查询MAX1036EVKIT供应商

19-2583: Rev 0: 9/02

捷多邦,专业PCB打样工厂,24小时加急出货

MAX1036 Evaluation Kit

General Description

The MAX1036 evaluation kit (EV kit) is designed to evaluate the MAX1036. The MAX1036 is an 8-bit four-channel (two-differential-channel) ADC with a 2-wire serial interface. The MAX1036 EV kit board supports three standard 2-wire serial interface speeds: standard mode (S-Mode), fast mode (F-Mode), and high-speed mode (HS-Mode); however, the software provided with this EV kit only supports standard mode.

The provided Windows 95/98[®] software uses the parallel (printer) port of an IBM-compatible PC to emulate a processor with a 2-wire serial interface (S-Mode). The Windows software also provides a friendly graphical user interface (GUI) to exercise the features of the MAX1036 with control buttons and pulldown menus.

Order the MAX1036EVKIT for comprehensive evaluation of the MAX1036, using a PC with an available par-WWW.DZSG.C allel port.

- Proven PC Board Layout
- Windows 95/98 Evaluation Software
- 2-Wire Serial Interface
- Fully Assembled and Tested

Ordering Information

PART	TEMP RANGE	IC PACKAGE
MAX1036EVKIT	0°C to +70°C	8 SOT23

MAX1036 EV Kit Files

FILE	FUNCTION
INSTALL.EXE	Installs the EV kit files on your computer
MAX1036.EXE	Application program

Component List

DESIGNATION	QTY	DESCRIPTION
R5, R7	2	Open (1206) (not installed)
R6, R8, R9, R13	4	$47k\Omega \pm 5\%$ resistors (1206)
R10, R12, R14, R16	4	$100\Omega \pm 5\%$ resistors (1206)
R11, R15	2	4.7k Ω ±5% resistors (0603)
U1	1	MAX1036EKA (8-pin SOT23) Top mark: AAJE
U2	1	Logic inverter (14-pin SO), open drain 74HC05
None	1	PC board, MAX1036 EV kit
None	1	3.5in software disk, MAX1036 EV kit
None	1	MAX1036 data sheet

DESIGNATION	QTY	
C1–C4	4	0.22µF ±10%, 10V X7R ceramic capacitors (0603) TDK C1608X7R1A224KT
C5	1	100pF ±5%, 50V COG ceramic capacitor (0603) TDK C1608C0G1H101JT
C6, C7	2	0.1µF ±10%, 16V X7R ceramic capacitors (0603) TDK C1608X7R1C104KT
D1-D4	4	Zener diodes, Vz = 5.1V (3-pin SOT23) Diodes Inc. BZX84C5V1 Top mark KZ2/Z2
J1	1	Male DB25 right-angle plug
R1-R4	4	$14\Omega \pm 1\%$ resistors (0603)

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at

Component Suppliers

SUPPLIER	PHONE	WEBSITE
Diodes Inc.	805-446-4800	www.diodes.com
ТDК	847-803-6100	www.component.tdk.com

Note: Please indicate you are using the MAX1036 when contacting these component suppliers.

___Quick Start

Recommended Equipment

Before you begin, the following equipment is needed:

- MAX1036EVKIT
- A 5V DC power supply
- An IBM-compatible PC with Windows 95/98
- An available parallel port (DB25 female connector on back of PC)
- A standard 25-pin, straight-through, male-to-female cable to connect the computer's parallel port to the MAX1036 EV kit board

Procedure

- 1) Connect a cable from the computer's parallel port to the MAX1036 EV kit board. Use a 25-pin straightthrough, female-to-male cable.
- Install the MAX1036 EV kit software on your computer by running the INSTALL.EXE program on the floppy disk. The program files are copied and icons are created in the *Programs* section within the Start menu.
- 3) Connect a 5V DC power supply between the pads labeled +5 and GND on the MAX1036 EV kit board.
- Apply an analog input voltage (0 to V_{REF}) to the pad labeled AIN0 (with respect to the pad labeled GND) of the MAX1036 EV kit board.
- Start the MAX1036 EV kit program by double clicking its icon located in the **Programs** section within the **Start** menu.
- 6) The program automatically detects the MAX1036 EV kit board and displays 2-Wire Hardware Detected in a green font. The AINO label (main window) should automatically display the voltage applied to the pad labeled AINO on the MAX1036 EV kit board.

Detailed Description of <u>Software</u>

The evaluation software's main window (Figure 1) controls the **setup byte** and **config** byte. It also displays the voltage and output code of the input signal(s), depending on the configuration of the MAX1036.

