Features

19-1468; Rev 0; 4/99

Micropower, Single-Supply, Rail-to-Rail, **Precision Instrumentation Amplifiers**

General Description

The MAX4194 is a variable-gain precision instrumentation amplifier that combines Rail-to-Rail® single-supply operation, outstanding precision specifications, and a high gain bandwidth. This amplifier is also offered in three fixed-gain versions: the MAX4195 (G = +1V/V), the MAX4196 (G = +10V/V), and the MAX4197 (G = +100V/V). The fixed-gain instrumentation amplifiers feature a shutdown function that reduces the quiescent current to 8µA. A traditional three operational amplifier configuration is used to achieve maximum DC preci-

The MAX4194-MAX4197 have rail-to-rail outputs and inputs that can swing to within 200mV of the negative rail and to within 1.1V of the positive rail. All parts draw only 93µA and operate from a single +2.7V to +7.5V supply or from dual ±1.35V to ±3.75V supplies. These amplifiers are offered in 8-pin SO packages and are specified for the extended temperature range (-40°C to +85°C).

See the MAX4198/MAX4199 data sheet for single-supply, precision differential amplifiers.

Applications

Medical Equipment

Thermocouple Amplifier

4-20mA Loop Transmitters

Data-Acquisition Systems

Battery-Powered/Portable Equipment

Transducer Interface

Bridge Amplifier

WINXIV

+2.7V Single-Supply Operation

- ♦ Low Power Consumption 93µA Supply Current 8µA Shutdown Current (MAX4195/96/97)
- ♦ High Common-Mode Rejection: 115dB (G = +10V/V)
- **♦** Low 50µV Input Offset Voltage (G ≥ +100V/V)
- ♦ Low ±0.01% Gain Error (G = +1V/V)
- ♦ 250kHz -3dB Bandwidth (G = +1V/V, MAX4194)
- ♦ Rail-to-Rail Outputs

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX4194ESA	-40°C to +85°C	8 SO
MAX4195ESA	-40°C to +85°C	8 SO
MAX4196ESA	-40°C to +85°C	8 SO
MAX4197ESA	-40°C to +85°C	8 SO

Selector Guide

		ı	
PART	SHUTDOWN GAIN (V/V)		CMRR (dB)
MAX4194	No	Variable	95 (G = +1V/V)
MAX4195	Yes	+1	95
MAX4196	Yes	+10	115
MAX4197	Yes	+100	115

Pin Configurations

Railio-Rail is a registered trademark of Nippon Motorola, Ltd.

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V _{CC} to V _{EE})+8	١V
All Other Pins (V _{CC} + 0.3V) to (V _{EE} - 0.3V	V)
Current into Any Pin±30m	Α
Output Short-Circuit Duration (to V _{CC} or V _{EE}) Continuou	JS
Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
SO (derate 5.9mW/°C above +70°C)	W

Operating Temperature Range	40°C to +85°C
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10sec)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +5V, V_{EE} = 0, R_L = 25k\Omega$ tied to $V_{CC}/2$, $V_{REF} = V_{CC}/2$, $T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.)

