

DS31256DK 256-Channel, High-Throughput HDLC Controller Demonstration Kit

www.maxim-ic.com

GENERAL DESCRIPTION

The DS31256DK is a demonstration and evaluation kit for the DS31256 Envoy 256-channel, high-throughput HDLC controller. The DS31256DK board is a PCI-based platform that offers quick and easy evaluation of the DS31256 HDLC controller, low-cost prototyping, and rapid software development. The DS31256DK operates with a software suite that runs under Microsoft Windows[®]95/98/NT. The PC platform must be at least a 200MHz+ Pentium II class CPU with 32MB of RAM.

Windows is a registered trademark of Microsoft Corp.

ORDERING INFORMATION

PART	DESCRIPTION
DS31256	Demonstration Kit

FEATURES

- Headers Provide Access to Clock, Sync, and Data for 16 Physical Ports
- Full Source Code
- Windows/Windows NT GUI for Device Configuration and Evaluation
- Programmable PLD for Port Connectivity and Clock Generation
- Local Bus Header for Control and Configuration of External Devices
- Hardware Prototyping Area

DEMO KIT CONTENTS

CD-ROM Includes: HDLC Application Notes DS31256DK Data Sheet/Manual Installation Guide DS31256 Data Sheet Executable Evaluation Application Source Code for Driver and GUI Application

TABLE OF CONTENTS

1.	GEN		. 3
2.	SOF1	TWARE	10
2.1	ARC	CHITECTURE	10
2.2	Ιντι	RODUCTION TO CHAT	10
2.3	Сн	AT GUI	11
2	.3.1	Main GUI Interface—Configuration	11
2	.3.2	Show Results	17
2	.3.3	Memory Viewer	19
2	.3.4	DMA Configuration	20
2	.3.5	Register Access	21
2.4	Dri	IVER	22
3.	INST	ALLATION AND GETTING STARTED	23
3.1	CAF	RD INSTALLATION	23
3	.1.1	Windows 95 Systems	23
3	.1.2	Windows 98 Systems	23
3	.1.3	Windows NT Systems	24
3.2	Sor	FTWARE INSTALLATION	24
3.3	Орі	ERATIONAL TEST	24
4.	APPE	ENDIX A	25

LIST OF FIGURES

Figure 1-1. PCI Card Configuration	. 5
Figure 1-2. Port PLD Schematic	. 6
Figure 2-1. Software Architecture	10
Figure 2-2. Software Main GUI	11
Figure 2-3. Show Results GUI	17
Figure 2-4. Memory Viewer GUI	19
Figure 2-5. DMA Configuration GUI	20
Figure 2-6. Registers Access GUI	21
Figure 2-7. Low-Level API Source Block Relationships	22

LIST OF TABLES

Table 1-A. Header A Definition	. 7
Table 1-B. Header B Definition	. 8
Table 1-C. Header C Definition	. 9
Table 2-A. Low-Level API Source Block Contents	22

1. GENERAL OVERVIEW

The DS31256DK is a demonstration and evaluation kit for the DS31256 Envoy 256-channel, high-throughput HDLC controller. The DS31256DK is intended to be used in a full-size PC platform, complete with PCI. The DS31256DK operates with a software suite that runs under Microsoft Windows 95/98/NT. The PC platform must be at least a 200MHz+ Pentium II class CPU with 32MB of RAM. Figure 1-1 details an outline of the PCI board for the DS31256DK.

The DS31256DK was designed to be as simple as possible but offers the flexibility to be used in a number of different configurations. The DS31256DK has all the DS31256's port and local bus pins, which are easily accessible through headers on top of the card. A second DS31256DK can also be loaded into the PC in an adjacent PCI slot to add additional functions such as:

- Multiple T1/E1 framers
- T3 line interface
- HSSI interface
- V.35 interfaces

An Altera 9000 series PLD device is connected to all port pins on the DS31256. The PLD can be loaded with various configurations through a programming port (J4) that resides on the DS31256DK. This PLD generates clocks and frame syncs as well as routes data from one port to another in a daisy-chain fashion to allow testing the device under worst-case loading (Figure 1-2). Two oscillators provide the port timing.

The transmit side of a port is derived from one clock and the receive side from another, so that they can be asynchronous to one another. If the PLD is not needed, it can be tri-stated to remove it (electrically) from the board. Signals can then be sent to the DS31256 by the pin headers.

The board is intended to be a full-size PCI card that can only be plugged into a 5V PCI system environment. There is a 256-pin plastic BGA socket on the board for the DS31256.

Only the DS31256 operates at 3.3V. Since it cannot be guaranteed that a 3.3V supply exists in a 5V PCI system environment, the DS31256DK has a linear regulator on it (U4: LT1086) to convert from 5V to 3.3V. All of the other logic, including the PLD and oscillators, operate at 5V. If 3.3V exists on the PCI bus, the linear regulator can be removed and a 0Ω jumper can be installed at R97 (Figure 1-1).

The JTAG pins on the DS31256 are not active on the DS31256DK. Therefore, the JTCLK, JTDI, and JTMS signals are wired to 3.3V and JTRST is wired low.

Figure 1-2. Port PLD Schematic

Clock/Sync Definitions

SW7	SW3	SW2	SW1	MODE	SLOW PORT CLOCK
0	0	0	0	Unchannelized (sync = low)	OSC
0	0	0	1	4 T1/E1 (sync active)	OSC
0	0	1	0	2 T1/E1 (sync active)	OSC
0	0	1	1	E1 (sync active)	OSC
0	1	0	0	T1 (sync active)	OSC
1	0	0	0	Unchannelized (sync = low)	66MHz / 6 = 11MHz
1	0	0	1	4 T1/E1 (sync active)	66MHz / 8 = 8.25MHz
1	0	1	0	2 T1/E1 (sync active)	66MHz / 16 = 4.125MHz
1	0	1	1	E1 (sync active)	66MHz / 32 = 2.0625MHz
1	1	0	0	T1 (sync active)	66MHz / 42 = 1.572MHz
Х	1	0	1	Clock off (sync = low)	Clock driven low
Х	1	1	Х	Clock off (sync = low)	Clock driven low

Note 1: Switch Open = Off = High (1).

Note 2: Switch Closed = On = Low (0).

Note 3: OSC1 and OSC2 are recommended to be the same frequency.

