16－BIT， 2 MSPS，UNIPOLAR INPUT，MICRO POWER SAMPLING ANALOG－TO－DIGITAL CONVERTER WITH PARALLEL INTERFACE AND REFERENCE

FEATURES

－2－MHz Sample Rate
－16－Bit NMC Ensured Over Temperature
－Zero Latency
－Unipolar Single－Ended Input Range： 0 V to Vref
－Onboard Reference
－Onboard Reference Buffer
－High－Speed Parallel Interface
－Power Dissipation： 175 mW at 2 MHz Typ
－Wide Digital Supply
－8－／16－Bit Bus Transfer
－48－Pin TQFP Package
－ESD Sensitive－HBM Capability of 500 V， 1000 V at All Input Pins

APPLICATIONS

－DWDM
－Instrumentation
－High－Speed，High－Resolution，Zero Latency Data Acquisition Systems
－Transducer Interface
－Medical Instruments
－Communication

DESCRIPTION

The ADS8411 is a 16 －bit， 2 MHz A／D converter with an internal $4.096-\mathrm{V}$ reference．The device includes a 16 －bit capacitor－based SAR A／D converter with inherent sample and hold．The ADS8411 offers a full 16－bit interface and an 8 －bit option where data is read using two 8 －bit read cycles．
The ADS8411 has a unipolar single－ended input．It is available in a 48－lead TQFP package and is characterized over the industrial $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ temperature range．

[^0]Thesedevices havelimited built-inESD protection. Theleads shouldbe shorted together orthe device placedinconductivefoamduring storage or handling to prevent electrostatic damage to the MOS gates.

ORDERING INFORMATION

MODEL	MAXIMUM INTEGRAL LINEARITY (LSB)	$\begin{aligned} & \text { MAXIMUM } \\ & \text { DIFFERENTILL } \\ & \text { LINEARITY (LSB) } \end{aligned}$	$\begin{gathered} \text { NO MISSING } \\ \text { CODES } \\ \text { RESOLUTION (BIT) } \end{gathered}$	PACKAGE TYPE	PACKAGE DESIGNATOR	TEMPERATURE RANGE	ORDERING INFORMATION	TRANSPORT MEDIA QUANTITY
ADS8411I	-6 ~ 6	-2~3	15	$\begin{aligned} & 48 \text { Pin } \\ & \text { TQFP } \end{aligned}$	PFB	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	ADS8411IPFBT	Tape and reel 250
							ADS8411IPFBR	Tape and reel 1000
ADS8411IB	-3.5 ~ 3.5	-1~2	16	$\begin{aligned} & 48 \mathrm{Pin} \\ & \text { TQFP } \end{aligned}$	PFB	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	ADS8411IBPFBT	Tape and reel 250
							ADS8411IBPFBR	Tape and reel 1000

NOTE: For the most current specifications and package information, refer to our website at www.ti.com.

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range unless otherwise noted(1)

Voltage	+IN to AGND		-0.4 V to $+\mathrm{VA}+0.1 \mathrm{~V}$
	-IN to AGND		-0.4 V to 0.5 V
Voltage range	+VA to AGND		-0.3 V to 7 V
	+VBD to BDGND		-0.3 V to 7 V
	+VA to +VBD		-0.3 V to 2.55 V
Digital input voltage to BDGND			-0.3 V to + VBD +0.3 V
Digital output voltage to BDGND			-0.3 V to +VBD +0.3 V
Operating free-air temperature range, T_{A}			$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage temperature range, $\mathrm{T}_{\text {stg }}$			$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Junction temperature ($\mathrm{T}_{\mathrm{J}} \mathrm{max}$)			$150^{\circ} \mathrm{C}$
TQFP package	Powerdissipation		$\left(\mathrm{TJMax}-\mathrm{T}_{\mathrm{A}}\right.$)/ $\mathrm{\theta}$ JA
	$\theta \mathrm{JA}$ thermal impedance		$86^{\circ} \mathrm{C} / \mathrm{W}$
Leadtemperature, soldering		Vapor phase (60 sec)	$215^{\circ} \mathrm{C}$
		Infrared (15 sec)	$220^{\circ} \mathrm{C}$

