	LB1951V
	Three－phase Brushless Motor Driver
	for Portable VCR Capstan U

Functions

－3－phase full－wave current linear drive system （ 120° voltage linear drive system）．
－Torque ripple correction circuit built in （overlap correction）．
－Speed control system using motor supply voltage control．
－FG comparator built in．
－Thermal shutdown circuit built in．

Package Dimensions

unit ：mm
3175A－SSOP24

Specifications

Absolute Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	$\mathrm{V}_{\mathrm{CC}} 1$ max		10	V
	$\mathrm{V}_{\mathrm{CC}} 2$ max	나불	11	V
	Vs max	$\leqq \mathrm{V}_{\mathrm{CC}} 2$	11	V
Applied output voltage	$V_{0} \max$		$\mathrm{V}_{S}+2$	V
Maximum output current	Io max		1.0	A
Allowable power dissipation	Pd max	Independent IC	440	mW
Operating temperature	Topr		-20 to +75	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-55 to +150	${ }^{\circ} \mathrm{C}$

－Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability，such as life－support systems，aircraft＇s control systems，or other applications whose failure can be reasonably expected to result in serious physical and／or material damage．Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications．
\square SANYO assumes no responsibility for equipment failures that result from using products at values that exceed，even momentarily，rated values（such as maximum ratings，operating condition ranges，or other parameters）listed in products specifications of any and all SANYO products described or contained herein．

LB1951V

Allowable Operating Ranges at $\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	$\mathrm{V}_{\mathrm{CC}} 1$		2.7 to 6.0	V
	$\mathrm{~V}_{\mathrm{CC}} 2$		3.5 to 9.0	V
	$\mathrm{~V}_{\mathrm{S}}$		to $\mathrm{V}_{\mathrm{CC}} 2$	V
Hall input amplitude	$\mathrm{V}_{\mathrm{HALL}}$	Between Hall inputs	± 20 to ± 80	$\mathrm{mV} \mathrm{Vo}_{0} \mathrm{p}$

Electrical Characteristics at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}} 1=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}} 2=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=1.5 \mathrm{~V}$