Note 4: The frequency of OSC1 and OSC2 supplied with the DK board is 66MHz.

Table 1-A. Header A Definition

1	RS0	2	TS0
3	RD0	4	TD0
5	RC0	6	TC0
7	GND	8	GND
9	RS1	10	TS1
11	RD1	12	TD1
13	RC1	14	TC1
15	GND	16	GND
17	RS2	18	TS2
19	RD2	20	TD2
21	RC2	22	TC2
23	GND	24	GND
25	RS3	26	TS3
27	RD3	28	TD3
29	RC3	30	TC3
31	RS4	32	TS4
33	RD4	34	TD4
35	RC4	36	TC4
37	GND	38	GND
39	RS5	40	TS5
41	RD5	42	TD5
43	RC5	44	TC5
45	GND	46	GND
47	RS6	48	TS6
49	RD6	50	TD6
51	RC6	52	TC6
53	GND	54	GND
55	RS7	56	TS7
57	RD7	58	TD7
59	RC7	60	TC7

Table 1-B. Header B Definition

1	RS8	2	TS8
3	RD8	4	TD8
5	RC8	6	TC8
7	GND	8	GND
9	RS9	10	TS9
11	RD9	12	TD9
13	RC9	14	TC9
15	GND	16	GND
17	RS10	18	TS10
19	RD10	20	TD10
21	RC10	22	TC10
23	GND	24	GND
25	RS11	26	TS11
27	RD11	28	TD11
29	RC11	30	TC11
31	RS12	32	TS12
33	RD12	34	TD12
35	RC12	36	TC12
37	GND	38	GND
39	RS13	40	TS13
41	RD13	42	TD13
43	RC13	44	TC13
45	GND	46	GND
47	RS14	48	TS14
49	RD14	50	TD14
51	RC14	52	TC14
53	GND	54	GND
55	RS15	56	TS15
57	RD15	58	TD15
59	RC15	60	TC15

Table 1-C. Header C Definition

1		2	
2		Z 	
5		4	LD3
3 7		0	
/	GND	8	GND
9	LD6	10	LD7
11	LD8	12	LD9
13	LD10	14	LD11
15	GND	16	GND
17	LD12	18	LD13
19	LD14	20	LD15
21	LIM	22	LMS
23	GND	24	GND
25	LHOLD	26	LHLDA
27	LBGACK	28	LINT
29	LCS	30	LRDY
31	LCLK	32	LBHE
33	LWR	34	LRD
35	LA0	36	LA1
37	GND	38	GND
39	LA2	40	LA3
41	LA4	42	LA5
43	LA6	44	LA7
45	GND	46	GND
47	LA8	48	LA9
49	LA10	50	LA11
51	LA12	52	LA13
53	GND	54	GND
55	LA14	56	LA15
57	LA16	58	LA17
59	LA18	60	LA19

2. SOFTWARE

2.1 Architecture

The DS31256DK software consists of a high-level piece of reference software called "Chat" that sits on top of a driver. This driver itself is composed of two discrete layers. The upper layer of the driver consists of various blocks of C code that are specific to the DS31256. These blocks contain an assortment of portable functions designed to serve as a low-level API for the Envoy. At the bottom level of the driver is the commercially available WinDriver, which interfaces with the Windows operating system to the DS31256DK's PCI hardware.

Figure 2-1. Software Architecture

2.2 Introduction to Chat

The DS31256DK software (Chat program) runs under a PC loaded with a Windows 95/98/NT operating system using the DS31256DK PCI card. The software includes two parts—the GUI interface (Figure 2-2) and the driver code. It is developed by Visual C++ and using WinDriver to create the driver.

The software provides:

- a simple demonstration of the DS31256 with the ability to set the device into a number of different configurations
- software drivers for the DS31256
- the ability to explore and load new data into the Envoy registers
- a utility to dump the internal Envoy registers to a file and to load Envoy from a file
- user-configurable DMA parameters

The software does not implement all the functions available in the DS31256. The user controls the software through a main GUI interface, as shown in <u>Figure 2-2</u>. The software implements 16 ports, coupled with 16 independent bidirectional HDLC channels. However, if a field in the main GUI is shaded gray, the function is not available.

HDLC Channel Assignment Table

PORT NUMBER	HDLC CHANNEL NUMBER
0	1
1	2
:	:
15	16

When a test is run, the Envoy transmits data that is looped back to either the same port (if local loopback is used) or to an adjacent port (if the Altera PLD is used to loop the data). The software checks the receipt of packets to ensure they are received without error (i.e., the CRC is correct). For each HDLC channel that is enabled, the software also keeps track of the number of packets sent, number of packets received, number of packets received in error, and a variety of other statistics/counts.

2.3 Chat GUI

2.3.1 Main GUI Interface—Configuration

Figure 2-2. Software Main GUI

Port 1				Master Reset
🗖 On 🗖 LBK,🗖 56K. 🗖 BER'	r T1		1]to	Configure
_ Port 2				Start Test
🗖 On 🗖 LBK 🗖 56K 🗖 BER	г ј Т1	HDLC CH	+]to ▲	Stop Test
Port 3	-			Show Results
C On C LBK 56K BER	[][1]	HDLC CH	1]to [Read Packet Mer
Port 4				UpdateDMA
🗖 On 🗖 LBK 🗖 56K 🗖 BER	[T1	HDLC CH	l to	Register Access
CRC Settings		Select Mode	Ports & LBK	📕 Dump Files
C No CRC is Generated		DeSelect	C Select ALL	
16-Bit CRC		C Select ALL	C Clear ALL	
32-Bit CRC			ClearLBKOnly	
FIFO Block Assignment	Ge	n/Term Mode Settings		
Blocks Assigned 4		Packet Size		
High Water Mark 2		Packet Data	_	
Low Water Mark 2		Packet Count		
		T dokot Gount		
1256 Benisters at P 0×10(101000	V Oxd2ef8000		