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

ADS8411
www.ti.com

SPECIFICATIONS

$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C},+\mathrm{VA}=5 \mathrm{~V},+\mathrm{VBD}=3 \mathrm{~V}$ or $5 \mathrm{~V}, \mathrm{~V}_{\text {ref }}=4.096 \mathrm{~V}$, fSAMPLE $=2 \mathrm{MHz}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
Analog Input						
Full-scale input voltage (see Note 1)		$+\mathrm{IN}--\mathrm{IN}$	0		$\mathrm{V}_{\text {ref }}$	V
Absolute input voltage		+IN	-0.2		$\mathrm{V}_{\text {ref }}+0.2$	V
		-IN	-0.2		0.2	
Input capacitance			25			pF
Input leakage current			0.5			nA
SystemPerformance						
Resolution			16			Bits
No missing codes	ADS8411I		15			Bits
	ADS84111B		16			
Integral linearity (see Notes 2 and 3)	ADS84111		-6	± 4	6	LSB
	ADS84111B		-3.5	± 2	3.5	
Differentiallinearity	ADS84111		-2	± 1	3	LSB
	ADS84111B		-1	± 0.8	2	
Offset error (see Note 4)	ADS84111		-1.5	± 0.5	1.5	mV
	ADS84111B		-0.75	± 0.25	0.75	mV
Gain error (see Notes 4 and 5)	ADS84111		-0.15		0.15	\%FS
	ADS84111B		-0.098		0.098	
Noise			60			$\mu \mathrm{V}$ RMS
DC Power supply rejection ratio		At FFFFF output code, $+\mathrm{VA}=4.75 \mathrm{~V}$ to 5.25 V , Vref $=4.096 \mathrm{~V}$, See Note 4	2			LSB
Sampling Dynamics						
Conversiontime					360	ns
Acquisitiontime			100			ns
Throughputrate					2	MHz
Aperture delay				2		ns
Aperturejitter				25		ps
Step response				100		ns
Overvoltage recovery				100		ns

(1) Ideal input span, does not include gain or offset error.
(2) LSB means least significant bit
(3) This is endpoint INL, not best fit.
(4) Measured relative to an ideal full-scale input ($+\mathrm{IN}--\mathrm{IN}$) of 4.096 V
(5) This specification does not include the internal reference voltage error and drift.

SPECIFICATIONS (CONTINUED)

$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C},+\mathrm{VA}=+5 \mathrm{~V},+\mathrm{VBD}=3 \mathrm{~V}$ or $5 \mathrm{~V}, \mathrm{~V}_{\text {ref }}=4.096 \mathrm{~V}$, fSAMPLE $=2 \mathrm{MHz}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
DynamicCharacteristics						
Total harmonic distortion (THD) (see Note 1)		$\mathrm{V}_{\mathrm{IN}}=4 \mathrm{~V}_{\text {pp }}$ at 100 kHz		-90		dB
		$\mathrm{V}_{\mathrm{IN}}=4 \mathrm{~V}_{\mathrm{pp}}$ at 500 kHz		-88.5		dB
Signal-to-noise ratio (SNR)		$\mathrm{V}_{\mathrm{IN}}=4 \mathrm{~V}_{\text {pp }}$ at 100 kHz		86		dB
Signal-to-noise + distortion (SINAD)		$\mathrm{V}_{\text {IN }}=4 \mathrm{~V}_{\mathrm{pp}}$ at 100 kHz		85		dB
Spurious free dynamic range (SFDR)		$\mathrm{V}_{\mathrm{IN}}=4 \mathrm{~V}_{\mathrm{pp}}$ at 100 kHz		90		dB
		$\mathrm{V}_{\mathrm{IN}}=4 \mathrm{~V}_{\mathrm{pp}}$ at 500 kHz		88		dB
-3dB Small signal bandwidth				5		MHz
External Voltage Reference Input						
Reference voltage at REFIN, $\mathrm{V}_{\text {ref }}$			3.9	4.096	4.2	V
Reference resistance (see Note 2)				500		k Ω
Internal Reference Output						
Internal reference start-up time		from 95\% (+VA), with $1 \mu \mathrm{~F}$ storage capacitor			120	ms
$V_{\text {ref }}$ range		IOUT = 0	4.065	4.096	4.13	V
Source Current		Static load			10	$\mu \mathrm{A}$
Line Regulation		+VA $=4.75 \sim 5.25 \mathrm{~V}$		0.6		mV
Drift		IOUT = 0		36		PPM/C
Digital Input/Output						
Logic family			CMOS			
Logic level	$\mathrm{V}_{\text {IH }}$	${ }_{1} \mathrm{H}=5 \mu \mathrm{~A}$	+VBD-1		+VBD + 0.3	V
	V_{IL}	$\mathrm{ILL}=5 \mu \mathrm{~A}$	-0.3		0.8	
	V_{OH}	$\mathrm{IOH}=2$ TTL loads	+VBD -0.6		+VBD	
	V_{OL}	$\mathrm{l} \mathrm{OL}=2 \mathrm{TTL}$ loads	0		0.4	
Data format			Straight Binary			
Power Supply Requirements						
Power supply voltage	+VBD		2.7	3	5.25	V
	+VA		4.75	5	5.25	V
+VA Supply current (see Note 3)		$\mathrm{f}_{\mathrm{S}}=2 \mathrm{MHz}$		35	38	mA
Power dissipation (see Note 3)		$\mathrm{f}_{\mathrm{S}}=2 \mathrm{MHz}$		175	190	mW
Temperature Range						
Operating free-air			-40		85	${ }^{\circ} \mathrm{C}$