Parameter	Symbol	Conditions		Ratings			Unit
				min	typ	max	
[Supply Current]							
Supply current 1	Icc 1	lout $=100 \mathrm{~mA}$			3.0	5.0	mA
Supply current 2	Icc^{2}	lout $=100 \mathrm{~mA}$			7.0	10.0	mA
Static current 1	$\mathrm{I}_{\mathrm{CcQ}} 1$	$\mathrm{V}_{\text {STBY }}=0 \mathrm{~V}$			1.5	3.0	mA
Static current 2	$\mathrm{I} C C Q^{2}$	$\mathrm{V}_{\text {STBY }}=0 \mathrm{~V}$				100	$\mu \mathrm{A}$
$\mathrm{V}_{\text {S }}$ static current	$\mathrm{I}_{\text {SQ }}$	$\mathrm{V}_{\text {STBY }}=0 \mathrm{~V}$			40	100	$\mu \mathrm{A}$
[VX1]							
Upper side residual voltage	$\mathrm{V}_{\mathrm{XH}} 1$	lout $=0.2 \mathrm{~A}$		0.15	0.22	0.29	V
Lower side residual voltage	$\mathrm{V}_{\mathrm{XL}} 1$	lout $=0.2 \mathrm{~A}$		0.16	0.21	0.26	V
[VX2]							
Upper side residual voltage	$\mathrm{V}_{\mathrm{XH}}{ }^{2}$	lout $=0.5 \mathrm{~A}$			0.25	0.40	V
Lower side residual voltage	$\mathrm{V}_{\mathrm{XL}}{ }^{2}$	lout $=0.5 \mathrm{~A}$			0.25	0.40	V
Output side saturation voltage	Vosat	lout $=0.8 \mathrm{~A}$, Sink + Source				1.40	V
Overlap	O.L	$\mathrm{R}_{\mathrm{L}}=39 \Omega \times 3, \mathrm{R}$ angle $=20 \mathrm{k} \Omega$	Note 1	70	77	84	\%
[Hall Amplifier]							
Hall amplifier input offset voltage	$\mathrm{V}_{\text {HOFF }}$	Note 2		-5		+5	mV
Hall amplifier common-mode input range	$\mathrm{V}_{\text {HCM }}$	R angle $=20 \mathrm{k} \Omega$		0.95		2.4	V
Hall amplifier I/O voltage gain	$\mathrm{V}_{\text {GVH }}$	R angle $=20 \mathrm{k} \Omega$		24.5	27.5	30.5	dB
[Standby Pin]							
Stand-by pin high-level voltage	$\mathrm{V}_{\text {STH }}$			2.5			V
Standby pin low-level voltage	$\mathrm{V}_{\text {STL }}$					0.4	V
Standby pin input current	Istin	$\mathrm{V}_{\text {STBY }}=3 \mathrm{~V}$			25	40	$\mu \mathrm{A}$
Standby leakage current	IstLk	$\mathrm{V}_{\text {STBY }}=0 \mathrm{~V}$				-30	$\mu \mathrm{A}$
[FRC Pin]							
FRC pin high-level voltage	$\mathrm{V}_{\text {FRCH }}$			2.5			V
FRC pin low-level voltage	$\mathrm{V}_{\text {FRCL }}$					0.4	V
FRC pin input current	$\mathrm{I}_{\text {FRCIN }}$	$\mathrm{V}_{\mathrm{FRC}}=3 \mathrm{~V}$			20	30	$\mu \mathrm{A}$
FRC pin leakage current	$\mathrm{I}_{\text {FRCLK }}$	$\mathrm{V}_{\text {FRC }}=0 \mathrm{~V}$				-30	$\mu \mathrm{A}$
[VH]							
Hall supply voltage	$\mathrm{V}_{\text {HALL }}$	$\mathrm{I}_{\mathrm{H}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{H}}(+)-\mathrm{V}_{\mathrm{H}}(-)$		0.85	0.95	1.05	V
$\mathrm{V}_{\mathrm{H}}(-)$ pin voltage	$\mathrm{V}_{\mathrm{H}}(-)$	$\mathrm{I}_{\mathrm{H}}=5 \mathrm{~mA}$		0.81	0.88	0.95	V
[FG Comparator]							
Input offset voltage	$\mathrm{V}_{\text {FGOFF }}$			-3		+3	mV
Input bias current	$\mathrm{IbFG}^{\text {b }}$	$\mathrm{V}_{\mathrm{FGIN}}{ }^{+}=\mathrm{V}_{\text {FGIN }}{ }^{-}=1.5 \mathrm{~V}$				500	nA
Input bias current offset	$\Delta \mathrm{l}_{\mathrm{bFG}}$	$\mathrm{V}_{\mathrm{FGIN}}{ }^{+}=\mathrm{V}_{\mathrm{FGIN}}{ }^{-}=1.5 \mathrm{~V}$		-100		+100	nA
Common-mode input range	$\mathrm{V}_{\text {FGCM }}$			1.2		2.5	V
Output high-level voltage	$\mathrm{V}_{\text {FGOH }}$	At internal pull-up		2.8			V
Output low-level voltage	$\mathrm{V}_{\mathrm{FGOL}}$	At internal pull-up				0.2	V
Voltage gain	$\mathrm{V}_{\mathrm{GFG}}$	(Design target) Note 2			100		dB
Output current (Sink)	$\mathrm{I}_{\text {FGOs }}$	With output pin "L"				5	mA
[TSD]							
TSD operating temperature	T-TSD	(Design target value) Note 2			180		${ }^{\circ} \mathrm{C}$
TSD temperature hysteresis width	$\Delta \mathrm{TSD}$	(Design target value) Note 2			20		${ }^{\circ} \mathrm{C}$

Note 1: Overlapping specifications are assumed to be test specifications.
Note 2: For parameters which have an entry of (Design target value) in the "Conditions" column, no measurements are made.