 Port 1 On LBK BEFT 11 PHDLC CH to The 16 ports on the Envoy are handled through a set of 16 check boxes. To save space on the screen, only four ports at a time are displayed. The user can scroll through the port boxes to access all 16 ports. On The port number's box must be checked to be enabled. If this box is not checked, the software does not configure any of the RP[n]CR or TP[n]CR registers nor any of the R[n]CFG[j] and T[n]CFG[j] registers for that port. LEK If this box is checked, the software sets the LLB bit (bit 10) in the RP[n]CR register to 1, configuring the port in loopback mode. If this box is not checked, the software clears the LLB bit. Select the port mode from the drop-down box (same setting of the dip switch at the demo card): T1 24 DS0 channels and 193 RC clocks between RS sync signals E1 32 DS0 channels and 512 RC clocks between RS sync signals 8.192MHz 128 DS0 channels and 1024 RC clocks between RS sync signals 8.192MHz Unchannelized One HDLC channel and no RS sync signals (Ports 0–2 only), speeds up to 52MHz 	General Configurati	on
 The 16 ports on the Envoy are handled through a set of 16 check boxes. To save space on the screen, only four ports at a time are displayed. The user can scroll through the port boxes to access all 16 ports. In port number's box must be checked to be enabled. If this box is not checked, the software does not configure any of the RP[n]CR or TP[n]CR registers nor any of the R[n]CFG[j] and T[n]CFG[j] registers for that port. If this box is checked, the software sets the LLB bit (bit 10) in the RP[n]CR register to 1, configuring the port in loopback mode. If this box is not checked, the software clears the LLB bit. Select the port mode from the drop-down box (same setting of the dip switch at the demo card): T1 24 DS0 channels and 193 RC clocks between RS sync signals E1 32 DS0 channels and 256 RC clocks between RS sync signals 4.096MHz 64 DS0 channels and 1024 RC clocks between RS sync signals 8.192MHz Unchannelized One HDLC channel and no RS sync signals (Ports 0–2 only), speeds up to 52MHz 	Port 1	
 Dn The port number's box must be checked to be enabled. If this box is not checked, the software does not configure any of the RP[n]CR or TP[n]CR registers nor any of the R[n]CFG[j] and T[n]CFG[j] registers for that port. LBK If this box is checked, the software sets the LLB bit (bit 10) in the RP[n]CR register to 1, configuring the port in loopback mode. If this box is not checked, the software clears the LLB bit. Select the port mode from the drop-down box (same setting of the dip switch at the demo card): T1 24 DS0 channels and 193 RC clocks between RS sync signals E1 32 DS0 channels and 256 RC clocks between RS sync signals 8.192MHz 128 DS0 channels and 512 RC clocks between RS sync signals 0ne HDLC channel and no RS sync signals, speeds up to 10Mbps Unch-HiSpeed One HDLC high-speed channel and no RS sync signals (Ports 0–2 only), speeds up to 52MHz 	 The 16 ports on the four ports at a time and 	Envoy are handled through a set of 16 check boxes. To save space on the screen, only re displayed. The user can scroll through the port boxes to access all 16 ports.
 IBK If this box is checked, the software sets the LLB bit (bit 10) in the RP[n]CR register to 1, configuring the port in loopback mode. If this box is not checked, the software clears the LLB bit. Select the port mode from the drop-down box (same setting of the dip switch at the demo card): T1 24 DS0 channels and 193 RC clocks between RS sync signals E1 32 DS0 channels and 256 RC clocks between RS sync signals 4.096MHz 64 DS0 channels and 512 RC clocks between RS sync signals 8.192MHz 128 DS0 channels and 1024 RC clocks between RS sync signals Unchannelized One HDLC channel and no RS sync signals, speeds up to 10Mbps Unch-HiSpeed One HDLC high-speed channel and no RS sync signals (Ports 0–2 only), speeds up to 52MHz 	 On The port number's b configure any of the port. 	ox must be checked to be enabled. If this box is not checked, the software does not RP[n]CR or TP[n]CR registers nor any of the R[n]CFG[j] and T[n]CFG[j] registers for that
T1 Image: Select the port mode from the drop-down box (same setting of the dip switch at the demo card): T1 24 DS0 channels and 193 RC clocks between RS sync signals E1 32 DS0 channels and 256 RC clocks between RS sync signals 4.096MHz 64 DS0 channels and 512 RC clocks between RS sync signals 8.192MHz 128 DS0 channels and 1024 RC clocks between RS sync signals Unchannelized One HDLC channel and no RS sync signals, speeds up to 10Mbps Unch-HiSpeed One HDLC high-speed channel and no RS sync signals (Ports 0–2 only), speeds up to 52MHz	 LBK If this box is checked loopback mode. If this 	, the software sets the LLB bit (bit 10) in the RP[n]CR register to 1, configuring the port in s box is not checked, the software clears the LLB bit.
	• Select the port mode T1 E1 4.096MHz 8.192MHz Unchannelized Unch-HiSpeed	from the drop-down box (same setting of the dip switch at the demo card): 24 DS0 channels and 193 RC clocks between RS sync signals 32 DS0 channels and 256 RC clocks between RS sync signals 64 DS0 channels and 512 RC clocks between RS sync signals 128 DS0 channels and 1024 RC clocks between RS sync signals One HDLC channel and no RS sync signals, speeds up to 10Mbps One HDLC high-speed channel and no RS sync signals (Ports 0–2 only), speeds up to 52MHz

- If one of the channelized modes (T1/E1/4.096MHz/8.192MHz) is chosen, the software configures the RSS0/RSS1 (bits 6, 7) and TSS0/TSS1 (bits 6, 7) in the RP[n]CR and TP[n]CR registers, respectively.
- If one of the unchannelized modes (Unchannelized/Unch-HiSpeed) is selected, the software sets the RUEN bit (bit 9) and the TUEN bit (bit 9) in the RP[n]CR and TP[n]CR registers, respectively, to 1.
- If the Unch-HiSpd mode (Ports 0-2 only) is selected, the software sets the RP0HS/RP1HS bit (bit 8) and the TP0HS/TP1HS bit (bit 8) in the RP[n]CR and TP[n]CR registers, respectively, to 1.

HDLC CH to

- The user can select from number 1 to 256 which HDLC channels are assigned to each port. If the user assigns • the same HDLC channel to more than one port or inputs an invalid number, or the user assigns more than one HDLC channel to one port when one of the unchannelized modes (Unchannelized/Unch-HiSpeed) is selected, an error message is displayed when the Configure button is hit.
- If one of the channelized modes (T1/E1/4.096MHz/8.192MHz) is selected, the software uses the input from HDLC CH box to determine how to assign the time slots. The software divides the number of HDLC channels assigned into the number of time slots for the mode selected (i.e., 24 for T1, 32 for E1, 64 for 4.096MHz, and 128 for 8.192MHz) to determine how many time slots an HDLC channel occupies. It places the first HDLC channel for the port in the port's first time slot. All subsequent time slots are placed sequentially behind the previous one without a gap. If the result is a fraction, then a fraction of an HDLC channel fills the rest of the available bandwidth.