(1) Calculated on the first nine harmonics of the input frequency
(2) Can vary $\pm 20 \%$
(3) This includes only VA + current. +VBD current is typically 1 mA with 5 pF load capacitance on output pins.

ADS8411
www.ti.com

TIMING CHARACTERISTICS
All specifications typical at $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C},+\mathrm{VA}=+\mathrm{VBD}=5 \mathrm{~V}$ (see Notes 1,2 , and 3)

	PARAMETER	MIN	TYP MAX	UNIT
tconv	Conversiontime		360	ns
${ }^{\text {t }}$ ACQ	Acquisitiontime	100		ns
thold	Sampling capacitor hold time		25	ns
tpd1	CONVST low to BUSY high		40	ns
tpd2	Propagation delay time, end of conversion to BUSY low		15	ns
tpd3	Propagation delay time, from start of conversion (internal state) to rising edge of BUSY		15	ns
$\mathrm{t}_{\mathrm{w} 1}$	Pulse duration, CONVST low	20		ns
$\mathrm{t}_{\text {su }} 1$	Setup time, $\overline{\mathrm{CS}}$ low to $\overline{\text { CONVST }}$ low	0		ns
tw2	Pulse duration, $\overline{\text { CONVST }}$ high	20		ns
	$\overline{\text { CONVST }}$ falling edge jitter		10	ps
tw3	Pulse duration, BUSY signal low	Min(tacQ)		ns
$\mathrm{t}_{\mathrm{w} 4}$	Pulse duration, BUSY signal high		360	ns
th1	Hold time, First data bus data transition ($\overline{\mathrm{RD}}$ low, $\overline{\text { or } \mathrm{CS}}$ low for read cycle, or BYTE input changes) after CONVST low	40		ns
td1	Delay time, $\overline{\mathrm{CS}}$ low to $\overline{\mathrm{RD}}$ low	0		ns
$\mathrm{t}_{\text {su2 }}$	Setup time, $\overline{\mathrm{RD}}$ high to $\overline{\mathrm{CS}}$ high	0		ns
tw5	Pulse duration, $\overline{\mathrm{RD}}$ low time	50		ns
ten	Enable time, $\overline{\mathrm{RD}}$ low (or $\overline{\mathrm{CS}}$ low for read cycle) to data valid		20	ns
$\mathrm{t}_{\mathrm{d} 2}$	Delay time, data hold from $\overline{\mathrm{RD}}$ high	0		ns
td3	Delay time, BYTE rising edge or falling edge to data valid	2	20	ns
$\mathrm{t}_{\text {w6 }}$	Pulse duration, $\overline{\mathrm{RD}}$ high	20		ns
tw7	Pulse duration, $\overline{\mathrm{CS}}$ high time	20		ns
th2	Hold time, last $\overline{\mathrm{RD}}$ (or $\overline{\mathrm{CS}}$ for read cycle) rising edge to $\overline{\text { CONVST }}$ falling edge	50		ns
tpd4	Propagation delay time, BUSY falling edge to next $\overline{\mathrm{RD}}$ (or $\overline{\mathrm{CS}}$ for read cycle) falling edge	0		ns
$\mathrm{t}_{\text {su3 }}$	Setup time, BYTE transition to $\overline{\text { RD }}$ falling edge	0		ns
th3	Hold time, BYTE transition to $\overline{\mathrm{RD}}$ falling edge	0		ns
$\mathrm{t}_{\text {dis }}$	Disable time, $\overline{\mathrm{RD}}$ high ($\overline{\mathrm{CS}}$ high for read cycle) to 3-stated data bus		20	ns
td5	Delay time, BUSY low to MSB data valid		10	ns
$\mathrm{t}_{\text {su4 }}$	Byte transition setup time, from BYTE transition to next BYTE transition	50		ns
td6	Delay time, $\overline{C S}$ rising edge to BUSY falling edge	50		ns
td7	Delay time, BUSY falling edge to $\overline{\mathrm{CS}}$ rising edge	50		ns
$\mathrm{t}_{\text {su }}(\mathrm{AB})$	Setup time, from the falling edge of $\overline{\mathrm{CONVST}}$ (used to start the valid conversion) to the next falling edge of $\overline{\text { CONVST }}$ (when $\overline{\mathrm{CS}}=0$ and $\overline{\text { CONVST }}$ used to abort) or to the next falling edge of $\overline{\mathrm{CS}}$ (when $\overline{\mathrm{CS}}$ is used to abort)	60	340	ns