Read ADC

The **Read ADC** button manually reads the MAX1036 while using the current setup and configuration byte settings. When the **AutoRead** checkbox is checked, the software automatically reads the MAX1036 approximately every 300ms. **AutoRead** allows users to modify the setup and configuration bytes on-the-fly without having to manually press the **Read ADC** button each time.

Setup Byte

The **Setup Byte** always begins with a start-bit value of 1. The **SEL2**, **SEL1**, and **SEL0** bits control the state of the reference. The **CLK** bit selects either internal clock or external clock mode. The **UNI/BIP** bit selects either unipolar or bipolar mode. Setting **RST** to zero resets the configuration register. The setup register remains unchanged. The **X Don't Care** bit can be ignored. Refer to the MAX1036 data sheet for more information on the **SEL2**, **SEL1**, and **SEL0** bits within the **Setup Byte**.

Configuration Byte

The **Config Byte** always begins with a start-bit value of zero. The **SCAN1** and **SCAN0** bits select the scanning mode. The **CS1** and **CS0** bits select one of the four analog input channels. The **CS2** and **CS3** bits are ignored. The **SE/DIFF** bit selects either single-ended or differential mode. Refer to the MAX1036 data sheet for more information on the **SCAN1**, **SCAN0**, **CS3**, **CS2**, **CS1**, and **CS0** bits within the **Config Byte**.

Reference Voltage

The evaluation software assumes a 4.096V reference voltage, unless otherwise specified. To override the internal 4.096V reference value, ensure bit **SEL2** equals

zero and bit **SEL1** equals 1 within the **Setup Byte**. Then, apply the new reference voltage at the VREF pad on the board, type in the new reference voltage, without the volt unit, and press the **Set Vref** button. The EV kit software uses the value typed in the Vref field to translate the digital code to a voltage.

Keyboard Navigation

When you type on the keyboard, the system must know which control should receive the keystrokes. Press the **TAB** key to move the keyboard's focus from one control to the next. The focused control is indicated by a dotted outline. **SHIFT+TAB** moves the focus to the previously focused control. Buttons respond to the keyboard's **SPACE** bar. Some controls respond to the keyboard's **UP** and **DOWN** arrow keys. Activate the program's menu bar by pressing the **F10** key, then press the letter of the menu item you want. Most menu items have one letter underlined, indicating their shortcut key.

Detailed Description of Hardware

The MAX1036 is a four-channel (two-differential-channel) 8-bit ADC with a 2-wire serial interface. The open-collector inverter (U2) interfaces the PC parallel port to the 2-wire serial interface. U2 and the associated circuitry are only required when interfacing to the parallel port. Power the MAX1036 EV kit from a 5V DC power supply.

User-Supplied 2-Wire Interface

The MAX1036 EV kit provides a proven PC board layout and software to evaluate the features of the MAX1036. The Windows software only supports a 2-wire serial interface in S-Mode. To evaluate the MAX1036 with a usersupplied 2-wire serial interface in F-Mode or HS-Mode, do the following:

- 1) Disconnect the MAX1036 EV kit from the PC parallel port.
- Install 3kΩ resistors at locations R5 and R7. (This resistor value may require optimization for each system.)
- Connect the 2-wire bus to the SDA, SCL, and GND pads.
- Refer to the MAX 1036 data sheet to ensure all timing specifications are met.

2-wire Hardware Detected Setup Byte: 0xD2 10 SEL2 SEL1 ▼1 SEL0 ▼ 0 CLK ▼ 0 UNI ▼ 1 normal ▼ × Don't Ca Config Byte:0x01 0 00 SCAN1 SCAN0 ▼ 0000 CS3 CS2 CS1 CS0 ▼ 1 SE Read ADC * ▼ AutoRead	Action	<u>D</u> ebug		otod						
Read ADC * AutoRead	Setup Byte:	:0xD2 .2 SEL1		 	0 UNI	•	1 nor	mal 💌	XDo	n't Ca
	0 00 SCA	N1 SCANO		1				•	1 SE	
AINO 1.0080 V 63 Reset Set Vref	Input AIN0		ge Code O∨63	-			[Vref]

