19-1717: Rev 2: 5/03 # # Fast, Low-Voltage, 4Ω , 4-Channel CMOS Analog Multiplexer ## **General Description** The MAX4634 fast, low-voltage, 4-channel CMOS analog multiplexer features 4Ω (max) on-resistance (RON). It offers R_{ON} matching between switches to 0.3Ω (max) and RON flatness of 1Ω (max) over the specified signal range. Each switch can handle V+ to GND analog signals. Off-leakage current is only 0.1nA (max) at +25°C. The MAX4634 features fast turn-on (ton) and turn-off (toff) times of 18ns and 11ns, respectively. All this comes in the tiny 10-pin µMAX and 10-pin, 3mm x 3mm, thin QFN packages. This low-voltage multiplexer operates from a +1.8V to +5.5V single supply. All digital inputs have +0.8V and +2.4V logic thresholds, ensuring TTL/CMOS-logic compatibility with +5V operation. # **Applications** Battery-Operated Equipment Audio and Video Signal Routing Low-Voltage Data-Acquisition Systems Sample-and-Hold Circuits Communications Circuits ## Features - ♦ Guaranteed RON 2.5 Ω (typ) with 5V Supply 4.5 Ω (typ) with 3V Supply - ♦ 0.3Ω (max) Guaranteed Ron Match Between Channels - ♦ 1Ω (max) Guaranteed Ron Flatness Over Signal Range - ♦ 0.1nA (at +25°C) Guaranteed Low Leakage **Currents** - ♦ +1.8V to +5.5V Single-Supply Operation - ♦ +1.8V Operation $R_{ON} = 30\Omega$ (typ) Over Temperature ton = 30ns (typ), toff = 13ns (typ) - V+ to GND Signal Handling - ◆ TTL/CMOS-Logic Compatible - -78dB Crosstalk (at 1MHz) - -80dB Off-Isolation (at 1MHz) - 0.018% Total Harmonic Distortion # **Ordering Information** | PART | TEMP RANGE | PIN-PACKAGE | TOP
MARK | |------------|----------------|----------------------------|-------------| | MAX4634EUB | -40°C to +85°C | 10 μMAX | _ | | MAX4634ETB | -40°C to +85°C | 10 Thin QFN
(3mm x 3mm) | AAU | # Pin Configuration/Functional Diagram/Truth Table MAXIM | | A1 | A0 | EN | ON SWITCH | |---|---------|---------|----|-----------| | 5 | Х | Х | 0 | NONE | | | 0 | 0 | 1 | 1 | | | 0 | 1 | 1 | 2 | | | 1 | 0 | 1 | 3 | | | 1 | 1 | 1 | 4 | | | - X = Γ | ON'T CA | RF | | Maxim Integrated Products 1 #### **ABSOLUTE MAXIMUM RATINGS** | (Voltages referenced to GND) | | |---------------------------------------|-------------| | V+ | 0.3V to +6V | | A_, EN, COM, NO_ (Note 1) | | | Continuous Current (all other pins) | ±20mA | | Continuous Current (COM, NO_) | ±50mA | | Peak Current (COM, NO_ pulsed at 1ms, | | | 10% duty cycle) | ±100mA | | | | | Continuous Power Dissipation (T _A = | +70°C) | |--|------------------| | 10-Pin µMAX (derate 4.1mW/°C a | bove +70°C)330mW | | 10-Pin Thin QFN (derate 24.4mW) | /°C | | above +70°C) | 1951mW | | Operating Temperature Range | | | MAX4634EUB | 40°C to +85°C | | Storage Temperature Range | | | Lead Temperature (soldering, 10s) . | +300°C | Note 1: Signals on NO_, COM, EN, or A_ exceeding V+ or GND are clamped by internal diodes. Limit forward diode current to maximum current rating. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. #### **ELECTRICAL CHARACTERISTICS—Single +5V Supply** $(V+=+4.5V \text{ to } +5.5V, V_{IH}=2.4V, V_{IL}=0.8V, T_A=-40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at V+ = +5V, T_A=+25^{\circ}\text{C}.) (Notes 2, 9) | PARAMETER | SYMBOL | CON | MIN | TYP | MAX | UNITS | | | |------------------------------------|---|--|------------------------|-------|-------|-------|-------|--| | ANALOG SWITCH | 1 | | | | | | | | | Analog Signal Range | V _{COM} ,