Pin Assignment

LB1951V
Pin Functions

Pin No.	Pin name	I/O equivalent circuit	Function
1	$\mathrm{V}_{\mathrm{CC}} 1$		Power supply pin for supplying power to all circuits except amplitude control block in output block in IC.
2	$\mathrm{V}_{\mathrm{cc}}{ }^{2}$		Power supply pin for supplying power to all circuits of the amplitude control block and the output control block in IC.
3	V_{S}		Power supply pin for motor drive. Apply a voltage of $V_{C C} 2$ or lower to this pin.
$\begin{aligned} & 5 \\ & 7 \\ & 9 \end{aligned}$	UOUT $V_{\text {OUT }}$ WOUT		U-phase output pin V-phase output pin (Spark killer diode built in) W-phase output pin
6, 8	Rf	A12468	Pins for grounding output power transistor.
$\begin{aligned} & 10 \\ & 11 \end{aligned}$	$\begin{aligned} & \mathrm{VH}^{+} \\ & \mathrm{VH}^{-} \end{aligned}$		Pins for supplying the Hall element bias voltage. Voltage of 0.95 V (typ.) is generated between VH^{+} and VH^{-}. (when $\mathrm{I}_{\mathrm{H}}=5 \mathrm{~mA}$)
12	ANGLE		Pins for controlling the Hall input-output gain. The gain is controlled by a resistor between this pin and GND.
$\begin{aligned} & 16 \\ & 17 \\ & 18 \\ & 19 \\ & 20 \\ & 21 \end{aligned}$	$U_{I N} 1$ $U_{I N}{ }^{2}$ $\mathrm{V}_{\mathrm{IN}}{ }^{1}$ $\mathrm{V}_{\mathrm{IN}}{ }^{2}$ $\mathrm{W}_{\mathrm{IN}}{ }^{1}$ $W_{I N}{ }^{2}$		U-phase Hall element input pin; Logic "H" represents $\mathrm{IN}^{+}>\mathrm{IN}^{-}$. V-phase Hall element input pin; Logic "H" represents $\mathrm{IN}^{+}>\mathrm{IN}^{-}$ W-phase Hall element input pin; Logic "H" represents $\mathrm{IN}^{+}>\mathrm{IN}^{-}$.
13	GND		Pin for grounding other than output transistors. Minimum potential of output transistors is equal to the level at Rf pin.
14	FRC	$\mathrm{V}_{\mathrm{CC}}{ }^{1}$	Forward/reverse select pin. The voltage on this pin is used for forward/reverse select. (with Hysteresis)
15	STBY		Pin for selecting the bias supply for all circuits except the FG comparator. "L" level on this pin cuts the bias supply.

Continued on next page.

LB1951V

Continued from preceding page.

Pin No.	Pin name	I/O equivalent circuit	Function
22	$\mathrm{FG}_{\mathrm{IN}^{+}}$		Noninverting input pin for the FG comparator. No bias is applied internally.
23	$\mathrm{FG}_{\mathrm{IN}^{-}}$		Inverting input pin for the FG comparator. No bias is applied internally.
24	FGOUT		FG comparator output pin. A resistive load of $20 \mathrm{k} \Omega$ is provided internally.

Truth Table

	Source \rightarrow Sink		inp		FRC
		U	V	W	
1	$\mathrm{V} \rightarrow \mathrm{W}$	H	H	L	H
	$\mathrm{W} \rightarrow \mathrm{V}$				L
2	$U \rightarrow W$	H	L	L	H
	$\mathrm{W} \rightarrow \mathrm{U}$				L
3	$\mathrm{U} \rightarrow \mathrm{V}$	H	L	H	H
	$\mathrm{V} \rightarrow \mathrm{U}$				L
4	$\mathrm{W} \rightarrow \mathrm{V}$	L	L	H	H
	$\mathrm{V} \rightarrow \mathrm{W}$				L
5	$\mathrm{W} \rightarrow \mathrm{U}$	L	H	H	H
	$U \rightarrow W$				L
6	$V \rightarrow$ U	L	H	L	H
	$\mathrm{U} \rightarrow \mathrm{V}$				L

Note: "H" in the FRC column represents a voltage of 2.5 V or more; "L" represents a voltage of 0.4 V or less. (At $\mathrm{V}_{\mathrm{CC}} 1=3 \mathrm{~V}$)
Note: " H " in the Hall input columns represents a state in which " + " has a potential which is higher by 0.02 V or more than that of the "-" phase inputs.
Conversely, "L" represents a state in which " + " has a potential which is lower by 0.02 V or more than that of the "-" phase input.

Block Diagram

* For the blocks drawn with thick lines, power is supplied from $\mathrm{V}_{\mathrm{CC}} 2$.