(1) All input signals are specified with $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=5 \mathrm{~ns}(10 \%$ to 90% of +VBD$)$ and timed from a voltage level of $\left(\mathrm{V}_{\mathrm{IL}}+\mathrm{V}_{\mathrm{IH}}\right) / 2$.
(2) See timing diagrams.
(3) All timings are measured with 20 pF equivalent loads on all data bits and BUSY pins.

TIMING CHARACTERISTICS
All specifications typical at $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C},+\mathrm{VA}=5 \mathrm{~V},+\mathrm{VBD}=3 \mathrm{~V}$ (see Notes 1,2 , and 3)

	PARAMETER	MIN	TYP MAX	UNIT
tCONV	Conversiontime		360	ns
$\mathrm{t}_{\text {ACQ }}$	Acquisitiontime	100		ns
thold	Sampling capacitor hold time		25	ns
tpd1	$\overline{\text { CONVST }}$ low to BUSY high		50	ns
$t_{\text {pd2 }}$	Propagation delay time, end of conversion to BUSY low		25	ns
tpd3	Propagation delay time, from start of conversion (internal state) to rising edge of BUSY		25	ns
$\mathrm{t}_{\mathrm{w} 1}$	Pulse duration, CONVST low	20		ns
$\mathrm{t}_{\text {su } 1}$	Setup time, $\overline{\mathrm{CS}}$ low to $\overline{\mathrm{CONVST}}$ low	0		ns
$\mathrm{t}_{\text {w2 }}$	Pulse duration, $\overline{\text { CONVST }}$ high	20		ns
	$\overline{\text { CONVST }}$ falling edge jitter		10	ps
$\mathrm{t}_{\mathrm{w} 3}$	Pulse duration, BUSY signal low	Min(taCQ)		ns
$\mathrm{t}_{\mathrm{w} 4}$	Pulse duration, BUSY signal high		360	ns
th1	Hold time, first data bus transition ($\overline{\mathrm{RD}}$ low, or CS low for read cycle, or BYTE or BUS 16/16 input changes) after CONVST low	40		ns
$\mathrm{t}_{\mathrm{d} 1}$	Delay time, $\overline{\mathrm{CS}}$ low to $\overline{\mathrm{RD}}$ low	0		ns
$\mathrm{t}_{\text {su2 }}$	Setup time, $\overline{\mathrm{RD}}$ high to $\overline{\mathrm{CS}}$ high	0		ns
t_{w} 5	Pulse duration, $\overline{\mathrm{RD}}$ low	50		ns
ten	Enable time, $\overline{\mathrm{RD}}$ low (or $\overline{\mathrm{CS}}$ low for read cycle) to data valid		30	ns
$\mathrm{t}_{\mathrm{d} 2}$	Delay time, data hold from $\overline{\mathrm{RD}}$ high	0		ns
$\mathrm{t}_{\mathrm{d} 3}$	Delay time, BYTE rising edge or falling edge to data valid	2	30	ns
$\mathrm{t}_{\text {w6 }}$	Pulse duration, $\overline{\mathrm{RD}}$ high time	20		ns
$\mathrm{t}_{\mathrm{w} 7}$	Pulse duration, $\overline{\mathrm{CS}}$ high time	20		ns
th2	Hold time, last $\overline{\mathrm{RD}}$ (or $\overline{\mathrm{CS}}$ for read cycle) rising edge to $\overline{\text { CONVST }}$ falling edge	50		ns
$\mathrm{t}_{\mathrm{pd} 4}$	Propagation delay time, BUSY falling edge to next $\overline{\mathrm{RD}}$ (or $\overline{\mathrm{CS}}$ for read cycle) falling edge	0		ns
$\mathrm{t}_{\text {su3 }}$	Setup time, BYTE transition to $\overline{\mathrm{RD}}$ falling edge	0		ns
th3	Hold time, BYTE transition to $\overline{\text { RD }}$ falling edge	0		ns
$\mathrm{t}_{\text {dis }}$	Disable time, $\overline{\mathrm{RD}}$ high ($\overline{\mathrm{CS}}$ high for read cycle) to 3-stated data bus		30	ns
$\mathrm{t}_{\mathrm{d} 5}$	Delay time, BUSY low to MSB data valid delay time		10	ns
$\mathrm{t}_{\text {su4 }}$	Byte transition setup time, from BYTE transition to next BYTE transition	50		ns
$\mathrm{t}_{\mathrm{d} 6}$	Delay time, $\overline{C S}$ rising edge to BUSY falling edge	50		ns
$\mathrm{t}_{\mathrm{d} 7}$	Delay time, BUSY falling edge to $\overline{\mathrm{CS}}$ rising edge	50		ns
$t_{\text {su }}(\mathrm{AB})$	Setup time, from the falling edge of $\overline{\mathrm{CONVST}}$ (used to start the valid conversion) to the next falling edge of $\overline{\text { CONVST }}$ (when $\overline{C S}=0$ and $\overline{\text { CONVST }}$ used to abort) or to the next falling edge of $\overline{\mathrm{CS}}$ (when $\overline{\mathrm{CS}}$ is used to abort)	70	350	ns