PARAMETER	SYMBOL	CONE	DITIONS	MIN	TYP	MAX	UNITS
Supply Voltage Range	V _{CC}	Inferred by PSR	Single supply	2.7		7.5	V
Supply vollage Kalige	, CC	test	Dual supplies	±1.35		±3.75	V
Quiescent Current	Icc	$V_{IN}+=V_{IN}-=V_{CC}/2$	V _{DIFF} = 0		93	110	μΑ
Shutdown Current	ISHDN	ISHDN = V _{IL} , MAX4195/96/97 only			8	12	μΑ
		$G = +1V/V, V_{CM} = V_{C}$	C/2, T _A = +25°C		±100	±450	
		$G = +10V/V$, $V_{CM} = V_0$	CC/2, TA = +25°C		±75	±225	
		$G = +100V/V, V_{CM} = V_{CM}$	V _{CC} /2, T _A = +25°C		±50	±225	
Input Offset Voltage	Vos	G = +1000V/V, V _{CM} =	V _{CC} /2, T _A = +25°C		±50		μV
input Onset voltage	VOS	$G = +1V/V, V_{CM} = V_{C}$	$C/2$, $T_A = T_{MIN}$ to T_{MAX}		±100	±690	μν
		$G = +10V/V$, $V_{CM} = V_0$	CC/2, TA = TMIN to TMAX		±75	±345	
		$G = +100V/V, V_{CM} = V_{CM}$	$V_{CC}/2$, $T_A = T_{MIN}$ to		±50	±345	
		G = +1000V/V, V _{CM} =		±50			
Input Offset Voltage Drift	TCusa	G = +1V/V			±1.0	±4.0	μV/°C
(Note 1)	TC _{VOS}	G ≥ +10V/V		±0.5		±2.0	μν/ С
Input Resistance	RIN	V _{CM} = V _{CC} /2	Differential		1000		ΜΩ
input Resistance	KIN	VCM = VCC/2	Common mode		1000		17122
Input Capacitance	CIN	V _{CM} = V _{CC} /2		1			pF
при Сараспапсе	CIN	VCM = VCC/2	Common mode		4		рг
Input Voltage Range	VIN	Inferred from CMR tes	st	VEE + 0.2	2	V _{CC} - 1.1	V
		V _{CM} = V _{EE} + 0.2V	G = +1V/V	78	95		
		to V _{CC} - 1.1V,	G = +10V/V	93	115		
		$T_A = +25^{\circ}C$,	G = +100V/V	95	115		
DC Common Mode Dejection	CMDs a	$\Delta R_S = 1k\Omega$	G = +1000V/V		115		
DC Common-Mode Rejection	CMR _{DC}	V _{CM} = V _{EE} + 0.2V	G = +1V/V	73	95		dB
		to V _{CC} - 1.1V,	G = +10V/V	88	115		-
		$T_A = T_{MIN}$ to T_{MAX} ,	G = +100V/V	90	115		
		$\Delta R_S = 1k\Omega$	G = +1000V/V		115		
		V _{CM} = V _{EE} + 0.2V	G = +1V/V		85		
AC Common-Mode Rejection	CMR _{AC}	to V _{CC} - 1.1V,	G = +10V/V		101		dB
		f = 120Hz	G = +100V/V		106		

ELECTRICAL CHARACTERISTICS (continued)

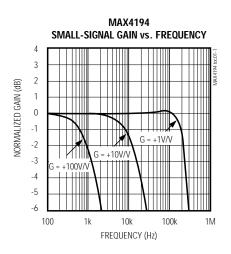
 $(V_{CC}=+5V,\,V_{EE}=0,\,R_L=25k\Omega$ tied to $V_{CC}/2,\,V_{REF}=V_{CC}/2,\,T_A=T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A=+25^{\circ}C.)$

