

March 2001 Revised September 2001

SEMICONDUCTOR

SSTV16859 Dual Output 13-Bit Register with SSTL-2 Compatible I/O and Reset

General Description

The SSTV16859 is a dual output 13-bit register designed for use with 184 and 232 pin DDR-1 memory modules. The device has a differential input clock, <u>SSTL-2</u> compatible data inputs and a LVCMOS compatible <u>RESET</u> input. The device has been designed to meet the JEDEC DDR module register specifications.

The device has been fabricated on an advanced submicron CMOS process and is designed to operate at power supplies of less than 3.6V's.

Features

- Compliant with DDR-I registered module specifications
- \blacksquare Operates at 2.5V \pm 0.2V V_{DD}
- SSTL-2 compatible input structure
- SSTL-2 compliant output structure
- Differential SSTL-2 compatible clock inputs
- Low power mode when device is reset
- Industry standard 64 pin TSSOP package
- Also packaged in plastic Fine-Pitch Ball Grid Array (FBGA)

Ordering Code:

Order Number	Package Number	Package Description
SSTV16859GX (Note 1)	BGA96A	96-Ball Fine-Pitch Ball Grid Array (FBGA), JEDEC MO-205, 5.5mm Wide [TAPE and REEL]
SSTV16859MTD (Note 2)	MTD64	64-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide

Note 1: BGA package available in Tape and Reel only.

Note 2: Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code

Connection Diagrams								
Pin Assignment for TSSOP								
Q13A = Q13A = Q12A = Q12A = Q14A = Q00A = Q12B = Q12B = Q12B = Q12B = Q12B = Q00B = Q0	1 64 $-V_{DDQ}$ 2 63 $-GND$ 3 62 $-D_{13}$ 4 61 $-D_{12}$ 5 60 $-V_{DDQ}$ 7 58 $-GND$ 8 57 $-D_{11}$ 9 56 $-D_{10}$ 10 55 $-D_{9}$ 11 54 $-GND$ 12 53 $-B_{11}$ 9 56 $-D_{10}$ 10 55 $-D_{9}$ 11 54 $-GND$ 12 53 $-D_{8}$ 13 52 $-D_{7}$ 14 51 $-RESET$ 15 50 $-GND$ 16 49 $-CK$ 18 47 $-V_{DDQ}$ 20 46 $-V_{DD}$ 21 44 $-D_{6}$ 22 43 $-GND$ 23 42 $-D_{5}$ 24 41 $-D_{4}$ 25 40 $-D_{2}$							
Pin /	Assignment for FBGA							
T R P N M L K J H G F E D C B A	1 2 3 4 5 6 000000 000000 000000 000000 000000 0000							

Pin Descriptions

Pin Name	Description
Q _{1A} -Q _{13A}	SSTL-2 Compatible Register Outputs
Q _{1B} -Q _{13B}	
D ₁ -D ₁₃	SSTL-2 Compatible Register Inputs
RESET	Asynchronous LVCMOS Reset Input
СК	Positive Master Clock Input
СК	Negative Master Clock Input
V _{REF}	Voltage Reference Pin for SSTL level inputs
V _{DDQ}	Power Supply Voltage for Output Signals
V _{DD}	Power Supply Voltage for Inputs
NC	Electrically Isolated No Connect

FBGA Pin Assignments

	1	2	3	4	5	6
Α	NC	NC	NC	NC	NC	NC
В	Q _{12A}	Q _{13A}	GND	GND	NC	NC
С	Q _{10A}	Q _{11A}	GND	GND	NC	NC
D	Q _{8A}	Q _{9A}	V_{DDQ}	V_{DDQ}	D ₁₃	D ₁₂
Е	Q _{6A}	Q _{7A}	V_{DDQ}	V_{DD}	D ₁₁	D ₁₀
F	Q _{4A}	Q_{5A}	V_{DDQ}	V _{DD}	D ₉	D ₈
G	Q _{2A}	Q _{3A}	GND	GND	D ₇	RESET
Н	Q _{1A}	Q _{13B}	GND	GND	NC	CK
J	Q _{12B}	Q _{11B}	GND	V_{REF}	NC	СК
K	Q _{10B}	Q _{9B}	V_{DDQ}	V_{DD}	NC	NC
L	Q _{8B}	Q _{7B}	V_{DDQ}	V _{DD}	D_5	D ₆
м	Q _{6B}	Q _{5B}	V_{DDQ}	V _{DDQ}	D ₃	D ₄
N	Q _{4B}	Q _{3B}	GND	GND	D ₁	D ₂
Р	Q _{2B}	Q _{1B}	GND	GND	NC	NC
R	NC	NC	NC	NC	NC	NC
Т	NC	NC	NC	NC	NC	NC