(1) All input signals are specified with $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=5 \mathrm{~ns}(10 \%$ to 90% of +VBD$)$ and timed from a voltage level of $\left(\mathrm{V}_{\mathrm{IL}}+\mathrm{V}_{\mathrm{IH}}\right) / 2$.
(2) See timing diagrams.
(3) All timings are measured with 10-pF equivalent loads on all data bits and BUSY pins.

PIN ASSIGNMENTS

NC - No connection

TERMINAL FUNCTIONS

TIMING DIAGRAMS

\dagger Signal internal to device
Figure 1. Timing for Conversion and Acquisition Cycles With $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ Toggling

\dagger Signal internal to device

Figure 2. Timing for Conversion and Acquisition Cycles With $\overline{\mathbf{C S}}$ Toggling, $\overline{\mathrm{RD}}$ Tied to BDGND

\dagger Signal internal to device
Figure 3. Timing for Conversion and Acquisition Cycles With $\overline{\mathrm{CS}}$ Tied to BDGND, $\overline{\mathrm{RD}}$ Toggling

\dagger Signal internal to device
Figure 4. Timing for Conversion and Acquisition Cycles With $\overline{\mathbf{C S}}$ and $\overline{\mathrm{RD}}$ Tied to BDGND—Auto Read

Figure 5. Detailed Timing for Read Cycles

TYPICAL CHARACTERISTICS \dagger

HISTOGRAM (DC Code Spread)
FULL SCALE 131071 CONVERSIONS

Figure 6

SIGNAL-TO-NOISE AND DISTORTION

vs
FREE-AIR TEMPERATURE

Figure 8

SIGNAL-TO-NOISE RATIO
vs
FREE-AIR TEMPERATURE

Figure 7

EFFECTIVE NUMBER OF BITS
vs
FREE-AIR TEMPERATURE

Figure 9

Figure 10

SIGNAL-TO-NOISE RATIO
VS
INPUT FREQUENCY

Figure 12

TOTAL HARMONIC DISTORTION VS
FREE-AIR TEMPERATURE

Figure 11

EFFECTIVE NUMBER OF BITS vs INPUT FREQUENCY

Figure 13

SIGNAL-TO-NOISE AND DISTORTION
VS
INPUT FREQUENCY

Figure 14

TOTAL HARMONIC DISTORTION vs
INPUT FREQUENCY

Figure 16

SPURIOUS FREE DYNAMIC RANGE
vs
INPUT FREQUENCY

Figure 15

SUPPLY CURRENT
 vs
 SAMPLE RATE

Figure 17

Figure 18

INTERNAL VOLTAGE REFERENCE
vs
FREE-AIR TEMPERATURE

Figure 20

OFFSET ERROR
vs
SUPPLY VOLTAGE

Figure 19

GAIN ERROR

vs
FREE-AIR TEMPERATURE

Figure 21

OFFSET ERROR
VS
FREE-AIR TEMPERATURE

Figure 22

DIFFERENTIAL NONLINEARITY
vs
FREE-AIR TEMPERATURE

Figure 24

SUPPLY CURRENT
vS
FREE-AIR TEMPERATURE

Figure 23

INTEGRAL NONLINEARITY
vs
FREE-AIR TEMPERATURE

Figure 25

DNL

Figure 26

INL

Figure 27

FFT

Figure 28

APPLICATION INFORMATION

MICROCONTROLLER INTERFACING

ADS8411 to 8-Bit Microcontroller Interface

Figure 29 shows a parallel interface between the ADS8411 and a typical microcontroller using the 8-bit data bus.
The BUSY signal is used as a falling-edge interrupt to the microcontroller.

Figure 29. ADS8411 Application Circuitry (using external reference)

Figure 30. Use Internal Reference

PRINCIPLES OF OPERATION

The ADS8411 is a high-speed successive approximation register (SAR) analog-to-digital converter (ADC). The architecture is based on charge redistribution, which inherently includes a sample/hold function. See Figure 29 for the application circuit for the ADS8411.

The conversion clock is generated internally. The conversion time of 360 ns is capable of sustaining a $2-\mathrm{MHz}$ throughput.