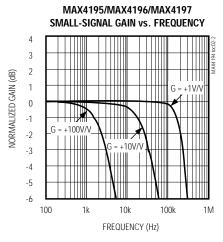
PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS	
Power-Supply Rejection	PSR	VOUT = +1.5V; VREF	$+2.7V \le V_{CC} \le +7.5V; V_{CM} = +1.5V;$ $V_{OUT} = +1.5V; V_{REF} = +1.5V; R_L = 25k\Omega$ to $+1.5V; G = +1V/V, +10V/V, +100V/V$		120		dB	
Input Bias Current	IB	V _{CM} = V _{CC} /2			6	20	nA	
Input Bias Current Drift	TC _{IB}	V _{CM} = V _{CC} /2			15		pA/°C	
Input Offset Current	los	Vcm = Vcc/2	'CM = V CC/2		±1.0	±3.0	nA	
Input Offset Current Drift	TC _{IOS}	V _{CM} = V _{CC} /2			15		pA/°C	
			f = 10Hz		85			
		0 11/0/	f = 100Hz		75		nV√Hz	
		G = +1V/V	f = 10KHz		72		1	
			f = 0.1Hz to 10Hz		1.4		μV _{RMS}	
Input Noise Voltage			f = 10Hz		35			
		0 101/11	f = 100Hz		32		nV√Hz	
	en	G = +10V/V	f = 10KHz		31		1	
			f = 0.1Hz to 10Hz		0.7		μV _{RMS}	
		G = +100V/V	f = 10Hz		32		<u> </u>	
			f = 100Hz		31		nV√Hz	
			f = 10KHz		8.7			
			f = 0.1Hz to 10Hz		0.6		μV _{RMS}	
		f = 10Hz		2.4		,		
		f = 100Hz			0.76		pA√Hz	
Input Noise Current	in	f = 10kHz		0.1			1	
		f = 0.1Hz to 10Hz			16		pA _{RMS}	
			V _{CC} - V _{OH}		30	100		
		$R_L = 25k\Omega$ to $V_{CC}/2$	VoL		30	100	mV	
Output Voltage Swing	V _{OH} , V _{OL}		V _{CC} - V _{OH}		100	200		
		$R_L = 5k\Omega$ to $V_{CC}/2$	V _{OL}		100	200	1	
Short-Circuit Current (Note 2)	Isc				±4.5		mA	
Gain Equation		MAX4194 only		1-	+ (50k Ω /R	G)		
·		$T_A = +25^{\circ}C$	G = +1V/V		±0.01	±0.1		
		$V_{CM} = V_{CC}/2$,	G = +10V/V		±0.03	±0.3	- - - -	
		$R_L = 25k\Omega$, $V_{EE} + 0.1V \le V_{OUT}$	G = +100V/V		±0.05	±0.5		
		VEE + 0.1V \(\delta\) \(\delta	G = +1000V/V, MAX4194		±0.5			
Gain Error		$T_A = +25^{\circ}C$	G = +1V/V		±0.01	±0.1	- %	
		V _{CM} = V _{CC} /2,	G = +10V/V		±0.03	±0.3	_	
		$R_L = 5k\Omega$, $V_{EE} + 0.2V \le V_{OUT}$	G = +100V/V		±0.05	±0.5		
		<pre>VEE + 0.2V ≤ VOUT ≤ VCC - 0.2V</pre>	G = +1000V/V, MAX4194		±0.5		1	

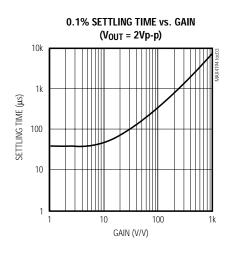
ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = +5V, V_{EE} = 0, R_L = 25k\Omega$ tied to $V_{CC}/2$, $V_{REF} = V_{CC}/2$, $T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.)

