Ultra－Low－Distortion，＋5V， 400MHz Op Amps with Disable

General Description

The MAX4265－MAX4270 ultra－low distortion，voltage－feed－ back op amps are capable of driving a 100Ω load while maintaining ultra－low distortion over a wide bandwidth． They offer superior spurious－free dynamic range（SFDR） performance：-90 dBc at 5 MHz and -59 dBc at 100 MHz （MAX4269）．Additionally，input voltage noise density is $8 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ while operating from a single +4.5 V to +8.0 V sup－ ply or from dual $\pm 2.25 \mathrm{~V}$ to $\pm 4.0 \mathrm{~V}$ supplies．These features make the MAX4265－MAX4270 ideal for use in high－perfor－ mance communications and signal－processing applica－ tions that require low distortion and wide bandwidth．
The MAX4265 single and MAX4268 dual amplifiers are unity－gain stable．The MAX4266 single and MAX4269 dual amplifiers are compensated for a minimum stable gain of $+2 \mathrm{~V} / \mathrm{V}$ ，while the MAX4267 single and MAX4270 dual amplifiers are compensated for a minimum stable gain of $+5 \mathrm{~V} / \mathrm{V}$ ．
For additional power savings，these amplifiers feature a low－power disable mode that reduces supply current and places the outputs in a high－impedance state．The MAX4265／MAX4266／MAX4267 are available in a space－ saving 8－pin $\mu \mathrm{MAX}$ package，and the MAX4268／ MAX4269／MAX4270 are available in a 16－pin QSOP pack－ age．

Applications
Base－Station Amplifiers
IF Amplifiers
High－Frequency ADC Drivers
High－Speed DAC Buffers
RF Telecom Applications
High－Frequency Signal Processing
－Operates from＋4．5V to＋8．0V
－Superior SFDR with 100Ω Load
-90 dBc （fc $=5 \mathrm{MHz}$ ）
$-59 \mathrm{dBc}(\mathrm{fc}=100 \mathrm{MHz}$ ）
－35dBm IP3（fc＝20MHz）
－ $8 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ Voltage Noise Density
－100MHz 0．1dB Gain Flatness（MAX4268）
－900V／us Slew Rate
－$\pm 45 m$ A Output Driving Capability
－Disable Mode Places Outputs in High－Impedance State

Ordering Information

PART	TEMP．RANGE	PIN－PACKAGE
MAX4265EUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$
MAX4265ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX4266EUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$
MAX4266ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX4267EUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$
MAX4267ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX4268EEE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 QSOP
MAX4268ESD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 SO
MAX4269EEE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 QSOP
MAX4269ESD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 SO
MAX4270EEE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 QSOP
MAX4270ESD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 SO

Pin Configurations appear at end of data sheet．
Selector Guide

PART	NO．OF OP AMPS	MIN GAIN （V／V）	$\mathbf{- 3 d B}$ BANDWIDTH（MHz）	GBP （MHz）	FULL－POWER BANDWIDTH（MHz）
MAX4265	1	1	400	400	270
MAX4266	1	2	350	700	350
MAX4267	1	5	300	1500	300
MAX4268	2	1	300	300	175
MAX4269	2	2	350	700	200
MAX4270	2	5	200	1000	200

Ultra-Low-Distortion, +5V, 400MHz Op Amps with Disable

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (VCC to V_{EE})+8.5V Voltage on Any Other Pin..................(VEE - 0.3V) to (VCC +0.3 V) Short-Circuit Duration (VOUT to V_{CC} or V_{EE})...............Continuous Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$ 8-Pin μ MAX (derate $4.10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 330 mW 16-Pin QSOP (derate $8.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) $\ldots667 \mathrm{~mW}$ 8 -Pin SO (derate $5.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)................ 471 mW 14-Pin SO (derate $8.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)............. 667 mW