The analog input is provided to two input pins: +IN and -IN. When a conversion is initiated, the differential input on these pins is sampled on the internal capacitor array. While a conversion is in progress, both inputs are disconnected from any internal function.

REFERENCE

The ADS8411 can operate with an external reference with a range from 3.9 V to 4.2 V . A $4.096-\mathrm{V}$ internal reference is included. When internal reference is used, pin 2 (REFOUT) should be connected to pin 1 (REFIN) with an $0.1 \mu \mathrm{~F}$ decoupling capacitor and $1 \mu \mathrm{~F}$ storage capacitor between pin 2 (REFOUT) and pins 47 and 48 (REFM) (see Figure 33). The internal reference of the converter is double buffered. If an external reference is used, the second buffer provides isolation between the external reference and the CDAC. This buffer is also used to recharge all of the capacitors of the CDAC during conversion. Pin 2 (REFOUT) can be left unconnected (floating) if external reference is used.

ANALOG INPUT

When the converter enters the hold mode, the voltage difference between the $+\mathbb{N}$ and $-\mathbb{I N}$ inputs is captured on the internal capacitor array. The voltage on the -IN input is limited between -0.2 V and 0.2 V , allowing the input to reject small signals which are common to both the +IN and -IN inputs. The +IN input has a range of -0.2 V to $\mathrm{V}_{\text {ref }}+0.2$ V . The input span ($+\mathrm{IN}-(-\mathrm{IN})$) is limited to 0 V to $\mathrm{V}_{\text {ref }}$.

The input current on the analog inputs depends upon a number of factors: sample rate, input voltage, and source impedance. Essentially, the current into the ADS8411 charges the internal capacitor array during the sample period. After this capacitance has been fully charged, there is no further input current. The source of the analog input voltage must be able to charge the input capacitance (25 pF) to an 16-bit settling level within the acquisition time (100 ns) of the device. When the converter goes into the hold mode, the input impedance is greater than $1 \mathrm{G} \Omega$.

Care must be taken regarding the absolute analog input voltage. To maintain the linearity of the converter, the $+\mathbb{N}$ and $-\mathbb{I N}$ inputs and the span (+IN - $(-\mathbb{N})$) should be within the limits specified. Outside of these ranges, the converter's linearity may not meet specifications. To minimize noise, low bandwidth input signals with low-pass filters should be used.

Care should be taken to ensure that the output impedance of the sources driving +IN and -IN inputs are matched. If this is not observed, the two inputs could have different setting time. This may result in offset error, gain error and linearity error which varies with temperature and input voltage.

DIGITAL INTERFACE

Timing And Control

See the timing diagrams in the specifications section for detailed information on timing signals and their requirements.
The ADS8411 uses an internal oscillator generated clock which controls the conversion rate and in turn the throughput of the converter. No external clock input is required.