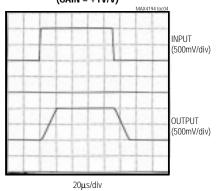
PARAMETER	SYMBOL	CONDITIONS				MIN	TYP	MAX	UNITS	
Gain Temperature Coefficient		MAX4194/MAX4	195, C	6 = +1V/V			±1	±8	n n n 10 C	
(Note 1)		MAX4196/MAX4	197				±1	±15	ppm/°C	
50k $Ω$ Resistance Temperature Coefficient (Note 3)	TC50kΩ	MAX4194					±16		ppm/°C	
Nonlinearity		$V_{EE} + 0.1V \le V_{OUT} \le V_{CC} - 0.1V$, $V_{CM} = V_{CC}/2$, $G = +1V/V$, $+10V/V$, $+100V/V$, $+1000V/V$				±0.001		%		
Capacitive Load Stability	CL				300		pF			
			G -	+1V/V	MAX4194		250			
			G –	+ 1 0 / 0	MAX4195		220			
			G -	+10V/V	MAX4194		17			
-3dB Bandwidth	BW-3dB	$V_{OUT} \le 0.1 \text{Vp-p},$ $V_{CM} = V_{CC}/2$	G –	+100/0	MAX4196		34		kHz	
		VCIVI VCC/2		. 100\//\/	MAX4194		1.5			
			G = +100	+10077	MAX4197		3.1			
			G =	+1000V/V	MAX4194		0.147		1	
Slew Rate	SR	V _{OUT} = 2Vp-p, G	= +1	V/V			0.06		V/µs	
		0.1%, $V_{OUT} = 2Vp-p$ $G = +10V/V$ $G = +100V/V$			0.05					
Settling Time	ts						0.04		me	
Setting Time							5		ms	
				G = +1000	OV/V		7			
Total Harmonic Distortion	THD	V _{OUT} = 2Vp-p, G	i = +1	V/V, $f = 1kH$	Z		0.001		%	
Input Logic Voltage High	VIH					V _{CC} - 1.5			V	
Input Logic Voltage Low	VIL							Vcc - 2.5	V	
SHDN Input Current		V _{EE} < V SHDN < \	/cc	MAX4195/ MAX4197	MAX4196/ only			±0.1	μΑ	
Time to Shutdown	tshdn	G = +1V/V, 0.1% $V_{OUT} = +3V$				0.5		ms		
Enable Time From Shutdown	tENABLE	G = +1V/V, 0.1%, MAX4195/MAX4196/ V _{OUT} = +3.5V MAX4197 only			0.5		ms			
Power-Up Delay		G = +1V/V, 0.1%	, V _{OU}	T = +3.5V			1		ms	
On/Off Settling Time	ton/off	V _{SHDN} = V _{CC} - 2. 0.1%, V _{OUT} = +3		V _{CC} - 1.5V, G	$\hat{s} = +100 \text{V/V},$		0.5		ms	

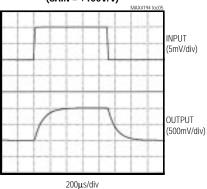

Note 1: Guaranteed by design.

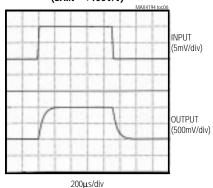

Note 2: Maximum output current (sinking/sourcing) in which the gain changes by less than 0.1%.

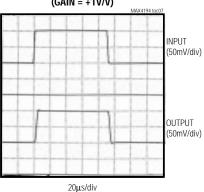

Note 3: This specification represents the typical temperature coefficient of an on-chip thin film resistor. In practice, the temperature coefficient of the gain for the MAX4194 will be dominated by the temperature coefficient of the external gain-setting resistor.

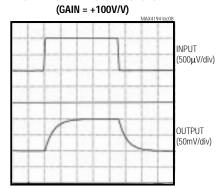
Typical Operating Characteristics


(V_{CC} = +5V, V_{EE} = 0, R_L = 25k Ω tied to V_{CC}/2, T_A = +25°C, unless otherwise noted.)

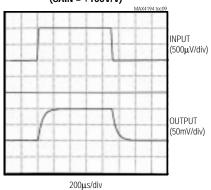



MAX4194 LARGE-SIGNAL PULSE RESPONSE (GAIN = +1V/V)

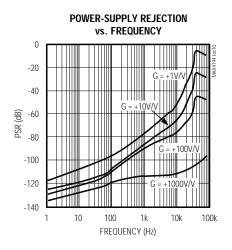

MAX4194 LARGE-SIGNAL PULSE RESPONSE (GAIN = +100V/V)

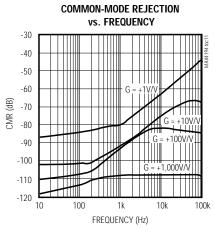

MAX4197 LARGE-SIGNAL PULSE RESPONSE (GAIN = +100V/V)