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{C C}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0, R_{\mathrm{L}}=100 \Omega\right.$ to $\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to T_{MAX}, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Operating Supply Voltage Range	VCC	Inferred from PSRR test	4.5		8.0	V
Common-Mode Input Voltage	VCM	Inferred from CMRR test	$\mathrm{V}_{\mathrm{EE}}+1.6$		VCC - 1.6	V
Input Offset Voltage	VOS			1	9	mV
Input Offset Voltage Drift	TCVos			1.5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Voltage Channel Matching		MAX4268/MAX4269/MAX4270		1		mV
Input Bias Current	IB			3.5	40	$\mu \mathrm{A}$
Input Offset Current	Ios			0.1	6	$\mu \mathrm{A}$
Common-Mode Input Resistance	Rincm	Either input $\left(\mathrm{V}_{\text {EE }}+1.6 \mathrm{~V}\right) \leq \mathrm{V}_{\text {CM }} \leq\left(\mathrm{V}_{\mathrm{CC}}-1.6 \mathrm{~V}\right)$		1		$\mathrm{M} \Omega$
Differential Input Resistance	Rindiff	$-10 \mathrm{mV} \leq \mathrm{V}_{\text {IN }} \leq 10 \mathrm{mV}$		40		k Ω
Common-Mode Rejection Ratio	CMRR	$\left(\mathrm{V}_{\mathrm{EE}}+1.6 \mathrm{~V}\right) \leq \mathrm{V}_{\mathrm{CM}} \leq\left(\mathrm{V}_{\mathrm{CC}}-1.6 \mathrm{~V}\right)$, no load	60	85		dB
Power-Supply Rejection Ratio	PSRR	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 8.0 V	60	85		dB
Open-Loop Voltage Gain	AOL	$1.75 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 3.25 \mathrm{~V}$	60	95		dB
Output Voltage Swing	VOUT	VCC - $\mathrm{V}_{\text {OH, }}$ V ${ }_{\text {OL }}-\mathrm{V}_{\text {EE }}$		1.1	1.5	V
Output Current Drive	IOUT	$\mathrm{R}_{\mathrm{L}}=20 \Omega$	± 30	± 45		mA
Output Short-Circuit Current	Isc	Sinking or sourcing to $\mathrm{V}_{\text {CC }}$ or $\mathrm{V}_{\text {EE }}$		100		mA
Closed-Loop Output Resistance	Rout			0.035		Ω
Power-Up Time	tPWRUP	Vout = 1V step, 0.1\% settling time		10		$\mu \mathrm{s}$
Quiescent Supply Current (per amplifier)	Is	Normal mode, DISABLE_ = V $\mathrm{C}_{\text {cC }}$ or floating		28	32	mA
		Disable mode, DISABLE_ = VEE		1.6	5	
Disable Output Leakage Current		DISABLE ${ }_{-}=\mathrm{V}_{\text {EE }}, \mathrm{V}_{\text {EE }} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {CC }}$		0.2	2.5	$\mu \mathrm{A}$
DISABLE_ Logic Low			VCC - 3.5			V
DISABLE_ Logic High			VCC - 1.5			V
DISABLE_ Logic Input Low Current		DISABLE_ = V_{EE}		5	100	$\mu \mathrm{A}$
DISABLE_ Logic Input High Current		DISABLE_ = VCC		1	30	$\mu \mathrm{A}$

Ultra-Low-Distortion, +5V, 400MHz Op Amps with Disable

AC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{C C}=+5 \mathrm{~V}, \mathrm{~V}_{E E}=0, R_{L}=100 \Omega\right.$ to $\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{C C} / 2, \mathrm{MAX} 4265 / \mathrm{MAX} 4268 \mathrm{AV}^{2}=+1 \mathrm{~V} / \mathrm{V}, \mathrm{MAX} 4266 / \mathrm{MAX} 4269 \mathrm{~A}_{\mathrm{V}}=+2 \mathrm{~V} / \mathrm{V}$, MAX4267/MAX4270 $\mathrm{AV}=+5 \mathrm{~V} / \mathrm{V}, \mathrm{T}_{A}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS		MIN TYP	MAX	UNITS
Small-Signal -3dB Bandwidth	BW-3dB	VOUT $=100 \mathrm{mVp}-\mathrm{p}$	MAX4265	400		MHz
			MAX4266	350		
			MAX4267	300		
			MAX4268	300		
			MAX4269	350		
			MAX4270	200		
Full-Power Bandwidth	FPBW	VOUT $=1 \mathrm{Vp}-\mathrm{p}$	MAX4265	270		MHz
			MAX4266	350		
			MAX4267	300		
			MAX4268	175		
			MAX4269	200		
			MAX4270	200		
0.1 dB Gain Flatness	BW0.1dB	VOUT $=100 \mathrm{mVp}-\mathrm{p}$	MAX4265	80		MHz
			MAX4266	30		
			MAX4267	55		
			MAX4268	100		
			MAX4269	35		
			MAX4270	35		
All-Hostile Crosstalk		$\mathrm{f}=10 \mathrm{MHz}$		85		dB
Slew Rate	SR	Vout $=+1 \mathrm{~V}$ step		900		V/us
Rise/Fall Times		Vout $=+1 \mathrm{~V}$ step		1		ns
Settling Time (0.1\%)	ts, 0.1	Vout $=+1 \mathrm{~V}$ step		15		ns
Spurious-Free Dynamic Range	SFDR	$\begin{aligned} & \text { Vout = 1Vp-p } \\ & \text { (MAX4265/ } \\ & \text { MAX4266/ } \\ & \text { MAX4267) } \end{aligned}$	$\mathrm{f}_{\mathrm{C}}=1 \mathrm{MHz}$	83		dBc
			$\mathrm{f}_{\mathrm{C}}=5 \mathrm{MHz}$	85		
			$\mathrm{fc}_{\mathrm{C}}=10 \mathrm{MHz}$	87		
			$\mathrm{fc}_{\mathrm{C}}=20 \mathrm{MHz}$	81		
			$\mathrm{f}_{\mathrm{C}}=60 \mathrm{MHz}$	50		
			$\mathrm{fC}_{\mathrm{C}}=100 \mathrm{MHz}$	47		
		$\begin{aligned} & \text { Vout = 1Vp-p } \\ & \text { (MAX4268) } \end{aligned}$	$\mathrm{fC}^{\text {c }}=1 \mathrm{MHz}$	85		
			$\mathrm{f}_{\mathrm{C}}=5 \mathrm{MHz}$	85		
			$\mathrm{fc}_{\mathrm{C}}=10 \mathrm{MHz}$	84		
			$\mathrm{fc}_{\mathrm{C}}=20 \mathrm{MHz}$	79		
			$\mathrm{fc}_{\mathrm{C}}=60 \mathrm{MHz}$	68		
			$\mathrm{f}_{\mathrm{C}}=100 \mathrm{MHz}$	60		

