
43	V _{CC}			<ul style="list-style-type: none"> • Power supply pin. The voltage supplied to this pin must be stabilized to prevent ripple noise or other noises from inputting to this pin.
44	AGC			<ul style="list-style-type: none"> • AGC pin. Controls the Hall amplifier gain according to Hall input amplitude. An external capacitor is used.
45	DSC			<ul style="list-style-type: none"> • Speed discriminator pin.
46	CT			<ul style="list-style-type: none"> • Timing adjustment pin. External CR for time constant circuit is connected here.

LB1817W

Truth Table

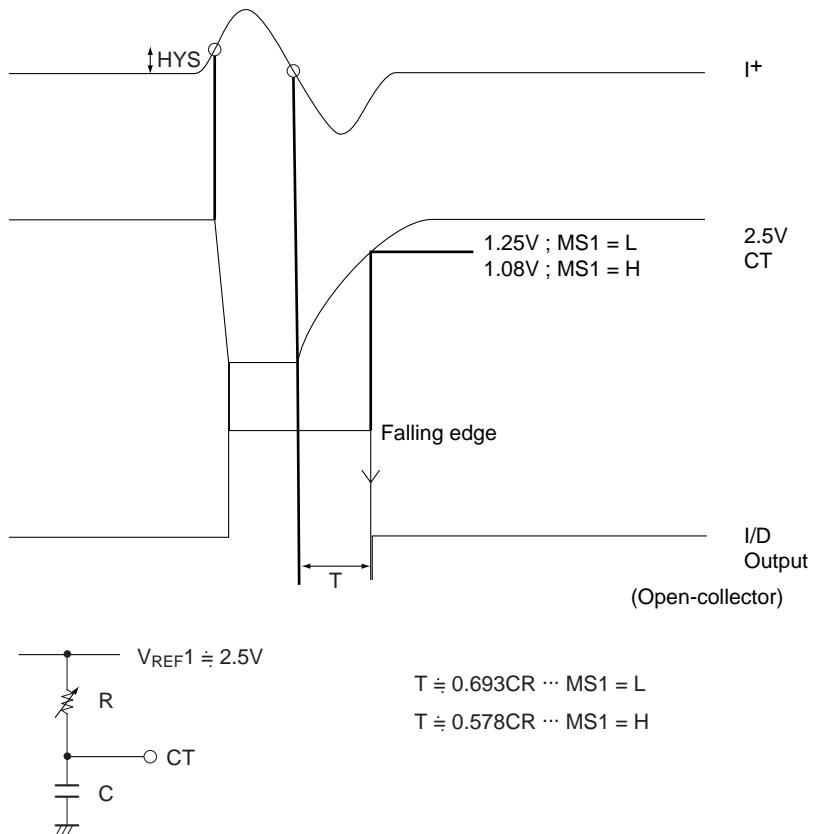
	Source → Sink	Hall input		
		U	V	W
1	V phase → W phase	H	H	L
2	V phase → U phase	L	H	L
3	W phase → U phase	L	H	H
4	W phase → V phase	L	L	H
5	U phase → V phase	H	L	H
6	U phase → W phase	H	L	L

Hall input pin High means $U_{IN1} > U_{IN2}$


$V_{IN1} > V_{IN2}$

$W_{IN1} > W_{IN2}$

Rotation Speed Select Table


$f_{OSC} = 1 \text{ MHz}$

MS1	H	L	H	L	H	L	H	L
MS2		H		L		H		L
MS3		H		L		L		H
$f_{FG} [\text{Hz}]$	720	600	720	600	1440	1200	360	300

LB1817W

Index and Timing Chart

- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only ; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.