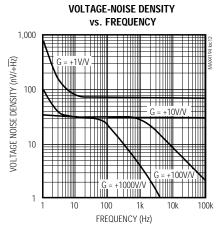
MAX4194 SMALL-SIGNAL PULSE RESPONSE (GAIN = +1V/V)



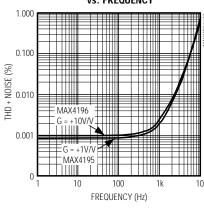
MAX4194
SMALL-SIGNAL PULSE RESPONSE
(GAIN = +100V/V)

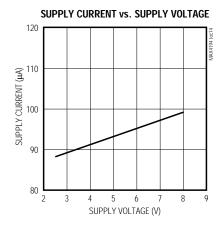

200µs/div

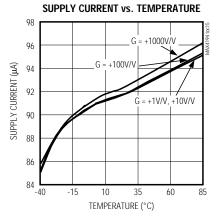

MAX4197 SMALL-SIGNAL PULSE RESPONSE (GAIN = +100V/V)

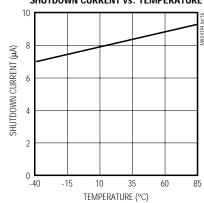


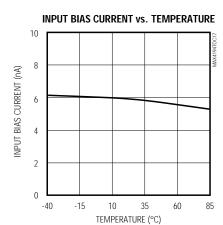
_Typical Operating Characteristics (continued)

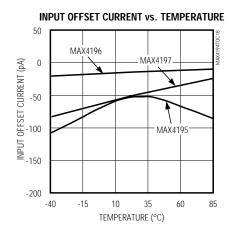

(VCC = +5V, VEE = 0, RL = $25k\Omega$ tied to VCC/2, TA = +25°C, unless otherwise noted.)

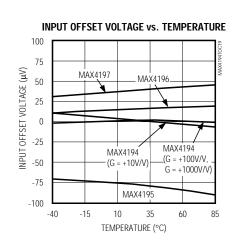





MAX4195/MAX4196
TOTAL HARMONIC DISTORTION PLUS NOISE
vs. Frequency




MAX4195/MAX4196/MAX4197 Shutdown Current Vs. Temperature



Typical Operating Characteristics (continued)

 $(V_{CC} = +5V, V_{EE} = 0, R_L = 25k\Omega \text{ tied to } V_{CC}/2, T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

Pin Description

Р	IN			
MAX4194	MAX4195 MAX4196 MAX4197	NAME	FUNCTION	
1, 8	_	RG-, RG+	Connection for Gain Setting Resistor	
5	1	REF	Reference Voltage. Offsets output voltage.	
2	2	IN-	Inverting Input	
3	3	IN+	Noninverting Input	
4	4	VEE	Negative Supply Voltage	
_	5	FB	Feedback. Connects to OUT.	
6	6	OUT	Amplifier Output	
7	7	Vcc	Positive Supply Voltage	
_	8	SHDN	Shutdown Control	

Detailed Description

Input Stage

The MAX4194–MAX4197 family of low-power instrumentation amplifiers implements a three-amplifier topology (Figure 1). The input stage is composed of two operational amplifiers that together provide a fixed-gain differential and a unity common-mode gain. The output stage is a conventional differential amplifier that provides an overall common-mode rejection of 115dB (G =

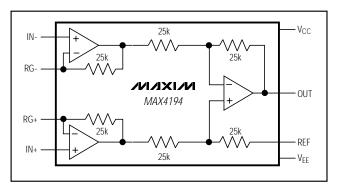


Figure 1. MAX4194 Simplified Block Diagram

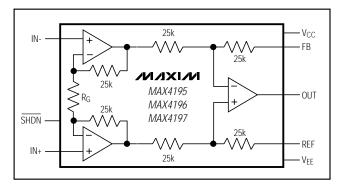


Figure 2. MAX4195/MAX4196/MAX4197 Simplified Block Diagram

+10V/V). The MAX4194's gain can be externally set between +1V/V and +10,000V/V (Table 1). The MAX4195/MAX4196/MAX4197 have on-chip gain-setting resistors (Figure 2), and their gains are fixed at +1V/V, +10V/V, and +100V/V, respectively.