Figure 1. MAX1036 Evaluation Software's Main Window

Evaluates: MAX1036

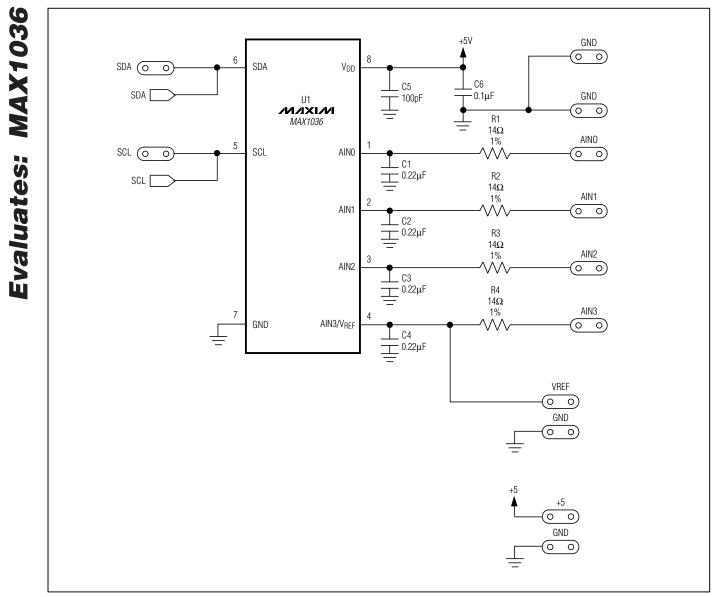


Figure 2. MAX1036 EV Kit Schematic (Sheet 1 of 2)

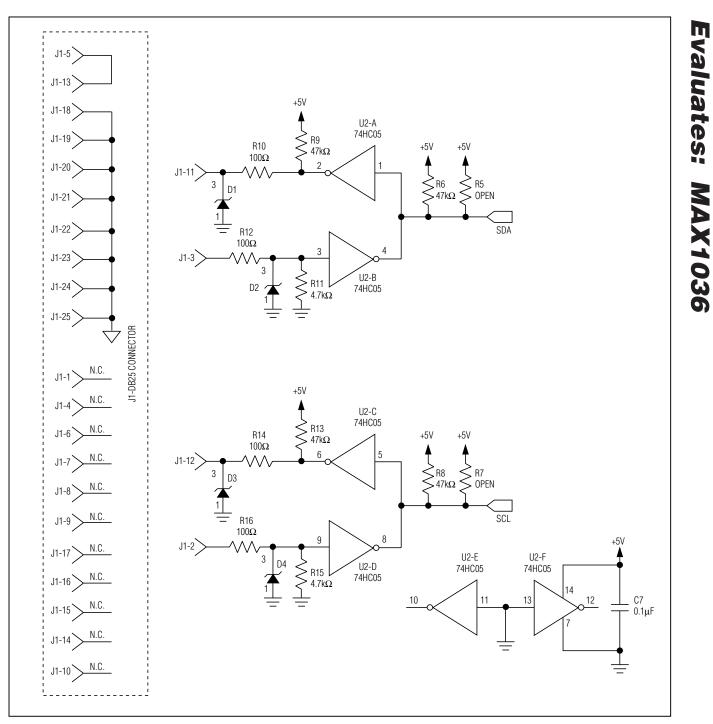
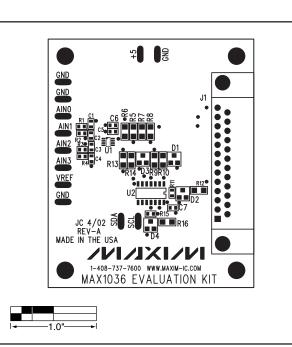



Figure 2. MAX1036 EV Kit Schematic (Sheet 2 of 2)

M/X/W

6

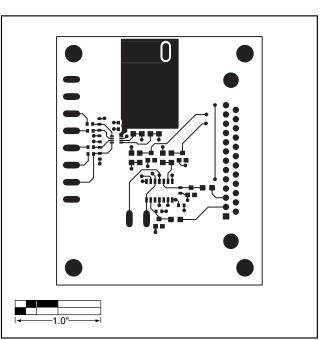


Figure 3. MAX1036 EV Kit Component Placement Guide— Component Side

Figure 4. MAX1036 EV Kit PC Board Layout-Component Side

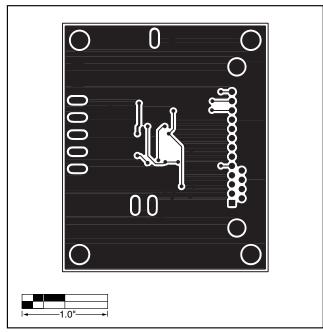


Figure 5. MAX1036 EV Kit PC Board Layout—Solder Side

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

_____Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600