Truth Table

RESET	D _n	СК	СК	Q _n
L	X or Floating	X or Floating	X or Floating	L
Н	L	Ŷ	\downarrow	L
Н	Н	↑	\downarrow	Н
Н	Х	L	Н	Q _{n-1}
Н	Х	Н	L	Q _{n-1}
1				

 $\label{eq:constraint} \begin{array}{c} L = \text{Logic LOW} \\ H = \text{Logic HIGH} \\ X = \text{Don't Care but not floating unless noted} \\ \hline 1 = \text{LOW-to-HIGH Clock Transition} \\ \downarrow = \text{HIGH-to-LOW Clock Transition} \\ Q_{n-1} = \text{Output Remains in Previously Clocked State} \end{array}$

Functional Description

Logic Diagram

The SSTV16859 is a 13-bit dual register with SSTL-2 compatible inputs and outputs. Input data is transferred to output data on the rising edge of the differential clock pair. When the RESET signal is asserted LOW all outputs are placed into the LOW logic state and all input comparators are disabled for power savings. Output glitches are prevented by disabling the internal registers more quickly than the input comparators. When RESET is removed, the system designer must insure the clock and data inputs to the

device are stable during the rising transition of the RESET signal. The SSTL-2 data inputs transition based on the value of

The SSTL-2 data inputs transition based on the value of V_{REF}. V_{REF} is a stable system reference used for setting the trip point of the input buffers of the SSTV16859 and other SSTL-2 compatible devices.

The $\overline{\text{RESET}}$ signal is a standard CMOS compatible input and is not referenced to the V_{REF} signal.

SSTV16859

For $n=1\ to\ 13$

Absolute Maximum Ratings(Note 3)

Supply Voltage (V _{DDQ})	-0.5V to +3.6V
Supply Voltage (V _{DD})	-0.5V to +3.6V
Reference Voltage (V _{REF})	-0.5V to +3.6V
Input Voltage (V _I)	–0.5V to V _{DD} +0.5V
Output Voltage (V _O)	
Outputs Active (Note 4)	-0.5V to V _{DDQ} + 0.5V
DC Input Diode Current (I _{IK})	
V ₁ < 0V	–50 mA
$V_{I} > V_{DD}$	+50 mA
DC Output Diode Current (I _{OK})	
$V_{O} < 0V$	–50 mA
$V_{O} > V_{DDQ}$	+50 mA
DC Output Source/Sink Current	
(I _{OH} /I _{OL})	±50 mA
DC V _{DD} or Ground Current	
per Supply Pin (I _{DD} or Ground)	±100 mA
Storage Temperature Range (T_{stg})	-65°C to +150°C
ESD (Human Body Model)	≥ 7000V
	Supply Voltage (V_{DDQ}) Supply Voltage (V_{DD}) Reference Voltage (V_{REF}) Input Voltage (V_{I}) Output Voltage (V_{O}) Outputs Active (Note 4) DC Input Diode Current (I_{IK}) $V_{I} < 0V$ $V_{I} > V_{DD}$ DC Output Diode Current (I_{OK}) $V_{O} < 0V$ $V_{O} > V_{DDQ}$ DC Output Source/Sink Current (I_{OH}/I_{OL}) DC V_{DD} or Ground Current per Supply Pin (I_{DD} or Ground) Storage Temperature Range (T_{stg}) ESD (Human Body Model)

Recommended Operating Conditions (Note 5)

Power Supply (V _{DDQ})	2.3V to 2.7V
Power Supply (V _{DD})	
Operating Range	$V_{\mbox{\scriptsize DDQ}}$ to 2.7V
Reference Supply	
$(V_{REF} = V_{DDQ}/2)$	1.15 to 1.35
Termination Voltage (V _{TT})	$V_{REF} \pm 40 \text{ mV}$
Input Voltage	0 to V _{DD}
Output Voltage (V _O)	
Output in Active States	0V to V _{DDQ}
Output Current I _{OH} /I _{OL}	
$V_{DD} = 2.3V$ to 2.7V	±20 mA
Free Air Operating Temperature (T _A)	$0^{\circ}C$ to $+70^{\circ}C$

Note 3: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 4: IO Absolute Maximum Rating must be observed.