Ultra-Low-Distortion, +5V, 400MHz Op Amps with Disable

AC ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0, R_{\mathrm{L}}=100 \Omega\right.$ to $\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{C}} / 2, \mathrm{MAX} 4265 / \mathrm{MAX} 4268 \mathrm{AV}=+1 \mathrm{~V} / \mathrm{V}, \mathrm{MAX} 4266 / \mathrm{MAX} 4269 \mathrm{~A}_{\mathrm{V}}=+2 \mathrm{~V} / \mathrm{V}$, MAX4267/MAX4270 $\mathrm{AV}=+5 \mathrm{~V} / \mathrm{V}, \mathrm{T}_{A}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS		MIN TYP	MAX	UNITS
Spurious-Free Dynamic Range	SFDR	$\begin{aligned} & \text { Vout = 1Vp-p } \\ & \text { (MAX4269) } \end{aligned}$	$\mathrm{f}_{\mathrm{C}}=1 \mathrm{MHz}$	88		dBc
			$\mathrm{f}_{\mathrm{C}}=5 \mathrm{MHz}$	90		
			$\mathrm{fc}_{\mathrm{c}}=10 \mathrm{MHz}$	88		
			$\mathrm{fc}_{\mathrm{C}}=20 \mathrm{MHz}$	79		
			$\mathrm{f}_{\mathrm{C}}=60 \mathrm{MHz}$	68		
			$\mathrm{fC}^{\text {c }}=100 \mathrm{MHz}$	59		
		$\begin{aligned} & \text { Vout = 1Vp-p } \\ & \text { (MAX4270) } \end{aligned}$	$\mathrm{f}_{\mathrm{C}}=1 \mathrm{MHz}$	86		
			$\mathrm{fC}_{\mathrm{C}}=5 \mathrm{MHz}$	81		
			$\mathrm{f}_{\mathrm{C}}=10 \mathrm{MHz}$	75		
			$\mathrm{f}_{\mathrm{C}}=20 \mathrm{MHz}$	68		
			$\mathrm{f}_{\mathrm{C}}=60 \mathrm{MHz}$	60		
			$\mathrm{fC}_{\mathrm{C}}=100 \mathrm{MHz}$	56		
Second Harmonic Distortion		$\begin{aligned} & \text { Vout = 1Vp-p } \\ & \text { (MAX4265/ } \\ & \text { MAX4266/ } \\ & \text { MAX4267) } \end{aligned}$	$\mathrm{f}_{\mathrm{C}}=1 \mathrm{MHz}$	83		dBc
			$\mathrm{f}_{\mathrm{C}}=5 \mathrm{MHz}$	85		
			$\mathrm{f}_{\mathrm{C}}=10 \mathrm{MHz}$	87		
			$\mathrm{fc}_{\mathrm{c}}=20 \mathrm{MHz}$	81		
			$\mathrm{fc}_{\mathrm{C}}=60 \mathrm{MHz}$	50		
			$\mathrm{f}_{\mathrm{C}}=100 \mathrm{MHz}$	47		
		$\begin{aligned} & \text { Vout = 1Vp-p } \\ & \text { (MAX4268) } \end{aligned}$	$\mathrm{f}_{\mathrm{C}}=1 \mathrm{MHz}$	85		
			$\mathrm{f}_{\mathrm{C}}=5 \mathrm{MHz}$	85		
			$\mathrm{f}_{\mathrm{C}}=10 \mathrm{MHz}$	84		
			$\mathrm{fc}_{\mathrm{c}}=20 \mathrm{MHz}$	79		
			$\mathrm{f}_{\mathrm{C}}=60 \mathrm{MHz}$	68		
			$\mathrm{f}_{\mathrm{C}}=100 \mathrm{MHz}$	60		
		$\begin{aligned} & \text { Vout = 1Vp-p } \\ & \text { (MAX4269) } \end{aligned}$	$\mathrm{f}_{\mathrm{C}}=1 \mathrm{MHz}$	88		
			$\mathrm{f}_{\mathrm{C}}=5 \mathrm{MHz}$	90		
			$\mathrm{fc}_{\mathrm{c}}=10 \mathrm{MHz}$	88		
			$\mathrm{fc}^{\text {c }}=20 \mathrm{MHz}$	79		
			$\mathrm{fc}_{\mathrm{C}}=60 \mathrm{MHz}$	68		
			$\mathrm{fc}^{\text {c }}=100 \mathrm{MHz}$	59		
		$\begin{aligned} & \text { Vout = 1Vp-p } \\ & \text { (MAX4270) } \end{aligned}$	$\mathrm{f}_{\mathrm{C}}=1 \mathrm{MHz}$	86		
			$\mathrm{f}_{\mathrm{C}}=5 \mathrm{MHz}$	81		
			$\mathrm{fc}_{\mathrm{C}}=10 \mathrm{MHz}$	75		
			$\mathrm{fc}_{\mathrm{C}}=20 \mathrm{MHz}$	68		
			$\mathrm{fc}_{\mathrm{C}}=60 \mathrm{MHz}$	60		
			$\mathrm{f}_{\mathrm{C}}=100 \mathrm{MHz}$	56		