V _{NO} _ | | | 0 | | V+ | V | | | On Desistance | D | V+ = 4.5V, | T _A = +25°C | | 2.5 | 4 | 0 | | | On-Resistance | RON | $I_{COM} = 10 \text{mA},$
$V_{NO} = 0 \text{ to V} +$ | TA = TMIN to TMAX | | | 4.5 | Ω | | | On-Resistance Match | 40 | V+ = 4.5V, | T _A = +25°C | | 0.1 | 0.3 | | | | Between Channels (Notes 3, 8) | ΔRon | $I_{COM} = 10 \text{mA},$
$V_{NO} = 0 \text{ to V} +$ | TA = TMIN to TMAX | | | 0.4 | Ω | | | On-Resistance Flatness
(Note 4) | D=: +=(0.1) | V+ = 4.5V, | T _A = +25°C | | 0.75 | 1 | Ω | | | | RFLAT(ON) | $I_{COM} = 10 \text{mA},$
$V_{NO} = 0 \text{ to V} +$ | TA = TMIN to TMAX | | | 1.2 | | | | NO Off-Leakage | INO_(OFF) | V+ = 5.5V;
VCOM = 1V, 4.5V;
VNO_ = 4.5V, 1V | T _A = +25°C | -0.1 | ±0.01 | 0.1 | nA | | | Current (Note 5) | | | TA = TMIN to TMAX | -0.3 | | 0.3 | | | | COM Off-Leakage Current | leer vees | V+ = 5.5V;
V _{COM} = 1V, 4.5V;
V _{NO} = 4.5V, 1V | T _A = +25°C | -0.1 | ±0.01 | 0.1 | nA | | | (Note 5) | ICOM(OFF) | | TA = TMIN to TMAX | -0.65 | | 0.65 | I IIA | | | COM On-Leakage Current | loomon | V+ = 5.5V;
V _{COM} = 1V, 4.5V; | T _A = +25°C | -0.1 | ±0.01 | 0.1 | 20 | | | (Note 5) | ICOM(ON) | V_{NO} = 1V, 4.5V, or floating | TA = TMIN to TMAX | -0.65 | | 0.65 | - nA | | | DIGITAL I/O (A_, EN) | | 1 | ' | -1 | | | 1 | | | Input Logic High | VIH | | | 2.4 | | | V | | | Input Logic Low | VIL | | | | | 0.8 | V | | | Input Logic Current | | | | -100 | 5 | 100 | nA | | # **ELECTRICAL CHARACTERISTICS—Single +5V Supply (continued)** $(V+=+4.5V \text{ to } +5.5V, V_{IH}=2.4V, V_{IL}=0.8V, T_A=-40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $V+=+5V, T_A=+25^{\circ}\text{C}.)$ (Notes 2, 9) | PARAMETER | SYMBOL | COND | MIN | TYP | MAX | UNITS | | | |------------------------------------|------------------|---|------------------------------|-----|-------|-------|-----|--| | DYNAMIC | 1 | | | 1 | | | | | | Turn-On Time (Note 5) | ton | $V_{NO} = 3V$,
$R_{I} = 300\Omega$, | T _A = +25°C | | 14 | 18 | ns | | | Tam on time (Note o) | TON | $C_L = 35pF$, Figure 2 | TA = TMIN to TMAX | | | 20 | 113 | | | Turn-Off Time (Note 5) | toff | $V_{NO} = 3V$,
$R_{L} = 300\Omega$, | T _A = +25°C | | 6 | 11 | ns | | | rum-on time (Note 3) | I TOFF | $C_L = 35pF$, Figure 2 | $T_A = T_{MIN}$ to T_{MAX} | | | 13 | 113 | | | Break-Before-Make Time
(Note 5) | tbbm | $V_{NO_{-}} = 3V,$ $R_{1} = 300\Omega.$ | T _A = +25°C | | 8 | | ns | | | | IBBINI | $C_L = 35pF$, Figure 3 | $T_A = T_{MIN}$ to T_{MAX} | 1 | | | | | | Charge Injection | Q | V _{GEN} = 2V, R _{GEN} = 0, C _L = 5pF, Figure 4 | | | 2 | | рС | | | Off-Isolation (Note 6) | V _{ISO} | $C_L = 5pF$, $R_L = 50\Omega$, | f = 10MHz | | -57 | dB | | | | On isolation (Note 0) | V150 | Figure 5 | f = 1MHz | | -80 | | ab | | | Crosstalk (Note 7) | VCT | $C_L = 5pF$, $R_L = 50\Omega$, | f = 10MHz | | -52 | | dB | | | Crossiaik (Note 1) | VCI | Figure 5 | f = 1MHz | | -78 | | ub | | | NO_ Off-Capacitance | CNO_(OFF) | Figure 6 | | | 13 | | pF | | | COM Off-Capacitance | CCOM(OFF) | Figure 