The table below shows an example of the T1 channel setting. Eight HDLC channels are assigned to port 1. Since there are 24 time slots in a T1 interface, the software divides 24 by 8 HDLC channels to get 3 time slots per HDLC channel and, therefore, it assigns 3 time slots (3 x 64kbps = 192kbps) for each HDLC channel. HDLC channel 2 is assigned to T1 time slots 0 to 2. HDLC channel 3 is assigned to T1 timeslots 3 to 5, and so on.

HDLC CHANNEL NUMBER	TIME SLOTS ASSIGNED	CHANNEL SPEED (kbps)
2	0 to 2	192
3	3 to 5	192
4	6 to 8	192
5	9 to 11	192
6	12 to 14	192
7	15 to 17	192
8	18 to 20	192
9	21 to 23	192

- CRC Settings-
- O No CRC is Generated.
- 16-Bit CRC
- 🔘 32-Bit CRC
- The default CRC setting is 16-Bit CRC. The software sets the RCRC0/RCRC1 (bit 2, 3) and TCRC0/TCRC1 (bit 2, 3) in the RHCD and THCD registers, respectively.

- DeSelect: The user can deselect the mode setting of all 16 ports at once instead of unchecking them one by one.
- Select All: The user can select a desired mode for all 16 ports once instead of checking it one by one. The
 mode list box is enabled when SelectAll is selected. The user selects the desired mode and the software
 configures all 16 ports with the selected mode.

Ports & LBK	
C Select ALL	
🔿 Clear ALL	
🗖 ClearLBKOnly	

- Select All: All 16 ports and loopbacks are checked
- Clear All: All selected ports and loopbacks are unchecked
- ClearLBKOnly: All checked loopbacks are unchecked.

FIFO Block Ass	signment
Blocks Assigned	4
High Water Mark	2
Low Water Mark	2

Default value of blocks within the FIFO is 4. High and low watermarks are two (50% is the recommendation). The user can input the desired number.

 The software checks the maximum number of blocks that can be assigned, based on the following calculation. The full size of the FIFO is 1024 (minimum size is 4) blocks divided by the total number of HDLC channels being used.

Blocks Assigned = 1024 / number of channels

An error message displays if the user inputs the invalid number.

Transmit high watermark can be set to a value of 1 to N - 2. Receive low watermark can be set to a value of 1 to N - 1. N is the number of blocks. (Refer to Section 8 in the DS31256 data sheet for details.)

– Packet Settings	
Packet Size	
Packet Data	
Packet Count	

• The user can input the desired packet size in byte and an integer packet count through the Packet Size and Packet Count edit boxes for his/her test. The Packet Size edit box defaults to 0x100 and the edit box of Packet Count defaults to 100 if the user does not input any numbers.

Control Descriptions

Master Reset

Chat program sets the Envoy into a default state by issuing a software reset and then writing 0s into all indirect
registers. The software also runs a register diagnostic to ensure it can correctly write and read all Envoy
registers. The address of the buffer, descriptor, and queue are displayed in the message box when the process
is done. If the diagnostic fails, the software creates an error message and displays it in the message box at the
bottom of the main GUI interface.

Configure

When this button is hit, the Chat program loads the Envoy registers with the settings in the GUI interface.
 "Successfully configured port #" is displayed in the message box if successful.

Start Test

• The program transmits and receives packets based on the user's selections. "Test Done" is displayed in the message box when the test is done.

Stop Test

• The user can stop the test any time. "Test stopped by user" is displayed in the message box when the user hits this button.

Show Results

• This brings up a screen (Figure 2-3) with detail information of the packet results.

Read Packet Mem

 This brings the Physical Memory Viewer screen up (Figure 2-4). The software prompts the user for an address, then it dumps the next 32 dwords to the screen. The user manually cancels the screen. This button is only active when a test is <u>not</u> being run. UpdateDMA |

• This brings up the DMA Configuration screen (Figure 2-5) for the user to configure the DMA by their desired values. Otherwise, the software uses default values to configure the DMA.

Register Access

• This brings up the Envoy Registers screen (Figure 2-6) for the user to read from or write into the register by hex number.

🗖 Dump Files 👘

• The software dumps the data of transmit and receive queues into a text file when it is checked.

DS31256 Registers at P 0x10001000 V 0xd2ef8000	
dmaDevReset(0)	
dmaDevInit(0)	
D., E O.,	_ <u>_</u>
	۲.

• The status of the process is displayed through the message box at the bottom of the main GUI.

File Menu Descriptions

DS31256		
<u> </u>	I. Contraction of the second se	
New	Ctrl+N	1
<u>O</u> pen	Ctrl+O	
<u>S</u> ave	Ctrl+S	
Save <u>A</u> s		
Print	Ctrl+P	
Print Pre <u>v</u> iew		
P <u>r</u> int Setup		
Dump Regs	Ctrl+D	
Save Log	Ctrl+L	
Dump Queues		
<u>1</u> C:\Chateau\\4m <u>2</u> C:\Chateau\\4m <u>3</u> 8m_16x8.dcc <u>4</u> 8m_16x16.dcc	_16x16.dcc _4x64.dcc	
E <u>x</u> it		

Open	All fields of the general configuration in the main GUI are filled from the file (that file should be saved by the software by Save under the File menu first).
Save	Copies all the selections from main GUI into a file when Save is selected.
Dump Regs	Saves the settings of all registers into a text file. The user can dump information at any time.
Save Log	Saves contents of the message box (at the bottom of the main GUI) into a text file.
Dump Queues	Dumps all queue data into a text file.