Conversions are initiated by bringing the CONVST pin low for a minimum of 20 ns (after the 20 ns minimum requirement has been met, the $\overline{\text { CONVST }}$ pin can be brought high), while $\overline{\mathrm{CS}}$ is low. The ADS8411 switches from the sample to the hold mode on the falling edge of the CONVST command. A clean and low jitter falling edge of this signal is important to the performance of the converter. The BUSY output is brought high after CONVST goes low. BUSY stays high throughout the conversion process and returns low when the conversion has ended.

Sampling starts with the falling edge of the BUSY signal when $\overline{C S}$ is tied low or starts with the falling edge of $\overline{C S}$ when BUSY is low.

Both $\overline{\mathrm{RD}}$ and $\overline{\mathrm{CS}}$ can be high during and before a conversion with one exception ($\overline{\mathrm{CS}}$ must be low when $\overline{\mathrm{CONVST}}$ goes low to initiate a conversion). Both the $\overline{\mathrm{RD}}$ and $\overline{\mathrm{CS}}$ pins are brought low in order to enable the parallel output bus with the conversion.

Reading Data

The ADS8411 outputs full parallel data in straight binary format as shown in Table 1. The parallel output is active when $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ are both low. There is a minimal quiet zone requirement around the falling edge of $\overline{\mathrm{CONVST}}$. This is 50 ns prior to the falling edge of CONVST and 40 ns after the falling edge. No data read should be attempted within this zone. Any other combination of $\overline{C S}$ and $\overline{\mathrm{RD}}$ sets the parallel output to 3 -state. BYTE is used for multiword read operations. BYTE is used whenever lower bits of the converter result are output on the higher byte of the bus. Refer to Table 1 for ideal output codes.

Table 1. Ideal Input Voltages and Output Codes

DESCRIPTION	ANALOG VALUE		DIGITAL OUTPUT STRAIGHT BINARY
FULL SCALE RANGE	$\mathrm{V}_{\text {ref }}$		
Least significant bit (LSB)	$\mathrm{V}_{\mathrm{ref}} / 65536$	BINARY CODE	HEX CODE
Full scale	$\mathrm{V}_{\text {ref }}-1 \mathrm{LSB}$	111111111111111	FFFF
Midscale	$\mathrm{V}_{\text {ref }} / 2$	1000000000000000	8000
Midscale - 1 LSB	$\mathrm{V}_{\mathrm{ref}} / 2-1 \mathrm{LSB}$	0111111111111111	7FFF
Zero	0 V	0000000000000000	0000

The output data is a full 16 -bit word (D15-D0) on DB15-DB0 pins (MSB-LSB) if BYTE is low.
The result may also be read on an 8-bit bus for convenience. This is done by using only pins DB15-DB8. In this case two reads are necessary: the first as before, leaving BYTE low and reading the 8 most significant bits on pins DB15-DB8, then bringing BYTE high. When BYTE is high, the low bits (D7-D0) appear on pins DB15-D8.
These multiword read operations can be done with multiple active $\overline{\mathrm{RD}}$ (toggling) or with $\overline{\mathrm{RD}}$ tied low for simplicity.
Table 2. Conversion Data Readout

BYTE	DATA READ OUT	
	DB15-DB8 Pins	DB7-DB0 Pins
High	D7-D0	All one's
Low	D15-D8	D7-D0

RESET

$\overline{\text { RESET }}$ is an asynchronous active low input signal (that works independently of $\overline{\mathrm{CS}}$). Minimum $\overline{\operatorname{RESET}}$ low time is 25 ns . Current conversion will be aborted no later than 50 ns after the converter is in the reset mode. In addition, all output latches are cleared (set to zero's) after RESET. The converter goes back to normal operation mode no later than 20 ns after RESET input is brought high.
The converter starts the first sampling period 20 ns after the rising edge of $\overline{\text { RESET. Any sampling period except for }}$ the one immediately after a RESET is started with the falling edge of the previous BUSY signal or the falling edge of CS, whichever is later.
Another way to reset the device is through the use of the combination of $\overline{\mathrm{CS}}$ and $\overline{\mathrm{CONVST}}$. This is useful when the dedicated RESET pin is tied to the system reset but there is a need to abort only the conversion in a specific converter. Since the BUSY signal is held high during the conversion, either one of these conditions triggers an internal self-clear reset to the converter just the same as a reset via the dedicated RESET pin. The reset does not have to be cleared as for the dedicated RESET pin. A reset can be started with either of the two following steps.