Ultra-Low-Distortion, +5V, 400MHz Op Amps with Disable

AC ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{C C}=+5 \mathrm{~V}, \mathrm{~V}_{E E}=0, R_{L}=100 \Omega\right.$ to $\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{~V}_{C M}=\mathrm{V}_{C C} / 2, \mathrm{MAX} 4265 / \mathrm{MAX} 4268 \mathrm{AV}^{2}=+1 \mathrm{~V} / \mathrm{V}, \mathrm{MAX} 4266 / \mathrm{MAX} 4269 \mathrm{~A}_{\mathrm{V}}=+2 \mathrm{~V} / \mathrm{V}$, MAX4267/MAX4270 $\mathrm{AV}=+5 \mathrm{~V} / \mathrm{V}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS		MIN TYP	MAX	UNITS
Third Harmonic Distortion		$\begin{aligned} & \text { Vout = 1Vp-p } \\ & \text { (MAX4265/ } \\ & \text { MAX4266/ } \\ & \text { MAX4267) } \end{aligned}$	$\mathrm{f}_{\mathrm{C}}=1 \mathrm{MHz}$	98		dBc
			$\mathrm{f}_{\mathrm{C}}=5 \mathrm{MHz}$	96		
			$\mathrm{f}_{\mathrm{C}}=10 \mathrm{MHz}$	91		
			$\mathrm{f}_{\mathrm{C}}=20 \mathrm{MHz}$	85		
			$\mathrm{f}_{\mathrm{C}}=60 \mathrm{MHz}$	75		
			$\mathrm{ff}^{\text {c }}=100 \mathrm{MHz}$	61		
		$\begin{aligned} & \text { Vout = 1Vp-p } \\ & \text { (MAX4268) } \end{aligned}$	$\mathrm{f}_{\mathrm{C}}=1 \mathrm{MHz}$	95		
			$\mathrm{f}_{\mathrm{C}}=5 \mathrm{MHz}$	95		
			$\mathrm{f}_{\mathrm{C}}=10 \mathrm{MHz}$	93		
			$\mathrm{f}_{\mathrm{C}}=20 \mathrm{MHz}$	86		
			$\mathrm{fC}_{\mathrm{C}}=60 \mathrm{MHz}$	72		
			$\mathrm{ff}^{\text {c }}=100 \mathrm{MHz}$	64		
		$\begin{aligned} & \text { Vout = 1Vp-p } \\ & \text { (MAX4269) } \end{aligned}$	$\mathrm{f}_{\mathrm{C}}=1 \mathrm{MHz}$	88		
			$\mathrm{fC}^{\text {c }} 5 \mathrm{MMHz}$	90		
			$\mathrm{f}_{\mathrm{C}}=10 \mathrm{MHz}$	88		
			$\mathrm{f}_{\mathrm{C}}=20 \mathrm{MHz}$	79		
			$\mathrm{f}_{\mathrm{C}}=60 \mathrm{MHz}$	68		
			$\mathrm{ff}^{\text {c }}=100 \mathrm{MHz}$	59		
		$\begin{aligned} & \text { Vout = 1Vp-p } \\ & \text { (MAX4270) } \end{aligned}$	$\mathrm{f}_{\mathrm{C}}=1 \mathrm{MHz}$	96		
			$\mathrm{f}_{\mathrm{C}}=5 \mathrm{MHz}$	97		
			$\mathrm{f}_{\mathrm{C}}=10 \mathrm{MHz}$	91		
			$\mathrm{f}_{\mathrm{C}}=20 \mathrm{MHz}$	84		
			$\mathrm{fc}_{\mathrm{C}}=60 \mathrm{MHz}$	74		
			$\mathrm{f}_{\mathrm{C}}=100 \mathrm{MHz}$	69		
Two-Tone, Third-Order Intercept Distortion	IP3	$\begin{aligned} & \text { Vout }=1 \mathrm{Vp}-\mathrm{p}, \\ & \mathrm{fCA}=20 \mathrm{MHz}, \\ & \mathrm{fCB}^{2}=21.25 \mathrm{MHz} \end{aligned}$	MAX4265/MAX4268	32		dBm
			MAX4266/MAX4269	35		
			MAX4267/MAX4270	35		