Input Voltage Range and Detailed Operation

The common-mode input range for all of these amplifiers is $V_{EE} + 0.2V$ to $V_{CC} - 1.1V$. Ideally, the instrumentation amplifier (Figure 3) responds only to a differential voltage applied to its inputs, IN+ and IN-. If both inputs are at the same voltage, the output is V_{REF} . A differential voltage at IN+ (V_{IN+}) and IN- (V_{IN-}) develops an identical voltage across the gain-setting resistor, causing a current (I_G) to flow. This current also flows through the feedback resistors of the two input amplifiers A1 and A2, generating a differential voltage of:

$$Vout_2 - Vout_1 = Ig \cdot (R_1 + R_G + R_1)$$

where V_{OUT1} and V_{OUT2} are the output voltages of A1 and A2, R_G is the gain-setting resistor (internal or external to the part), and R1 is the feedback resistor of the input amplifiers.

IG is determined by the following equation:

$$I_G = (V_{IN+} - V_{IN-}) / R_G$$

The output voltage (VOUT) for the instrumentation amplifier is expressed in the following equation:

$$V_{OUT} = (V_{IN+} - V_{IN-}) \cdot [(2 \cdot R1) / R_G] + 1$$

The common-mode input range is a function of the amplifier's output voltage and the supply voltage. With a power supply of V_{CC} , the largest output signal swing can be obtained with REF tied to $V_{CC}/2$. This results in an output voltage swing of $\pm V_{CC}/2$. An output voltage swing less than full-scale increases the common-mode input range.

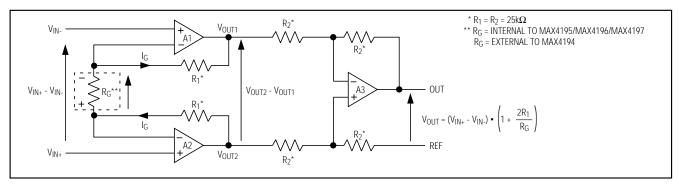


Figure 3. Instrumentation Amplifier Configuration

Table 1. MAX4194 External Gain Resistor Selection

GAIN (V/V)	CLOSEST R _G (1%) (Ω)	CLOSEST R _G (5%) (Ω)
+1	∞ *	∞ *
+2	49.9k	51k
+5	12.4k	12k
+10	5.62k	5.6k
+20	2.61k	2.7k
+50	1.02k	1.0k
+100	511	510
+200	249	240
+500	100	100
+1,000	49.9	51
+2,000	24.9	24
+5,000	10	10
+10,000	4.99	5.1

^{*} Leave pins 1 and 8 open for G = +1V/V.

VCM vs. VOUT Characterization

Figure 4 illustrates the MAX4194 typical common-mode input voltage range over output voltage swing at unitygain (pins 1 and 8 left floating), with a single-supply voltage of V_{CC} = +5V and a bias reference voltage of V_{REF} = V_{CC}/2 = +2.5V. Points A and D show the full input voltage range of the input amplifiers (V_{EE} + 0.2V to V_{CC} - 1.1V) since, with +2.5V output, there is zero input differential swing. The other points (B, C, E, and F) are determined by the input voltage range of the input amps minus the differential input amplitude necessary to produce the associated V_{OUT}. For the higher gain configurations, the V_{CM} range will increase at the endpoints (B, C, E, and F) since a smaller differential voltage is necessary for the given output voltage.

Rail-to-Rail Output Stage

The MAX4194–MAX4197's output stage incorporates a common-source structure that maximizes the dynamic range of the instrumentation amplifier.

The output can drive up to a $25k\Omega$ (tied to V_{CC}/2) resistive load and still typically swing within 30mV of the rails. With an output load of $5k\Omega$ tied to V_{CC}/2, the output voltage swings within 100mV of the rails.