- Issue a $\overline{\text { CONVST }}$ when $\overline{\mathrm{CS}}$ is low and a conversion is in progress. The falling edge of $\overline{\text { CONVST }}$ must satisfy the timing as specified by the timing parameter $t_{s u(A B)}$ mentioned in the timing characteristics table to ensure a reset. The falling edge of CONVST starts a reset. Timing is the same as a reset using the dedicated RESET pin except the instance of the falling edge is replaced by the falling edge of CONVST.
- Issue a $\overline{C S}$ while a conversion is in progress. The falling edge of $\overline{\mathrm{CS}}$ must satisfy the timing as specified by the timing parameter $\mathrm{t}_{\mathrm{su}}(\mathrm{AB})$ mentioned in the timing characteristics table to ensure a reset.The falling edge of $\overline{\mathrm{CS}}$
causes a reset. Timing is the same as a reset using the dedicated $\overline{\text { RESET }}$ pin except the instance of the falling edge is replaced by the falling edge of $\overline{\mathrm{CS}}$.

POWER-ON INITIALIZATION

RESET is not required after power on. An internal power-on-reset circuit generates the reset. To ensure that all of the registers are cleared, the three conversion cycles must be given to the converter after power on.

LAYOUT

For optimum performance, care should be taken with the physical layout of the ADS8411 circuitry.
As the ADS8411 offers single-supply operation, it is often used in close proximity with digital logic, microcontrollers, microprocessors, and digital signal processors. The more digital logic present in the design and the higher the switching speed, the more difficult it is to achieve good performance from the converter.
The basic SAR architecture is sensitive to glitches or sudden changes on the power supply, reference, ground connections and digital inputs that occur just prior to latching the output of the analog comparator. Thus, driving any single conversion for an n-bit SAR converter, there are at least n windows in which large external transient voltages can affect the conversion result. Such glitches might originate from switching power supplies, nearby digital logic, or high power devices.
The degree of error in the digital output depends on the reference voltage, layout, and the exact timing of the external event.
On average, the ADS8411 draws very little current from an external reference, as the reference voltage is internally buffered. If the reference voltage is external and originates from an op amp, make sure that it can drive the bypass capacitor or capacitors without oscillation. A $0.1-\mu \mathrm{F}$ bypass capacitor and a $1-\mu \mathrm{F}$ storage capacitor are recommended from pin 1 (REFIN) directly to pin 48 (REFM). REFM and AGND should be shorted on the same ground plane under the device.

The AGND and BDGND pins should be connected to a clean ground point. In all cases, this should be the analog ground. Avoid connections which are close to the grounding point of a microcontroller or digital signal processor. If required, run a ground trace directly from the converter to the power supply entry point. The ideal layout consists of an analog ground plane dedicated to the converter and associated analog circuitry.
As with the AGND connections, + VA should be connected to a $5-\mathrm{V}$ power supply plane or trace that is separate from the connection for digital logic until they are connected at the power entry point. Power to the ADS8411 should be clean and well bypassed. A $0.1-\mu \mathrm{F}$ ceramic bypass capacitor should be placed as close to the device as possible. See Table 3 for the placement of the capacitor. In addition, a $1-\mu \mathrm{F}$ to $10-\mu \mathrm{F}$ capacitor is recommended. In some situations, additional bypassing may be required, such as a $100-\mu \mathrm{F}$ electrolytic capacitor or even a Pi filter made up of inductors and capacitors-all designed to essentially low-pass filter the 5-V supply, removing the high frequency noise.

Table 3. Power Supply Decoupling Capacitor Placement

POWER SUPPLY PLANE	CONVERTER ANALOG SIDE	CONVERTER DIGITAL SIDE		
SUPPLY PINS		$(24,25),(34,35)$		
Pin pairs that require shortest path to decoupling capacitors	12,14	37		
Pins that require no decoupling				

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using Tl components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other Tl intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Amplifiers	amplifier.ti.com
Data Converters	dataconverter.ti.com
DSP	dsp.ti.com
Interface	interface.ti.com
Logic	logic.ti.com
Power Mgmt	power.ti.com
Microcontrollers	microcontroller.ti.com

Applications

Audio	www.ti.com/audio
Automotive	www.ti.com/automotive
Broadband	www.ti.com/broadband
Digital Control	www.ti.com/digitalcontrol
Military	www.ti.com/military
Optical Networking	www.ti.com/opticalnetwork
Security	www.ti.com/security
Telephony	www.ti.com/telephony
Video \& Imaging	www.ti.com/video
Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

[^0]: DFlease be aware that an important notice concerning availability，standard warranty，and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet．