Ultra-Low-Distortion, +5V, 400MHz Op Amps with Disable

AC ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0, R_{\mathrm{L}}=100 \Omega\right.$ to $\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{C}} / 2, \mathrm{MAX} 4265 / \mathrm{MAX} 4268 \mathrm{AV}=+1 \mathrm{~V} / \mathrm{V}, \mathrm{MAX} 4266 / \mathrm{MAX} 4269 \mathrm{~A}_{\mathrm{V}}=+2 \mathrm{~V} / \mathrm{V}$, MAX4267/MAX4270 Av $=+5 \mathrm{~V} / \mathrm{V}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS		MIN TYP	MAX	UNITS
Input -1dB Compression Point		$\mathrm{fc}_{\mathrm{C}}=20 \mathrm{MHz}$		12		dBm
Differential Gain	DG_{G}	NTSC, $\mathrm{f}=3.58 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=150 \Omega$ to $\mathrm{VCC} / 2$		0.015		\%
Differential Phase	Dp	NTSC, $\mathrm{f}=3.58 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=150 \Omega$ to $\mathrm{VCC} / 2$		0.03		degrees
Input Capacitance	CIN			2		pF
Output Impedance	Rout	$\mathrm{f}=10 \mathrm{MHz}$		1		Ω
Disabled Output Capacitance		$\overline{\text { DISABLE_- }}=\mathrm{V}_{\mathrm{EE}}$		5		pF
Enable Time	ten	$\mathrm{V}_{\text {IN }}=+1 \mathrm{~V}$		100		ns
Disable Time	tDIS	$\mathrm{V}_{\text {IN }}=+1 \mathrm{~V}$		750		$\mu \mathrm{s}$
Capacitive Load Stability		No sustained oscillation	MAX4265/MAX4268	15		pF
			MAX4266/MAX4269	15		
			MAX4267/MAX4270	22		
Input Voltage Noise Density	e_{n}	$\mathrm{f}=1 \mathrm{kHz}$		8		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Current Noise Density	in	$\mathrm{f}=1 \mathrm{kHz}$		1		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

Typical Operating Characteristics

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0\right.$, DISABLE $=+5 \mathrm{~V}, \mathrm{RL}_{\mathrm{L}}=100 \Omega$ to $\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{MAX} 4265 / \mathrm{MAX} 4268 \mathrm{AV}=+1 \mathrm{~V} / \mathrm{V}, \mathrm{MAX} 4266 / \mathrm{MAX} 4269 \mathrm{AV}=+2 \mathrm{~V} / \mathrm{N}$, MAX4267/MAX4270 $\mathrm{AV}=+5 \mathrm{~V} / \mathrm{N}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Ultra-Low-Distortion, +5V, 400MHz Op Amps with Disable

Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0\right.$, DISABLE $=+5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$ to $\mathrm{V}_{\mathrm{CC}} / 2$, MAX4265/MAX4268 $\mathrm{AV}=+1 \mathrm{~V} / \mathrm{V}, \mathrm{MAX} 4266 / \mathrm{MAX} 4269 \mathrm{AV}=+2 \mathrm{~V} / \mathrm{N}$, MAX4267/MAX4270 $\mathrm{A}_{\mathrm{V}}=+5 \mathrm{~V} / \mathrm{N}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Ultra-Low-Distortion, +5V, 400MHz Op Amps with Disable

Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0\right.$, DISABLE $=+5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$ to $\mathrm{V}_{\mathrm{CC}} / 2$, MAX4265/MAX4268 $\mathrm{AV}_{\mathrm{V}}=+1 \mathrm{~V} / \mathrm{V}, \mathrm{MAX} 4266 / \mathrm{MAX} 4269 \mathrm{AV}_{\mathrm{V}}=+2 \mathrm{~V} / \mathrm{N}$, MAX4267/MAX4270 $\mathrm{AV}=+5 \mathrm{~V} / \mathrm{V}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Ultra-Low-Distortion, +5V, 400MHz Op Amps with Disable

Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0\right.$, DISABLE $=+5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$ to $\mathrm{V}_{\mathrm{CC}} / 2$, MAX4265/MAX4268 $\mathrm{AV}_{\mathrm{V}}=+1 \mathrm{~V} / \mathrm{V}, \mathrm{MAX} 4266 / \mathrm{MAX} 4269 \mathrm{AV}=+2 \mathrm{~V} / \mathrm{V}$, MAX4267/MAX4270 $\mathrm{AV}=+5 \mathrm{~V} / \mathrm{V}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Ultra-Low-Distortion, +5V, 400MHz Op Amps with Disable

Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0\right.$, DISABLE $=+5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$ to $\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{MAX} 4265 / \mathrm{MAX} 4268 \mathrm{AV}=+1 \mathrm{~V} / \mathrm{V}, \mathrm{MAX} 4266 / \mathrm{MAX} 4269 \mathrm{AV}=+2 \mathrm{~V} / \mathrm{V}$, MAX4267/MAX4270 $\mathrm{AV}=+5 \mathrm{~V} / \mathrm{V}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

INPUT BIAS CURRENT
vs. SUPPLY VOLTAGE

INPUT OFFSET CURRENT
vs. TEMPERATURE

NPUT OFFSET VOLTAGE
vs. TEMPERATURE

SUPPLY CURRENT (PER AMPLIFIER)
vs. TEMPERATURE

Ultra-Low-Distortion, +5V, 400MHz Op Amps with Disable

Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0\right.$, DISABLE $=+5 \mathrm{~V}, \mathrm{RL}_{\mathrm{L}}=100 \Omega$ to $\mathrm{V}_{\mathrm{CC}} / 2$, MAX4265/MAX4268 $\mathrm{AV}=+1 \mathrm{~V} / \mathrm{V}, \mathrm{MAX} 4266 / \mathrm{MAX} 4269 \mathrm{AV}=+2 \mathrm{~V} / \mathrm{V}$, MAX4267/MAX4270 $A V=+5 V / N, T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

MAX4267/MAX4270 SMALL-SIGNAL PULSE RESPONSE

MAX4266/MAX4269
LARGE-SIGNAL PULSE RESPONSE

Ultra-Low-Distortion, +5V, 400MHz Op Amps with Disable

PIN			NAME	FUNCTION
MAX4265 MAX4266 MAX4267	$\begin{aligned} & \text { MAX4268 } \\ & \text { MAX4269 } \\ & \text { MAX4270 } \end{aligned}$			
$8 \mu \mathrm{MAX} / \mathrm{SO}$	14 SO	16 QSOP		
1	-	-	$\overline{\text { DISABLE }}$	Disable Input. Active low.
-	4, 5	4, 5	$\overline{\text { DISABLEA, }}$ DISABLEB	Disable Input. Active low.
2	-	-	IN -	Inverting Input
-	2, 9	2, 11	INA-, INB-	Inverting Input
3	-	-	$\mathrm{IN}+$	Noninverting Input
-	3, 10	3, 12	INA+, INB+	Noninverting Input
4, 5	6, 7	6, 7	VEE	Negative Power Supply
6	-	-	OUT	Amplifier Output
-	1, 8	1, 10	OUTA, OUTB	Amplifier Output
7, 8	13, 14	15, 16	VCC	Positive Power Supply. Connect to a +4.5 V to +8.0 V supply.
-	11, 12	8, 9, 13, 14	N.C.	No Connection. Not internally connected.

Detailed Description

The MAX4265-MAX4270 family of operational amplifiers features ultra-low distortion and wide bandwidth. Their low distortion and low noise make them ideal for driving high-speed ADCs up to 16 bits in telecommunications applications and high-performance signal processing.
These devices can drive a 100Ω load and deliver 45 mA while maintaining DC accuracy and AC performance. The input common-mode voltage ranges from (VEE + 1.6 V) to (VCC - 1.6 V), while the output typically swings to within 1.1 V of the rails.

Low Distortion

The MAX4265-MAX4270 use proprietary bipolar technology to achieve minimum distortion in low-voltage systems. This feature is typically available only in dualsupply op amps.
Several factors can affect the noise and distortion that a device contributes to the input signal. The following guidelines explain how various design choices impact the total harmonic distortion (THD):

- Choose the proper feedback-resistor and gain-resistor values for the application. In general, the smaller the closed-loop gain, the smaller the THD generated, especially when driving heavy resistive loads. Largevalue feedback resistors can significantly improve distortion. The MAX4265-MAX4270's THD normally increases at approximately 20 dB per decade at frequencies above 1 MHz ; this is a lower rate than that of comparable dual-supply op amps.
- Operating the device near or above the full-power bandwidth significantly degrades distortion (see the Total Harmonic Distortion vs. Frequency graph in the Typical Operating Characteristics).
- The decompensated devices (MAX4266/MAX4267/ MAX4269/MAX4270) deliver the best distortion performance since they have a slightly higher slew rate and provide a higher amount of loop gain for a given closed-loop gain setting.