6 | | | 52 | | рF | | | COM On-Capacitance | CCOM(ON) | C _L = 5pF, Figure 6 | | | 68 | | рF | | | Total Harmonic Distortion | THD | $R_L = 600\Omega$, $f = 20$ Hz to 20 kHz | | | 0.018 | | % | | | POWER SUPPLY | • | | | | | | • | | | Power-Supply Range | V+ | | | 1.8 | | 5.5 | V | | | Positive Supply Current | I+ | $V+ = 5.5V, V_{IH} = V+, V_{IH}$ | /IL = 0 | | 0.001 | 1.0 | μΑ | | # **ELECTRICAL CHARACTERISTICS—Single +3V Supply** $(V+=+2.7V \text{ to } +3.3V, V_{IH}=2.0V, V_{IL}=0.4V, T_A=-40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $V+=+3V, T_A=+25^{\circ}\text{C}.)$ (Notes 2, 9) | PARAMETER | SYMBOL | COND | MIN | TYP | MAX | UNITS | | | |--------------------------------------|---|--|------------------------|-----|-----|-------|-----|--| | ANALOG SWITCH | • | | | | | | | | | Analog Signal Range | V _{COM_} ,
V _{NO_} | | | 0 | | V+ | V | | | On-Resistance | Pou | V+ = 2.7V,
ICOM = 10mA,
VNO_ = 0 to V+ | T _A = +25°C | | 4.5 | 7 Ω | | | | | HOM | | TA = TMIN to TMAX | | | 8 | _ \ | | | On-Resistance Match Between Channels | ΔRon | V+ = 2.7V,
I _{COM} = 10mA, | T _A = +25°C | | 0.1 | 0.3 | Ω | | | (Notes 3, 8) | ΔιιΟΝ | $V_{NO} = 0$ to V+ | TA = TMIN to TMAX | | | 0.4 | | | # **ELECTRICAL CHARACTERISTICS—Single +3V Supply (continued)** $(V+=+2.7V \text{ to } +3.3V, V_{IH}=2.0V, V_{IL}=0.4V, T_A=-40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $V+=+3V, T_A=+25^{\circ}\text{C}.)$ (Notes 2, 9) | PARAMETER | SYMBOL | CONDITIONS | | MIN | TYP | MAX | UNITS | | |-------------------------|------------------|--|---|-------|-------|------|-------|--| | On-Resistance Flatness | RFLAT(ON) | V+ = 2.7V,
I _{COM} = 10mA, | T _A = +25°C | | 1.2 | 2.5 | Ω | | | (Note 4) | TIFLAT(ON) | $V_{NO} = 0$ to V_{+} | $T_A = T_{MIN}$ to T_{MAX} | | | 3 | 32 | | | NO_ Off-Leakage Current | | V+ = 3.3V;
$V_{COM} = 1V, 3V;$ | T _A = +25°C | -0.1 | ±0.01 | 0.1 | nA | | | (Note 5) | INO_(OFF) | V _{NO} = 3V, 1V | TA = TMIN to TMAX | -0.3 | | 0.3 | 11/4 | | | COM Off-Leakage Current | ICOM (OFF) | V+ = 3.3V;
VCOM = 1V, 3V; | T _A = +25°C | -0.1 | ±0.01 | 0.1 | nA | | | (Note 5) | ICOM_(OFF) | $V_{NO} = 3V, 1V$ | $T_A = T_{MIN}$ to T_{MAX} | -0.65 | | 0.65 | | | | COM On-Leakage Current | 1 | V+ = 3.3V;
$V_{COM} = 1V, 3V;$ | T _A = +25°C | -0.1 | ±0.01 | 0.1 | ^ | | | (Note 5) | ICOM_(ON) | V _{NO} __ = 1V, 3V, or floating | $T_A = T_{MIN}$ to T_{MAX} | -0.65 | | 0.65 | - nA | | | DIGITAL I/O (A_, EN) | | | | | | | | | | Input High | VIH | | | 2.0 | | | V | | | Input Low | VIL | | | | | 0.4 | V | | | Input Logic Current | | | | -100 | 5 | 100 | nA | | | DYNAMIC | · | | | | | | | | | Turn-On Time (Note 5) | | V_{NO} = 2V,
C_L = 35pF,
R_L = 300 Ω , Figure 2 | T _A = +25°C | | 16 | 22 | ns | | | rum-on time (Note 3) | TON | | TA = TMIN to TMAX | | | 24 | 1110 | | | Turn-Off Time (Note 5) | toff | V _{NO} _ = 2V,
C _L = 35pF, | T _A = +25°C | | 8 | 14 | ns | | | rum-on time (Note 5) | TOFF | $R_L = 300\Omega$, Figure 2 | TA = T _{MIN} to T _{MAX} | | | 16 | 1 115 | | | Break-Before-Make Time | t _{BBM} | V _{NO} _ = 2V,