2.3.2 Show Results

Figure 2-3. Show Results GUI

Driver Statistics		Cancel Befresh	
Rx Large Buf Supplied	1213		
Rx Large Shadow Failed	0	RSBR	0
Rx Large Buf Fail Allocated	16	RSBRE	0
RLBR	16	RDQW	99
RLBRE	0	RDQWE	0
Rx Small Buf Supplied	0	TPQR	193
Rx Small Shadow Failed	0	TDQW	100
Rx Small Buf Fail Allocated	0	TDQWE	0
Application Statistics			
Attempted Tx	200	Data Errors	0
Total Tx	200	DeadBeef Errors	0
Good Rx	200	Rx Chan Data Errors	0
Bad Rx	0	Rx Sequence Errors	0
HDLC Controller Statistics			
Rx Done (V Set)	0	Rx PCI Aborts	0
Rx Callback Invocations	200	Rx FIFO Overflows	0
Rx Done Q Entries Read	200	Rx Checksum Errors	0
Rx Non-Align 0	Rx-RL 0	Rx Long Frame Aborts	0
Rx Reserved State	0	Rx HDLC Frame Aborts	0
Tx SW Provisioning Errors	0	Tx Descriptor Errors	0
Tx PCI Errors	0	Tx FIFO Errors	0

Descriptions of Driver Statistics

Rx Large Buffer Supplied	Number of Rx large buffers used
Rx Large Shadow Failed	Number of Rx large shadow creation failures
Rx Large Buf Fail Allocated	Number of Rx large buffer allocation failures
RLBR	Read from SDMA Bit 6
RLBRE	Read from SDMA Bit 7
Rx Small Buffer Supplied	Number of Rx small buffers used
Rx Small Shadow Failed	Number of Rx small shadow creation failures
Rx Small Buf Fail Allocated	Number of Rx small buffers allocation failures
RSBR	Read from SDMA Bit 8
RSBRE	Read from SDMA Bit 9
RDQW	Read from SDMA Bit 10
RDQWE	Read from SDMA Bit 11
TPQR	Read from SDMA Bit 13
TDQW	Read from SDMA Bit 14
TDQWE	Read from SDMA Bit 15

Descriptions of Application Statistics

Attempted Tx	Number of packet transmission attempted
Total Tx	Total number of packets transmitted
Good Rx	Number of packets received without error/problem
Bad Rx	Number of packets with errors
Data Errors	For program debugging
DeadBeef Errors	For program debugging
Rx Chan Data Errors	Number of packets with an incorrect channel number
Rx Sequence Errors	Number of packets with an incorrect sequence number

Descriptions of HDLC Controller Statistics

Rx Done Queue (V Bit)	Number of V set occurrences in receive done-queue descriptors
Rx Callback Invocations	For program debugging
Rx Done Queue Entries Read	Number of done-queue entries read
Rx-RL	Status bit for receive HDLC length check (RLENC) in SDMA register

The following seven items are read from receive done-queue descriptor, dword0, bits 27–29, reported at the final status of an incoming packet:

Rx FIFO Overflows	Remainder of the packet discarded
Rx Checksum Error	CRC checksum error
Rx Long Frame Aborts	Max packet length exceeded; remainder of the packet discarded
Rx HDLC Frame Aborts	HDLC frame abort sequence detected
Rx Non-Aligned Byte	Not an integral number of bytes
Rx PCI Aborts	PCI abort or parity data error
Rx Reserved State	Not a normal device operation event

The following four items are read from transmit done-queue descriptor, dword0, bits 26–28, reported at the final status of an outgoing packet:

Tx SW Provisioning Errors	Channel was not enabled.
Tx PCI Errors	PCI errors; abort
Tx Descriptor Errors	Either byte count = 0 or channel code inconsistent with pending
	queue
Tx FIFO Errors	Underflow events

2.3.3 Memory Viewer

Г

Figure 2-4. Memory Viewer GUI

Physical Address V	irtual Address				
086DE000 83 086DE010 83 086DE020 83 086DE030 83 086DE030 83 086DE040 83 086DE050 83 086DE050 83	3EB7000 08767F 3EB7010 087E8B 3EB7020 087E8F 3EB7030 087E83 3EB7040 087E7F 3EB7050 087E7F 3EB7050 087E7F 3EB7050 087E7F 3EB7050 087E7F 3EB7050 087E7F 3EB7060 087E77	0 81020000 38 81020000 00 81020000 38 81020000 38 81020000 39 81020000 30 81020000 30 81020000 30 81020000 30 81020000 30 81020000 30 81020000	B2800500 B27FF801 B2A26400 B2A2AD01 B2C58101 B2C54E00 B2E8F700	00000000 00000000 00000000 00000000 0000	•
Set Starting Physi	Engage	art Adrress 086da000	- End Addres: 0x0892eff0	S Refr Can	esh cel

The physical memory viewer shows all the data within the start and end address space that is allocated by the Chat program. The user can step through memory by the address box or by using the scroll up/down buttons on the right.

Fields Descriptions

Start Address	Display the starting address of the DMA that the program allocated in the
	memory
End Address	Display the ending address of the DMA that the program allocated in the
	memory

Control Descriptions

Engogo	User can look at any address within the range of Start Address and End Address through the edit box;. (Input the desired physical address) and					
Engage	then hit the Engage button. All data displayed starts from the input physical address.					

2.3.4 DMA Configuration

Figure 2-5. DMA Configuration GUI

0	Ipdate DMA Configuration
<u>!</u>	<u>Eile E</u> dit <u>V</u> iew <u>H</u> elp
	Transmit DMA Pending Queue Buffer Size 0x00000800 Free Queue Size Size 0x00000800 FIFO ✓ Enable
	Done Queue Cancel Size 0x00000200 FIF0 ▼ Enable FIF0 Flush Timer 0x00000100 Select DQS 0 - HDLC Pack€▼
	Buffer SaveFile Large Size (RLBS) 0x000003f8 Offset 0x00000000 Small Size (RSBS) 0x00000000 Size Select Large
	Free Queue Image Queue Size 0x00000400 Buffer In Queue 0x00000400 Small Queue Size 0x000000000 Buffer In Queue 0x00000000 FIF0 ✓ Enable
	Done Queue FIF0 ▼ Enable Size 0x00000400 Flush Timer 0x00000100 Write Threshold 000 - Only after packet is complete

The DMA configuration displays default values at first, then the user can change the desired value and hit the Master Reset. The DMA in Envoy can read from the receive free queue and transmit pending queue as well as write to the receive done queue and transmit done queue. Therefore, each access of the descriptor queues are done one at a time, and sequentially.