Note 5: The $\overline{\text{RESET}}$ input of the device must be held at V_{DD} or GND to ensure proper device operation. The differential inputs must not be floating, unless $\overline{\text{RESET}}$ is asserted LOW.

DC Electrical Characteristics (2.3V \leq V_{DD} \leq 2.7V)

Parameter	Conditions	V _{DD}	Min	Тур	Мах	Units
		(V)		.,,		
Input LOW Clamp Voltage	I _I = -18 mA	2.3			-1.2	V
Input HIGH Clamp Voltage	I _I = +18 mA	2.3			3.5	V
AC HIGH Level Input Voltage	Data Inputs		V _{REF} +310mV			V
AC LOW Level Input Voltage	Data Inputs				V _{REF} -310mV	V
DC HIGH Level Input Voltage	Data Inputs		V _{REF} +150mV			V
DC LOW Level Input Voltage	Data Inputs				V _{REF} -150mV	V
HIGH Level Input Voltage	RESET		1.7			V
LOW Level Input Voltage	RESET				0.7	V
Common Mode Input Voltage Range	СК, <mark>СК</mark>		0.97		1.53	V
Peak to Peak Input Voltage	CK, CK		360			mV
HIGH Level Output Voltage	$I_{OH} = -100 \ \mu A$	2.3 to 2.7	V _{DD} - 0.2			V
	$I_{OH} = -16 \text{ mA}$	2.3	1.95			v
LOW Level Output Voltage	I _{OL} = 100 μA	2.3 to 2.7			0.2	V
	I _{OL} = 16 mA	2.3			0.35	v
Input Leakage Current	$V_I = V_{DD}$ or GND	2.7			±5.0	μΑ
Static Standby	$\overline{\text{RESET}} = \text{GND}, I_{O} = 0$				10	μA
Static Operating	$\overline{\text{RESET}} = V_{DD}, I_O = 0$	2.7				
	$V_I = V_{IH(AC)}$ or $V_{IL(AC)}$				25	mA
Dynamic Operating Current	$RESET = V_{DD}, I_O = 0$					
Clock Only	$V_I = V_{IH(AC)}$ or $V_{IL(AC)}$				120	μA/MHz
	CK, CK Duty Cycle 50%					
Dynamic Operating Current	$\overline{\text{RESET}} = V_{DD}, I_O = 0$	27				
per Data Input	$V_I = V_{IH(AC)}$ or $V_{IL(AC)}$					
	CK, CK Duty Cycle 50%				15	μA/MHz
	Data Input = 1/2 Clock					
	Rate 50% Duty Cycle					
	Parameter Input LOW Clamp Voltage Input HIGH Clamp Voltage AC HIGH Level Input Voltage AC LOW Level Input Voltage DC HIGH Level Input Voltage DC LOW Level Input Voltage LOW Level Input Voltage LOW Level Input Voltage Common Mode Input Voltage Peak to Peak Input Voltage HIGH Level Output Voltage HIGH Level Output Voltage Input Leakage Current Static Standby Static Operating Dynamic Operating Current Clock Only Dynamic Operating Current per Data Input	ParameterConditionsInput LOW Clamp VoltageI _I = -18 mAInput HIGH Clamp VoltageI _I = +18 mAAC HIGH Level Input VoltageData InputsAC LOW Level Input VoltageData InputsDC HIGH Level Input VoltageData InputsDC LOW Level Input VoltageData InputsDC LOW Level Input VoltageRESETLOW Level Input VoltageRESETLOW Level Input VoltageRESETLOW Level Input VoltageCK, \overline{CK} Peak to Peak Input VoltageCK, \overline{CK} HIGH Level Output VoltageI _{OH} = -100 µAI _{OH} = -16 mAI _{OL} = 100 µAI _{OL} = 100 µAI _{OL} = 10 mAIoput Leakage CurrentV _I = V _{DD} or GNDStatic StandbyRESET = GND, I _O = 0Static OperatingRESET = V _{DD} , I _O = 0V _I = V _{IH(AC)} or V _{IL(AC)} CK, \overline{CK} Duty Cycle 50%Dynamic Operating CurrentRESET = V _{DD} , I _O = 0V _I = V _{IH(AC)} or V _{IL(AC)} CK, \overline{CK} Duty Cycle 50%Dynamic Operating CurrentRESET = V _{DD} , I _O = 0V _I = V _{IH(AC)} or V _{IL(AC)} CK, \overline{CK} Duty Cycle 50%Dynamic Operating CurrentRESET = V _{DD} , I _O = 0V _I = V _{IH(AC)} or V _{IL(AC)} CK, \overline{CK} Duty Cycle 50%Data InputV _I = V _I (AC) or V _{IL(AC)} CK, \overline{CK} Duty Cycle 50%Data Input = ½ ClockRate 50% Duty CycleS0%	$\begin{tabular}{ c $	$\begin{tabular}{ c $	$\begin{tabular}{ c c c c c } \hline Parameter & Conditions & V_{DD} & Min & Typ \\ \hline Input LOW Clamp Voltage & I_I = -18 mA & 2.3 & Input HIGH Clamp Voltage & I_I = +18 mA & 2.3 & Input HIGH Clamp Voltage & Data Inputs & V_{REF}+310mV & AC LOW Level Input Voltage & Data Inputs & V_{REF}+150mV & Input Voltage & Input S & V_{REF}+150mV & Input Voltage & RESET & Interpret & Input Voltage & CK, CK & 0.97 & Interpret & Input Voltage & CK, CK & 0.97 & Interpret & Input Voltage & CK, CK & Interpret & Input Voltage & Input Voltage & CK, CK & Interpret & Input Voltage & Input $	$\begin{array}{ c c c c c c } \hline Parameter & Conditions & V_{DD} & Min & Typ & Max \\ \hline Input LOW Clamp Voltage & I_I = -18 mA & 2.3 & -1.2 \\ \hline Input HIGH Clamp Voltage & I_I = +18 mA & 2.3 & -1.2 \\ \hline Input HIGH Clamp Voltage & Data Inputs & V_{REF}+310mV & & & & & & & & & & & & & & & & & & &$