C _L = 35pF, | T _A = +25°C | | 9 | | ne | | | (Note 5) | rBBM | $R_L = 300\Omega$, Figure 3 | $T_A = T_{MIN}$ to T_{MAX} | 1 | | | - ns | | | Charge Injection | Q | V _{GEN} = 1.5V, R _{GEN} = 0 | V _{GEN} = 1.5V, R _{GEN} = 0, C _L = 5pF, Figure 4 | | 2 | | рС | | | Off-Isolation (Note 6) | V _{ISO} | $C_L = 5pF, R_L = 50\Omega,$ | f = 10MHz | | -57 | | dB | | | On Isolation (Note of | V15U | Figure 5 | f = 1MHz | | -80 | | _ ub | | | Crosstalk (Note 7) | Vст | $C_L = 5pF, R_L = 50\Omega,$ | f = 10MHz | | -52 | | dB | | | Grossian (Note 1) | ٧٥١ | Figure 5 | f = 1MHz | | -78 | | | | ## **ELECTRICAL CHARACTERISTICS—Single +3V Supply (continued)** $(V+=+2.7V \text{ to } +3.3V, V_{IH}=2.0V, V_{IL}=0.4V, T_A=-40^{\circ}C \text{ to } +85^{\circ}C, \text{ unless otherwise noted.}$ Typical values are at $V+=+3V, T_A=+25^{\circ}C.)$ (Note 2) | PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS | | |---------------------------|-----------------------|--|-----|-------|-----|-------|--| | NO_ Off-Capacitance | C _{NO_(OFF)} | V _{NO} _ = GND, f = 1MHz, Figure 6 | | 13 | | pF | | | COM Off-Capacitance | CCOM(OFF) | V _{COM} = GND, f = 1MHz, Figure 6 | | 52 | | pF | | | COM On-Capacitance | C _(ON) | V _{COM} = V _{NO} = GND, f = 1MHz, Figure 6 | | 68 | | pF | | | Total Harmonic Distortion | THD | $R_L = 600\Omega$, $f = 20Hz$ to $20kHz$ | | 0.018 | | % | | | POWER SUPPLY | POWER SUPPLY | | | | | | | | Positive Supply Current | l+ | $V+ = 3.3V$, $V_{IH} = V+$, $V_{IL} = 0$ | | 0.001 | 1 | μΑ | | - Note 2: The algebraic convention, where the most negative value is a minimum and the most positive value a maximum, is used in this data sheet. - **Note 3:** $\Delta R_{ON} = R_{ON(MAX)} R_{ON(MIN)}$. - **Note 4:** Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges. - Note 5: Guaranteed by design. - **Note 6:** Off-Isolation = $20\log_{10} (V_{COM} / V_{NO})$, where $V_{COM} = 0$ output and $V_{NO} = 0$ input to off switch. - Note 7: Between any two switches. - **Note 8:** RoN and Δ RoN matching specifications for QFN-packaged parts are guaranteed by design. - Note 9: Thin QFN parts are tested at +25°C and guaranteed by design and correlation over the entire temperature range. # Typical Operating Characteristics $(T_A = +25^{\circ}C, unless otherwise noted.)$ # Typical Operating Characteristics (continued) $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$ # LOGIC-LEVEL THRESHOLD vs. SUPPLY VOLTAGE ### FREQUENCY RESPONSE ## **Pin Description** | PIN | | | | | |-------------------|------|-------------------------------|--|--| | μMAX/
THIN QFN | NAME | FUNCTION | | | | 1 | A0 | Address Input | | | | 2 | NO1 | Normally Open Switch 1 | | | | 3 | GND | Ground | | | | 4 | NO3 | Normally Open Switch 3 | | | | 5 | EN | Enable Logic Input | | | | 6 | V+ | Positive Supply Voltage | | | | 7 | NO4 | Normally Open Switch 4 | | | | 8 | COM | Analog Switch Common Terminal | | | | 9 | NO2 | Normally Open Switch 2 | | | | 10 | A1 | Address Input | | | Figure 1. Overvoltage Protection Using External Blocking Diodes ## **Detailed Description** The MAX4634 is a low-on-resistance, low-voltage analog multiplexer that operates from a +1.8V to +5.5V single supply. CMOS switch construction allows processing of analog signals that are within the supply voltage range (GND to V+). To disable all switch channels, drive EN low. All