Shutdown Mode

The MAX4195–MAX4197 feature a low-power shutdown mode. When the shutdown pin (SHDN) is pulled low, the internal amplifiers are switched off and the supply current drops to 8µA typically (Figures 5a, 5b, and 5c).

This disables the instrumentation amplifier and puts its output in a high-impedance state. Pulling SHDN high enables the instrumentation amplifier.

_Applications Information Setting the Gain (MAX4194)

The MAX4194's gain is set by connecting a single, external gain resistor between the two RG pins (pin 1 and pin 8), and can be described as:

$$G = 1 + 50k\Omega / R_G$$

where G is the instrumentation amplifier's gain and R_G is the gain-setting resistor.

The $50k\Omega$ resistor of the gain equation is the sum of the two resistors internally connected to the feedback loops of the IN+ and IN- amplifiers. These embedded feedback resistors are laser trimmed, and their accuracy and temperature coefficients are included in the gain and drift specification for the MAX4194.

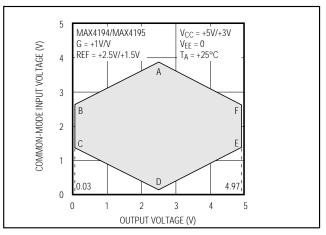


Figure 4. Common-Mode Input Voltage vs. Output Voltage

Figure 5a. MAX4195 Shutdown Mode

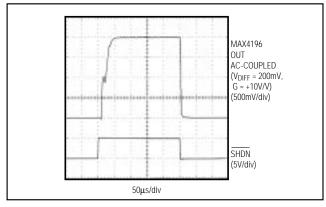


Figure 5b. MAX4196 Shutdown Mode

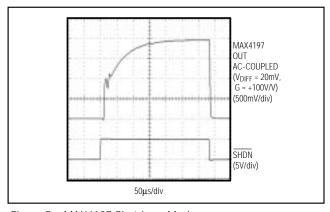


Figure 5c. MAX4197 Shutdown Mode

The accuracy and temperature drift of the RG resistors also influence the IC's precision and gain drift, and can be derived from the equation above. With low RG values, which are required for high-gain operation, parasitic resistances may significantly increase the gain error.

Capacitive Load Stability

The MAX4194–MAX4197 are stable for capacitive loads up to 300pF (Figure 6a). Applications that require greater capacitive-load driving capability can use an isolation resistor (Figure 6b) between the output and the capacitive load to reduce ringing on the output signal. However, this alternative reduces gain accuracy because RISO (Figure 6c) forms a potential divider with the load resistor.

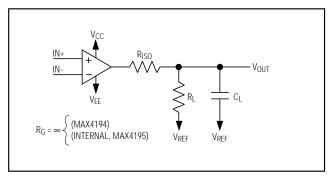


Figure 6a. Using a Resistor to Isolate a Capacitive Load from the Instrumentation Amplifier (G = +1V/V)

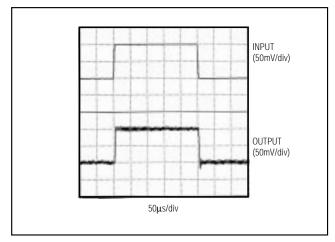


Figure 6b. Small-Signal Pulse Response with Excessive Capacitive Load ($R_L = 25k\Omega$, $C_L = 1000pF$)

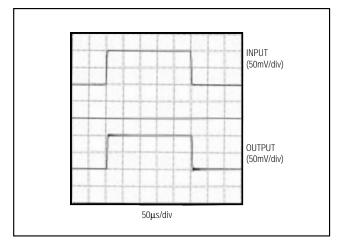


Figure 6c. Small-Signal Pulse Response with Excessive Capacitive Load and Isolating Resistor ($R_{ISO} = 75\Omega$, $R_{L} = 25k\Omega$, $C_{L} = 1000pF$)

Power-Supply Bypassing and Layout

Good layout technique optimizes performance by decreasing the amount of stray capacitance at the instrumentation amplifier's gain-setting pins. Excess capacitance will produce peaking in the amplifier's frequency response. To decrease stray capacitance, minimize trace lengths by placing external components as close to the instrumentation amplifier as possible. For best performance, bypass each power supply to ground with a separate 0.1µF capacitor.