Buffer Size	Size of the transmit buffer side; maximum value = 0x1fff
Free Queue Size	Number of free queues maximum value = 0xffff
Pending Queue	Size: Size of pending queue, maximum = 0x10000;
Pending Queue	FIFO: Enable/disable FIFO (TDMAQ bit 0)
	Size: Size of done queue in transmit DMA, maximum value = 0x10000
Dono Quouo	FIFO: Enable/disable FIFO (TDMAQ bit 2)
Done Queue	Flush Timer: TDQFFT, maximum value = 0xffff
	Select DQS: HDLC packet (transmit DMA configuration RAM dword1, bit 1)

Descriptions of Transmit DMA

Descriptions of Receive DMA

	Large: RLBS register; maximum value = 0x1fff					
Buffor	Small: RSBS register; maximum value = 0x1fff					
Bullel	Offset: Receive DMA configuration RAM, dword2, bits 3–6					
	Size Select: Receive DMA configuration RAM dword2, bits 1 and 2					
	Large: Size of free queue for large buffer					
	Buffer in Queue: Number of buffers to put into the free queue					
Eros Queus	Small: Size of free queue for large buffer					
Fiee Queue	Buffer in Queue: Number of buffers to put into the free queue					
	Maximum value of the free queue = 0x10000 (large + small)					
	FIFO: Enable/disable FIFO (RDMAQ, bit 0)					
	Size: Size of receive done queue, maximum value = 0x10000					
Dona Quaua	FIFO: Enable/disable FIFO (RDMAQ, bit 4)					
Done Queue	Flush Timer: RDQFFT, maximum value = 0xffff					
	Threshold: Receive DMA configuration RAM, dword2, bits 7–9					

Control Descriptions

ОК	The DMA settings are updated with the value from all fields.
SaveFile	Saves all the information from the GUI into a file.
Default	Restores all fields to Envoy default values.

2.3.5 Register Access

Figure 2-6. Registers Access GUI

Read/Write Registers	×
Address	Done
Indirect Select Data	Write
Value	Read

Field Descriptions

Register Address	Address of data register to read/write.
Indirect Select Data	If the address is the indirect select register, user needs to input the value.
Value	Display the value from the register when Read button is hit or specify the value to write into the register when Write button is hit.

Control Descriptions

Done	Close the screen.
Write	Prompt the user for which register address to write and the value to be written and then it writes to the register.
Read	Prompt the user for which register address to read and then it reads the register and return the value.

2.4 Driver

The low-level API, or driver, shown in layer 2 of <u>Figure 2-1</u> may be used as a starting point in systems development to speed time to market. Low-level API source blocks are summarized in <u>Table 2-A</u>, and relate to one another structurally as shown in <u>Figure 2-7</u>. Note also in this figure a grouping of three particular source files: 3134.c, syswd.c, and wd.c. These are the files that must undergo modifications if the WinDriver package is not deployed in the target system.

SOURCE FILE	CONTENT/PURPOSE				
syswd.c	Interface code to WindRiver; system and memory management functions				
hdlc.c	Channel management functions				
l1.c	Port management and BERT functions				
drv.c	Register management functions				
services.c	Bit manipulation functions				
3134.c	WinDriver-generated PCI management functions				
wd.c	Generated WinDriver code				

Table 2-A. Low-Level API Source Block Contents

Section $\underline{4}$ (*Appendix A*) contains reference tables listing all of the functions in each of the above code blocks. Note that some of the data structures are elaborate, and that they are defined in the header files. Usage examples can be found in the Chat demonstration code.

Figure 2-7. Low-Level API Source Block Relationships

3. INSTALLATION AND GETTING STARTED

Please contact <u>telecom.support@dalsemi.com</u> or call 972-371-6555 if you have any technical questions, or visit our website at <u>www.maxim-ic.com/telecom</u>.

3.1 Card Installation

Separate instructions for Win95, Win98, and WinNT Systems.

3.1.1 Windows 95 Systems

- 1) Power-down the host computer system, and open its case. Follow ESD precautions while in contact with the card, the DS31256, and system components.
- 2) If not already seated, install the DS31256 chip into the BGA socket on the DK's PC board.
- 3) Set the DIP switches on the card to configure the board and operational mode (Figure 1-2).
- 4) Plug the DS31256DK card into an empty PCI slot.
- 5) Reassemble the computer.
- 6) Boot the computer.
- 7) Insert the DS31256DK1 CD.
- 8) Open a DOS window to perform the following commands:
 - Change directory to c:\windows\system\vmm32.
 - Copy the file *windrvr.vxd* from the CD "Install\Win95" directory to c:\windows\system\vmm32.
 - Copy the file *wdreg.exe* from the CD "Install\Win95" directory to c:\windows\system\vmm32.
 - Run wdreg -vxd install from the DOS prompt in the current working directory.
 - Close the DOS shell and reboot the machine.

3.1.2 Windows 98 Systems

- 1) Power-down the host computer system, and open its case. Follow ESD precautions while in contact with the card, the DS31256, and system components.
- 2) If not already seated, install the DS31256 chip into the BGA socket on the DK's PC board.
- 3) Set the DIP switches on the card to configure the board and operational mode (Figure 1-2).
- 4) Plug the DS31256DK card into an empty PCI slot.
- 5) Reassemble the computer.
- 6) Boot the computer and do not allow the system to search for or install drivers for the new hardware.
- 7) Insert the DS31256DK1 CD.
- 8) Open a DOS window to perform the following commands.:
 - Change directory to c:\windows\system\vmm32.
 - Copy the file *windrvr.sys* from the CD "Install\Win98" directory to c:\windows\system32\drivers.
 - Copy the file *wdreg.exe* from the CD "Install\Win98" directory to c:\windows\system32\drivers.
 - Run *wdreg install* from the DOS prompt in the current working directory.
 - Close the DOS shell and reboot the machine.

3.1.3 Windows NT Systems

- 1) Power-down the host computer system, and open its case. Follow ESD precautions while in contact with the card, the DS31256, and system components.
- 2) If not already seated, install the DS31256 chip into the BGA socket on the DK's PC board.
- 3) Set the DIP switches on the card to configure the board and operational mode (Figure 1-2).
- 4) Plug the DS31256DK card into an empty PCI slot.
- 5) Reassemble the computer.
- 6) Boot the computer.
- 7) Insert the DS31256DK1 CD.
- 8) Open a DOS window to perform the following commands:
 - Change directory to c:\winnt\system.
 - Copy the file windrvr.sys from the CD "Install\WinNT" directory to c:\winnt\system32\drivers.
 - Copy the file *wdreg.exe* from the CD "Install\WinNT" directory to c:\winnt\system32\drivers.
 - Run wdreg install from the DOS prompt in the current working directory.
 - Close the DOS shell, and reboot the machine.