four inputs and COM become high impedance during this state. If the disable feature is not needed, connect EN to V+. # Applications Information #### Power-Supply Sequencing and Overvoltage Protection Proper power-supply sequencing is recommended for all CMOS devices. Always apply V+ before applying analog signals or logic inputs, especially if the analog or logic signals are not current limited. If this sequencing is not possible, and if the analog or logic inputs are not current limited to < 20mA, add a small-signal diode (D1) as shown in Figure 1. If the analog signal can dip below GND, add D2. Adding protection diodes reduces the analog signal range to a diode drop (about 0.7V) below V+ for D1 or to a diode drop above ground for D2. The addition of diodes does not affect leakage. Onresistance increases by a small amount at low supply voltages. Maximum supply voltage (V+) must not exceed 6V. Protection diodes D1 and D2 also protect against some overvoltage situations. A fault voltage up to the absolute maximum rating at an analog signal input does not damage the device, even if the supply voltage is below the signal voltage. # **Test Circuits/Timing Diagrams** Figure 2. Switching Time Figure 3. Break-Before-Make Interval Figure 4. Charge Injection ## Test Circuits/Timing Diagrams (continued) Figure 5. Off-Isolation/On-Channel Bandwidth # CHANNEL SELECT AND COM COM COM F = 1MHz CHANNEL SELECT F = 1MHz Figure 6. Channel Off/On-Capacitance # Chip Information **TRANSISTOR COUNT: 231** ## **Package Information** (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages | SYMBOL | N DIMEN: | MAX | | | |--------|-----------|------|--|--| | A | 0.70 | 0.80 | | | | D | 2.90 | 3.10 | | | | Е | 2.90 | 3.10 | | | | A1 | 0.00 | 0.05 | | | | L | 0.20 | 0.40 | | | | k | 0.25 MIN. | | | | | A2 | 0.20 REF. | | | | | PACKAGE VARIATIONS | | | | | | | | | |--------------------|-------------|------------------------------------|---|---|--|--|--|--| | N | D2 | E2 | е | JEDEC SPEC | b | [(N/2)-1] x e | | | | 6 | 1.50±0.10 | 2.30±0.10 | 0.95 BSC | MO229 / WEEA | 0.40±0.05 | 1.90 REF | | | | 8 | 1.50±0.10 | 2.30±0.10 | 0.65 BSC | MO229 / WEEC | 0.30±0.05 | 1.95 REF | | | | 10 | 1.50±0.10 | 2.30±0.10 | 0.50 BSC | MO229 / WEED-3 | 0.25±0.05 | 2.00 REF | | | | | N
6
8 | N D2
6 1.50±0.10
8 1.50±0.10 | N D2 E2
6 1.50±0.10 2.30±0.10
8 1.50±0.10 2.30±0.10 | N D2 E2 e 6 1.50±0.10 2.30±0.10 0.95 BSC 8 1.50±0.10 2.30±0.10 0.65 BSC | N D2 E2 e JEDEC SPEC 6 1.50±0.10 2.30±0.10 0.95 BSC MO229 / WEEA 8 1.50±0.10 2.30±0.10 0.65 BSC MO229 / WEEC | N D2 E2 e JEDEC SPEC b 6 1.50±0.10 2.30±0.10 0.95 BSC MO229 / WEEA 0.40±0.05 8 1.50±0.10 2.30±0.10 0.65 BSC MO229 / WEEC 0.30±0.05 | | | - NOTES: 1. ALL DIMENSIONS ARE IN mm. ANGLES IN DEGREES. 2. COPLANARITY SHALL NOT EXCEED 0.08 mm. 3. WARPAGE SHALL NOT EXCEED 0.10 mm. 4. PACKAGE LENGTH/PACKAGE WIDTH ARE CONSIDERED AS SPECIAL CHARACTERISTIC(S). 5. DRAWING CONFORMS TO JEDEC MO229, EXCEPT DIMENSIONS "D2" AND "E2". 6. "N" IS THE TOTAL NUMBER OF LEADS. ## Package Information (continued) (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**. Note: The MAX4634 package does not have an exposed pad. Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.