Transducer Applications

The MAX4194–MAX4197 instrumentation amplifiers can be used in various signal-conditioning circuits for thermocouples, PT100s, strain gauges (displacement sensors), piezoresistive transducers (PRTs), flow sensors, and bioelectrical applications. Figure 7 shows a simplified example of how to attach four strain gauges (two

identical two-element strain gauges) to the inputs of the MAX4194. The bridge contains four resistors, two of which increase and two of which decrease by the same ratio.

With a fully balanced bridge, points A (IN+) and B (IN-) see half the excitation voltage (VBRIDGE). The low impedance (120 Ω to 350 Ω) of the strain gauges, however, could cause significant voltage drop contributions by the wires leading to the bridge, which would cause excitation variations. Output voltage VOUT can be calculated as follows:

where G = $(1 + 50k\Omega / R_G)$ is the gain of the instrumentation amplifier.

Since VAB is directly proportional to the excitation, gain errors may occur.

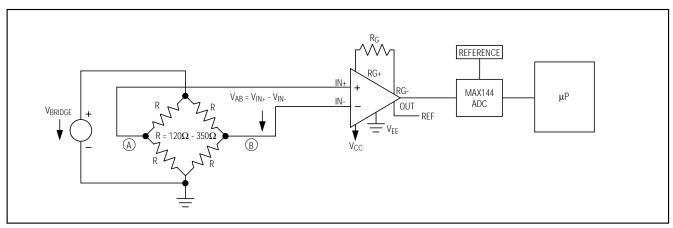
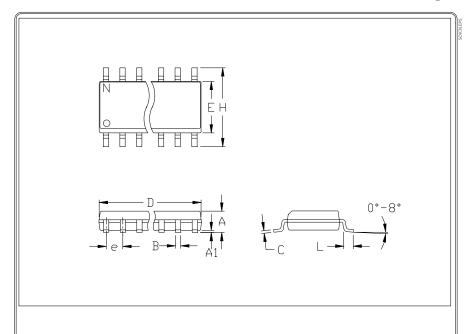



Figure 7. Strain Gauge Connection to the MAX4194

_____Chip Information

TRANSISTOR COUNT: 432

Package Information

	INC	HES	MILLIM	IETERS
	MIN	MAX	MIN	MAX
Α	0.053	0.069	1.35	1.75
A1	0.004	0.010	0.10	0.25
В	0.014	0.019	0.35	0.49
С	0.007	0.010	0.19	0.25
6	0.0)50	1.7	27
E	0.150	0.157	3.80	4.00
Н	0.228	0.244	5.80	6.20
h	0.010	0.020	0.25	0.50
	0.016	0.050	0.40	1.27

	INCHES		MILLIM	ETERS		
	MIN MAX		MIN	MAX	Ν	MS012
D	0.189	0.197	4.80	5.00	8	Α
D	0.337	0.344	8.55	8.75	14	В
D	0.386	0.394	9.80	10.00	16	С

- NOTES:
 1. D&E DO NOT INCLUDE MOLD FLASH
 2. MOLD FLASH OR PROTRUSIONS NOT
 TO EXCEED .15mm (.006*)
 3. LEADS TO BE COPLANAR WITHIN
 .102mm (.004*)
 4. CONTROLLING DIMENSION: MILLIMETER
 5. MEETS JEDEC MS012-XX AS SHOWN
 IN ABOVE TABLE
 6. N = NUMBER OF PINS

NO SUM GABRIEL DR. SUMMYNE DA AMBRE ENVIRON PACKAGE FAMILY DUTLINE: SDIC .150" 21-0041 A

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.