Ultra-Low-Distortion, +5V, 400MHz Op Amps with Disable

Choosing Resistor Values

Unity-Gain Configurations

The MAX4265 and MAX4268 are internally compensated for unity gain. When configured for unity gain, they require a small resistor (RF_{F}) in series with the feedback path (Figure 1). This resistor improves AC response by reducing the Q of the tank circuit, which is formed by parasitic feedback inductance and capacitance.

Inverting and Noninverting Configurations

 The values of the gain-setting feedback and input resistors are important design considerations. Large resistor values will increase voltage noise and interact with the amplifier's input and PC board capacitance to generate undesirable poles and zeros, which can decrease bandwidth or cause oscillations. For example, a noninverting gain of $+2 \mathrm{~V} / \mathrm{V}$ (Figure 1) using $\mathrm{R}_{\mathrm{F}}=\mathrm{R}_{\mathrm{G}}=1 \mathrm{k} \Omega$ combined with 2 pF of input capacitance and 0.5 pF of board capacitance will cause a feedback pole at 128 MHz . If this pole is within the anticipated amplifier bandwidth, it will jeopardize stability. Reducing the $1 \mathrm{k} \Omega$ resistors to 100Ω extends the pole frequency to 1.28 GHz , but could limit output swing by adding 200Ω in parallel with the amplifier's load. Clearly, the selection of resistor values must be tailored to the specific application.
Distortion Considerations

The MAX4265-MAX4270 are ultra-low-distortion, highbandwidth op amps. Output distortion will degrade as the total load resistance seen by the amplifier decreases. To minimize distortion, keep the input and gain-setting resistor values relatively large. A 500Ω feedback resistor combined with an appropriate input resistor to set the gain will provide excellent AC performance without significantly increasing distortion.

Noise Considerations

The amplifier's input-referred noise-voltage density is dominated by flicker noise at lower frequencies and by thermal noise at higher frequencies. Because the thermal noise contribution is affected by the parallel combination of the feedback resistive network, those resistor values should be reduced in cases where the system bandwidth is large and thermal noise is dominant. This noise-contribution factor decreases, however, with increasing gain settings. For example, the input noise voltage density at the op amp input with a gain of $+10 \mathrm{~V} / \mathrm{V}$ using $\mathrm{RF}_{\mathrm{F}}=100 \mathrm{k} \Omega$ and $\mathrm{R}_{\mathrm{G}}=11 \mathrm{k} \Omega$ is $e_{\mathrm{n}}=$ $18 \mathrm{nV} / \sqrt{\mathrm{Hz}}$. The input noise can be reduced to $8 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ by choosing $\mathrm{RF}_{\mathrm{F}}=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{G}}=110 \Omega$.

Driving Capacitive Loads

The MAX4265-MAX4270 are not designed to drive highly reactive loads. Stability is maintained with loads up to 15 pF with less than 2 dB peaking in the frequency response. To drive higher capacitive loads, place a small isolation resistor in series between the amplifier's output and the capacitive load (Figure 1). This resistor improves the amplifier's phase margin by isolating the capacitor from the op amp's output.
To ensure a load capacitance that limits peaking to less than 2 dB , select a resistance value from Figure 2. For example, if the capacitive load is 100 pF , the corresponding isolation resistor is 6Ω (MAX4266/MAX4269). Figures 3 and 4 show the peaking that occurs in the frequency response with and without an isolation resistor.
Coaxial cable and other transmission lines are easily driven when terminated at both ends with their characteristic impedance. When driving back-terminated transmission lines, the capacitive load of the transmission line is essentially eliminated.

ADC Input Buffer

Input buffer amplifiers can be a source of significant errors in high-speed ADC applications. The input buffer is usually required to rapidly charge and discharge the ADC's input, which is often capacitive (see Driving Capacitive Loads). In addition, since a high-speed ADC's input impedance often changes very rapidly dur-
ing the conversion cycle, measurement accuracy must
*OPTIONAL, USED TO MINIMIZE PEAKING FOR CL> 15pF
Figure 1. Noninverting Configuration

Ultra-Low-Distortion, +5V, 400MHz Op Amps with Disable

be maintained using an amplifier with very low output impedance at high frequencies. The combination of high speed, fast slew rate, low noise, and a low and stable distortion overload makes the MAX4265MAX4270 ideally suited for use as buffer amplifiers in high-speed ADC applications.