3.2 Software Installation

- 1) Make a directory on the system.
- 2) Copy Chat.exe from the CD "Install\<OS_Type>" to the target directory.
- 3) Create a shortcut to the program, or set up a menu entry for it.

Note: The source code for Chat and the underlying drivers is in the CD "Source" directory. If desired, the source directory can also be copied off of the CD to the host.

3.3 Operational Test

After performing the card and software installations as described above,

1) Ensure that the board's DIP switches are set as follows:

1	2	3	4	5	6	7	8	9	10
On	On	Off	On	On	Off	Off	Off	Off	Off

- 2) Execute the Chat.exe program.
- 3) Click the ^{On} and ^{LBK} checkbox for Port 1.
- 4) Make sure the Port 1 pulldown selector is set to T1 mode.
- 5) Set the Port 1 channel range from 1 to 24 HDLC CH _____ to ____
- 6) Set both the Packet Size and Packet Count to 100.

Packet Size	
Packet Count	

- 7) Click the Master Reset button.
- 8) Click the Configure button. This results in a message stating "Successfully configured Port 1."
- 9) Click the ______ button. The message "Starting test with 100 packets" appears. The message "Test Done" prints when complete.
- 10) Next, click the Show Results button. In the Application Statistics portion of the results window the following data (part of them) will appear:

,0
)0
)0
,))

Kit	
Jemo	
256 L	
S312	
Д	

4. APPENDIX A

Guide)
river Developer's
Code; see WinDı
es (Generated C
System Servic
syswd.c

Open a p
– – – –
_
~~
~
<u> </u>
a di
~
(۵
~
Ŧ
S.
_
_
\sim

Ę	I
Demonstration	
DS31256	

hdlc.c	HDLC Functions		
	FUNCTION	PURPOSE	RETURNS
	hdlcDevReset	Reset the device and its data (not called directly)	Nothing
	hdlcDevOff	Turn the device off (not called directly)	Nothing
	hdlcChanOpen	Open a channel with specified parameters	Nothing
	hdlcChanClose	Close a channel	Nothing
	hdlcChanGetState	Return the status of the channel	TRUE if open, FALSE otherwise
	hdlcChanTrafficCtrl	Control a channel's traffic	Nothing
	hdlcChanSetDs0Bits	Set bits for all Ds0 of the channel	Nothing
	hdlcChanClearDs0Bits	Clear bits for all Ds0 of the channel	Nothing
drv.c	Driver Level Functions		
	FUNCTION	PURPOSE	RETURNS
	drvGetVmemBase	Get virtual memory base address (calls to syswd.c)	unsigned long
	drvGetPmemBase	Get physical memory base address (calls to syswd.c)	unsigned long
	drvVAddr2Paddr	Convert virtual address to physical addr (calls to syswd.c)	unsigned long
	drvPAddr2Vaddr	Convert physical address to virtual addr (calls to syswd.c)	unsigned long
	drvWriteReg	Write a value into a device register	TRUE (success) FALSE (failure)
	drvReadReg	Read a value from a device register	-1 on failure or the reg value on
	drvWriteIReg	Write a value into an indirect register	TRUE (success) FALSE (failure)
	drvReadIReq	Read a value from an indirect register	-1 on failure or the int32 reg value c
		Baset and initialize the device	SUCCESS FAI SF if device does not evict
		Dut the device in reset	
	drvWrlRea	Write to an indirect register	Nothing
	drvRdlReg	Read from an indirect register	int32 Register value
	drvInitIRegs	Write a zero to an indirect register	Nothing
	drvIntCallback	The interrupt callback from the ISR (only DMA int.s today)	Nothing
	DrvGetIsrStats	Get a pointer to the interrupt service routine stats	drvlsrStats *
	drvInitIRegs	Write a zero to all indirect registers of the device	Nothing
	DrvGetdmaDesc	Get a pointer to the structure describing DMA configuration	DrvDmaDesc *
	DrvUpdatedmaDesc	Get a pointer to the structure of DMA updated configuration	DrvDmaDesc *

Layer 1-Related Functions		
FUNCTION	PURPOSE	RETURNS
11DevReset	Reset the device and its data (not called directly)	Nothing
11 Dev Off	Turn Layer 1 port off (not called directly)	Nothing
11 PortDisable	Disable a port	Nothing
11 PortInit	Configure a port with static parameters	Nothing
11 PortWriteDParam	Configure dynamic params of a port: copy from param	Nothing
11PortSetDParamBits	Configure dynamic params of a port: set params corresponding to non-zero bits	Nothing
11 PortClearDParamBits	in param Configure dynamic params of a port:reset params corresponding to non-zero bits	Nothing
11 PortAllocateDs0	Set status specified by param, and HDLC channel number to all DS0s specified by teMap and accordate these dc0 with the port	Nothing
11 PortSetDs0Bits	Set status specified by nonzero bits of param to all DS0s specified by bitMap	Nothing
11 PortClearDs0Bits	Clear status specified by nonzero bits of param to all DS0s specified by bitMap	Nothing
11PortFreeDs0	Disconnect the DS0 specified by bitMap from being associated with a port	Nothing
11PortReadStatus	Read port status and present it as a bitmap	Port status, int32 bitmap
11 PortResetV54	Reset V.54	Nothing
11 PortUnchannelizedWorkAround	Fix needed when emulating unchannelized, low speed using 8M mode	Nothing
11 BertWriteParam	Set miscellaneous BERT parameters	Nothing
11 BertSetParamBits	Set miscellaneous BERT parameters defined by nonzero bits of param	Nothing
11 BertClearParamBits	Set miscellaneous BERT parameters defined by nonzero bits of param	Nothing
11 BertLatchCounters	Get value of coutners into local storage and start a new count	Nothing
11 BertReadCounter	Read last latched value of counter from local storage	counter value (4 Bytes),
11 RertSetDattern	Set pattern transmission	Unitioz Nothing
11BertSingleErrorInsertion	Los parton de la companya de la	Nothing
		>