Symbol	Parameter	Conditions	V _{DD} (V)	Mir	а Тур	Мах	Units
R _{OH}	Output HIGH On Resistance	I _{OH} = -20 mA	2.3 to 2.	7 7		20	Ω
R _{OL}	Output LOW On Resistance	I _{OL} = 20 mA	2.3 to 2.	7 7		20	Ω
$R_{O\Delta}$	R _{OH} - R _{OL}	$I_0 = 20 \text{ mA}, T_A = 25^{\circ}\text{C}$	2.5			4	Ω
Symbol	Pa	rameter		T _A = 0°C to V _{DD} = 2.5V	+70°C, C _L = 30 p / ± 0.2V; V _{DDQ} = 2	$\mathbf{F}, \mathbf{R}_{\mathbf{L}} = 50\Omega$ $\mathbf{2.5V} \pm \mathbf{0.2V}$	Units
4	Maximum Clock Frequency			Min	Тур	Max	
MAX				200			IVITIZ
t _W	Pulse Duration, CK, CK HIGH or LOW (Figure 2)			2.5	-		ns
IACT	data inputs must be LOW after R	Differential Inputs Activation Time,					ns
(NOLE 7)	Differential Inputs De-activation T	ime					
(Note 7)	Differential Inputs De-activation Time, data and clock inputs must be held at valid levels (not floating) after RESET LOW			22			ns
t _S	Setup Time, Fast Slew Rate (Not	e 8)(Note 9) (Figure 5)		0.75			
	Setup Time, Slow Slew Rate (No	e 9)(Note 10) (Figure 5)		0.9			ns
t _H	Hold Time, Fast Slew Rate (Note	8)(Note 10) (Figure 5)		0.75			ns
	Hold Time, Slow Slew Rate (Note	9)(Note 10) (Figure 5)		0.9			110
t _{REM}	Reset Removal Time (Figure 7)			10			ns
	Propagation Delay CK, CK to Q _n (Figure 4)			1.1		2.8	ns
t _{PHL} , t _{PLH}	Propagation Delay CK, CK to Qn	(Figure 4)					

Note 9: For data signal input slew rate \geq 0.5 V/ns and < 1 V/ns. Note 10: For CK, \overline{CK} signals input slew rates are \geq 1 V/ns.

Capacitance (Note 11)

Symbol	Parameter	Min	Тур	Max	Units	Conditions
CIN	Data Pin Input Capacitance	2.2		3.2	pF	V_{DD} = 2.5V, V_I = V_{REF} ± 310 mV
	CK, CK - Input Capacitance	2.2		3.2	pF	$V_{DD} = 2.5V, V_{ICR} = 1.25, V_{I(PP)} = 360 \text{ mV}$
	RESET	2.3		3.3	pF	V_{DD} = 2.5V, V_{I} = V_{DD} or GND

Note 11: $T_A = +25^{\circ}C$, f = 1 MHz, Capacitance is characterized but not tested.

www.fairchildsemi.com