Low-Power Disable Mode The MAX4265-MAX4270 feature an active-low disable mode that can be used to save power and place the outputs in a high-impedance state. Drive DISABLE_ with logic levels, or connect DISABLE_ to VCC for normal operation. In the dual versions (MAX4268/ MAX4269/ MAX4270), each individual op amp is disabled separately, allowing the devices to be used in a multiplex configuration. The supply current in low-power mode is reduced to 1.6 mA per amplifier. Enable time is typically 100ns, and disable time is typically $750 \mu \mathrm{~s}$.

Figure 3a. MAX4268 Small-Signal Gain vs. Frequency Without Isolation Resistor

Figure 3c. MAX4270 Small-Signal Gain vs. Frequency Without Isolation Resistor

Figure 2. MAX4265-MAX4270 Isolation Resistance vs. Capacitive Load

Figure 3b. MAX4269 Small-Signal Gain vs. Frequency Without Isolation Resistor

Figure 4a. MAX4268 Small-Signal Gain vs. Frequency With Isolation Resistor

Ultra-Low-Distortion, +5V, 400MHz Op Amps with Disable

Figure 4b. MAX4269 Small-Signal Gain vs. Frequency With Isolation Resistor

Power Supplies, Bypassing, and Layout The MAX4265-MAX4270 operate from a single +4.5 V to +8.0 V supply or in a dual-supply configuration.
When operating with a single supply, connect the V_{EE} pins directly to the ground plane. Bypass $V_{C c}$ to ground with ceramic chip capacitors. Due to the MAX4265-MAX4270s' wide bandwidth, use a 1 nF capacitor in parallel with a $0.1 \mu \mathrm{~F}$ to $1 \mu \mathrm{~F}$ capacitor. If the device is located more than 10 cm from the power supply, adding a larger bulk capacitor will improve performance.
When operating with dual supplies, ensure that the total voltage across the device (VCC_{C} to V_{EE}) does not exceed +8 V . Therefore, supplies of $\pm 2.5 \mathrm{~V}, \pm 3.3 \mathrm{~V}$, and asymmetrical supplies are possible. For example, operation with $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{EE}}=-3 \mathrm{~V}$ provides sufficient voltage swing for the negative pulses found in video signals. When operating with dual supplies, the $V_{C C}$ pins and the VEE pins should be bypassed using the same guidelines stated in the paragraph above.

Figure 4c. MAX4270 Small-Signal Gain vs. Frequency With Isolation Resistor

Because the MAX4265-MAX4270 have high bandwidth, circuit layout becomes critical. A solid ground plane provides a low-inductance path for high-speed transient currents. Use multiple vias to the ground plane for each bypass capacitor. If V_{EE} is connected to ground, use multiple vias here, too. Avoid sharing ground vias with other signals to reduce crosstalk between circuit sections.
Avoid stray capacitance at the op amp's inverting inputs. Stray capacitance, in conjunction with the feedback resistance, forms an additional pole in the circuit's transfer function, with its associate phase shift. Minimizing the trace lengths connected to the inverting input helps minimize stray capacitance.

Chip Information
MAX4265/66/67 TRANSISTOR COUNT: 132
MAX4268/69/70 TRANSISTOR COUNT: 285
PROCESS: Bipolar

Ultra-Low-Distortion, +5V, 400MHz Op Amps with Disable

TOP VIEW

Ultra-Low-Distortion, +5V, 400MHz Op Amps with Disable

Package Information

Ultra－Low－Distortion，＋5V， 400MHz Op Amps with Disable

	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.053	0.069	1.35	1.75
A1	0.004	0.010	0.10	0.25
B	0.014	0.019	0.35	0.49
C	0.007	0.010	0.19	0.25
e	0.050		1.27	
E	0.150	0.157	3.80	4.00
H	0.228	0.244	5.80	6.20
h	0.010	0.020	0.25	0.50
L	0.016	0.050	0.40	1.27

	INCHES			MILLIMETERS		
	MIN	MAX	MIN	MAX	N	MS012
D	0.189	0.197	4.80	5.00	8	A
D	0.337	0.344	8.55	8.75	14	B
D	0.386	0.394	9.80	10.00	16	C

NDTES：
1．D\＆E DI NUT INCLUDE MULD FLASH
2．MULD FLASH OR PRUTRUSIDNS NUT
TV EXCEED .15 mm （．006＂）
3．LEADS TI BE CIPLANAR WITHIN
102 mm （．004＂）
4．CZNTRULLING DIMENSIDN：MILLIMETER
5．MEETS JEDEC MSO12－XX AS SHOWN
IN ABCVE TABLE
6．$N=$ NUMBER DF PINS

Ultra-Low-Distortion, +5V, 400MHz Op Amps with Disable

Package Information (continued)