DS31256 Demonstration Kit

1

L1.c

dma.c	DMA Functions		
	FUNCTION	PURPOSE	RETURNS
	DmaDevReset	Reset the device and its data (not called directly)	Nothing
	DmaDevOff	Turn the device off	Nothing
			TRUE/success,
	DmaDevInit	Initialize the device	FALSE/not enough resources
	DmaDoRxReplenish	Give the Rx DMA as many receive large buffers as it can handle (not called directlv)	Nothing
	MaDoSmRxReplenish	Give the Rx DMA as many receive small buffers as it can handle (not called directly)	Nothing
	DmaReplenishRxBuffers	Give the Rx DMA as many receive buffers as it can handle (not called directly)	Nothing(calls dmaDoRxReplinish)
	dmaCtrl	Enable or disable DMA	Nothing
	DmaChanSend	Submit packet chain to be transmitted	Nothing
	DmaRxChanCtrl	Set DMA RAM for the channel as appropriate	Nothing
	DmaTxChanCtrl	Set DMA RAM for the channel as appropriate	Nothing
	DmaEventRLBR	Rx large buffer read event, called by the ISR	Nothing
	DmaEventRLBRE	Rx large buffer read error event, called by the ISR	Nothing
	DmaEventRSBR	Rx small buffer read event, called by the ISR	Nothing
	DmaEventRSBRE	Rx small buffer read error event, called by the ISR	Nothing
	DmaEventRDQW	Rx done-queue write event, called by the ISR	Nothing
	DmaEventRDQWE	Rx done-queue write error event, called by the ISR	Nothing
	DmaEventTPQR	Tx pending-queue read event, called by the ISR	Nothing
	DmaEventTDQW	Tx done-queue write event, called by the ISR	Nothing
	DmaEventTDQWE	Tx done-queue write error event, called by the ISR	Nothing
	dmaTvDt+	Dut a cingle nacket into nending gueure	TRUE if new pending Q
			element is reugired
	DmaGetTxStats	Get a pointer to the Tx DMA stats	txDmaStats *
	DmaGetRxStats	Get a pointer to the Rx DMA stats	RxDmaStats *
	DrvGetdmaTxDev	Get a pointer to the structure of DMA Tx subsystem of the device	dmaTxDev *
	DrvGetdmaRxDev	Get a pointer to the structure of DMA Rx subsystem of the device	dmaRxDev *

services.c General Services

FUNCTION	PURPOSE	RETURNS
bitMapRead	Read the value of a specific bit	0 or 1, int32
bitMapWrite	Write the value of a specific bit	Nothing
bitMapLogicalAnd	Test for common set (=1) bits between two parameters	True if commonalitie or False (int32)
bitMapLogicalEq	Test two parameters for equivalence	True if equal, else F (int32)
bitMapLogicalSubset	Test to see if parameter 2 is a subset of parameter 1	True if subset, else (int32)
bitMapSetBits	Set all bits in parameter 1 that are set in parameter 2	Nothing
DitMapClearbits	Clear an bits in parameter 1 mar are set in parameter z Toot to coorit on the cooriest in commuter 1	True if all bits = 0, e
BIIMAPISETIPLY	I EST TO SEE IT ATTY DITS ALE SET ITT DATATTERET T	False (int32)
BitMapSetRange	Set a range of bits in parameter 1	Nothing
BitMapClearRange	Clear a range of bits in parameter 1	Nothing

ds3134.c E	33134 Card Access Functions	s (Generated Code; see WinDriver Developer's Guide)	
	FUNCTION	PURPOSE	RETURNS
	0S3134_CountCards	Scan PCI and count the number of a certain type of card	Card count, DWORD
)S3134_Open	Open a particular card/device on PCI	True is succesful, else
)S3134 Close	Disable interrupts. unregister a card, and close the driver	Nothing
)S3134_WritePCIReg	Write to a PCI configuration register	Nothing
)S3134_ReadPCIReg	Read from a PCI configuration register	Register value, DWORD
Ц)S3134_DetectCardElements	Check availability of card info: interrupts, I/O, memory	True if all are found, else False
	0S3134_IsAddrSpaceActive	Check if specified address space is active	True if active, else False
	0S3134_ReadWriteBlock	Perform general block reads and writes	Nothing
)S3134_ReadByte	Reads a byte from an address space on the board	Byte
	0S3134_ReadWord	Reads a word from an address space on the board	Word
)S3134_ReadDword	Reads a DWORD from an address space on the board	DWORD
	0S3134_WriteByte	Writes a byte to an address space on the board	Nothing
	0S3134_WriteWord	Writes a word to an address space on the board	Nothing
	0S3134_WriteDword	Writes a DWORD to an address space on the board	Nothing
	<pre>>S3134_GetRegAddrs</pre>	Get register address	Dword of 0 if found, else 1
Ц)S3134_IntlsEnabled	Checks whether interrupts are enabled or not	True if enables, else False
)S3134_IntHandler	Configure interrupt event handling (indirectly called)	Nothing
)S3134_IntEnable	Enable interrupt processing	True is successfully confinited also Falso
Ц)S3134_IntDisable	Disable interrupt processing	Nothing

Maxim/Dallas Semiconductor cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim/Dallas Semiconductor product. No circuit patent licenses are implied. Maxim/Dallas Semiconductor reserves the right to change the circuitry and specifications without notice at any time.
Waxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2003 Maxim Integrated Products • Printed USA

0.062 +/-10% THICKNES

- 11. SILKSCREEN TOP AND BOTTOM OF BOARD WHITE USING
- 18. ESLB-PLATE CONDUCTOR FINGERS USING STANDARD
- 163/37 TIN LEAD) AND LEVELED
- 9. ESPREMASKI DEL VILLEN VILLEN WILLATED
- 8. MINIMUM CONDUCTOR SPACING: .005
- 6. HOLE SIZES ARE FINISHED SIZE 7. MINIMUM CONDUCTOR WIDTH: .005
- 5. COPPER INTERNAL: 1 OUNCE
- 4. COPPER EXTERNAL: 1/2 OUNCE, PLATED UP TO 1 OUNCE
- 3. BUILD/MANUFACTURE TO BEST COMMERCIAL STANDARDS
- 2. THICKNESS: .082 +/-10% AFTER PLATING
- 1. MATERIAL: FR4
- NOTES: UNLESS OTHERWISE SPECIFIED