Overlap Creation and Calculation

i) Overlap creation

Because the voltage generated in the amplitude control block is: $2 \times \mathrm{O} . \mathrm{L} . \times\left(1 / 2 \mathrm{~V}_{\mathrm{S}}-\mathrm{V}_{\mathrm{X}}\right)$ for each side, (using the midpoint as the reference point), the point at which the two waveforms cross each other is O.L. ($1 / 2 \mathrm{~V}_{\mathrm{S}}-\mathrm{V}_{\mathrm{X}}$) from the midpoint.
Because that waveform is clamped at $\left(1 / 2 \mathrm{~V}_{\mathrm{S}}-\mathrm{V}_{\mathrm{X}}\right)$ with the midpoint as the reference point, the overlap equals A / B $\times 100$, which equals O.L. $\times 100(\%)$.
ii) Overlap calculation
(1) Upper overlap amount

Calculated midpoint $\mathrm{VN}=\frac{\left(\mathrm{V}_{\mathrm{S}}-\mathrm{V}_{\mathrm{XH}}-\mathrm{V}_{\mathrm{XL}}\right)}{2}+\mathrm{V}_{\mathrm{XL}}=\frac{\left(\mathrm{V}_{\mathrm{S}}-\mathrm{V}_{\mathrm{XH}}+\mathrm{V}_{\mathrm{XL}}\right)}{2}$
Because $\mathrm{A}=\mathrm{V} \alpha-\mathrm{VN}$ and $\mathrm{B}=\mathrm{VS}_{S}-\mathrm{V}_{\mathrm{XH}}-\mathrm{VN}$, the upper overlap amount is calculated as follows:
Overlap amount $=\frac{\mathrm{A}}{\mathrm{B}}=\frac{\mathrm{V} \alpha-\left\{\left(\mathrm{V}_{\mathrm{S}}-\mathrm{V}_{\mathrm{XH}}+\mathrm{V}_{\mathrm{XL}}\right) / 2\right\}}{\mathrm{V}_{\mathrm{S}}-\mathrm{V}_{\mathrm{XH}}-\left\{\left(\mathrm{V}_{\mathrm{S}}-\mathrm{V}_{\mathrm{XH}}+\mathrm{V}_{\mathrm{XL}}\right) / 2\right\}} \times 100$

$$
=\frac{2 \mathrm{~V} \alpha-\left(\mathrm{V}_{\mathrm{S}}-\mathrm{V}_{\mathrm{XH}}\right)-\mathrm{V}_{\mathrm{XL}}}{\left(\mathrm{~V}_{\mathrm{S}}-\mathrm{V}_{\mathrm{XH}}\right)-\mathrm{V}_{\mathrm{XL}}} \times 100(\%)
$$

(2) Lower overlap amount

Because $\mathrm{C}=\mathrm{VN}-\mathrm{V} \beta$ and $\mathrm{D}=\mathrm{VN}-\mathrm{V}_{\mathrm{XL}}$, the lower overlap amount is calculated as follows:
Overlap amount $=\frac{\mathrm{C}}{\mathrm{D}}=\frac{\left\{\left(\mathrm{V}_{\mathrm{S}}-\mathrm{V}_{\mathrm{XH}}+\mathrm{V}_{\mathrm{XL}}\right) / 2\right\}-\mathrm{V} \beta}{\left\{\left(\mathrm{V}_{\mathrm{S}}-\mathrm{V}_{\mathrm{XH}}+\mathrm{V}_{\mathrm{XL}}\right) / 2\right\}-\mathrm{V}_{\mathrm{XL}}} \times 100$

$$
=\frac{\left(\mathrm{V}_{\mathrm{S}}-\mathrm{V}_{\mathrm{XH}}\right)+\mathrm{V}_{\mathrm{XL}}-2 \mathrm{~V} \beta}{\left(\mathrm{~V}_{\mathrm{S}}-\mathrm{V}_{\mathrm{XH}}\right)-\mathrm{V}_{\mathrm{XL}}} \times 100(\%)
$$

Sample Application Circuit

A12475
Note: It should be noted that the constants specified are for example only, with no guarantee for characteristics implied.

- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
■ No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
■ Information (including circuit diagrams and circuit parameters) herein is for example only ; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

