



February 1984  
Revised February 1999

## MM74HCT540 • MM74HCT541

### Inverting Octal 3-STATE Buffer • Octal 3-STATE Buffer

#### General Description

The MM74HCT540 and MM74HCT541 3-STATE buffers utilize advanced silicon-gate CMOS technology and are general purpose high speed inverting and non-inverting buffers. They possess high drive current outputs which enable high speed operation even when driving large bus capacitances. These circuits achieve speeds comparable to low power Schottky devices, while retaining the low power consumption of CMOS. Both devices are TTL input compatible and have a fanout of 15 LS-TTL equivalent inputs.

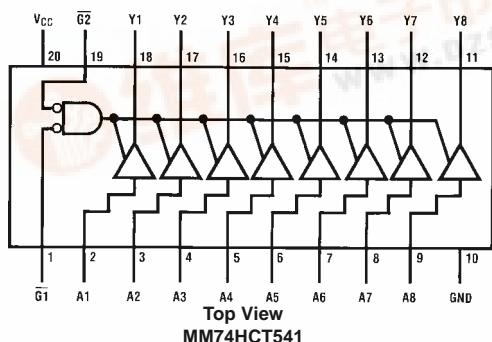
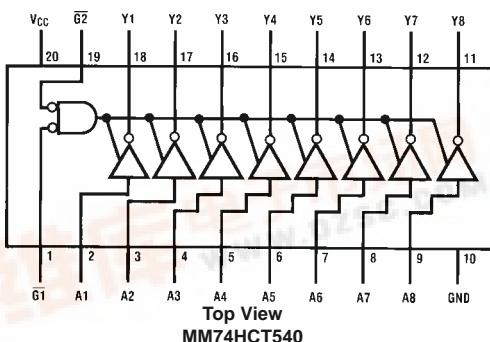
MM74HCT devices are intended to interface between TTL and NMOS components and standard CMOS devices. These parts are also plug-in replacements for LS-TTL devices and can be used to reduce power consumption in existing designs.

The MM74HCT540 is an inverting buffer and the MM74HCT541 is a non-inverting buffer. The 3-STATE control gate operates as a two-input NOR such that if either  $\bar{G}_1$  or  $\bar{G}_2$  are HIGH, all eight outputs are in the high-impedance state.

In order to enhance PC board layout, the MM74HCT540 and MM74HCT541 offers a pinout having inputs and outputs on opposite sides of the package. All inputs are protected from damage due to static discharge by diodes to  $V_{CC}$  and ground.

#### Features

- TTL input compatible
- Typical propagation delay: 12 ns
- 3-STATE outputs for connection to system buses
- Low quiescent current: 80  $\mu$ A
- Output current: 6 mA (min.)



#### Ordering Code:

| Order Number  | Package Number | Package Description                                                         |
|---------------|----------------|-----------------------------------------------------------------------------|
| MM74HCT540WM  | M20B           | 20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide  |
| MM74HCT540SJ  | M20D           | 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide               |
| MM74HCT540MTC | MTC20          | 20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide |
| MM74HCT540N   | N20A           | 20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide      |
| MM74HCT541WM  | M20B           | 20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide  |
| MM74HCT541SJ  | M20D           | 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide               |
| MM74HCT541MTC | MTC20          | 20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide |
| MM74HCT541N   | N20A           | 20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide      |

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

#### Connection Diagrams

Pin Assignments for DIP, SOIC, SOP and TSSOP



MM74HCT540 • MM74HCT541 Inverting Octal 3-STATE Buffer • Octal 3-STATE Buffer

**Absolute Maximum Ratings**<sup>(Note 1)</sup>

(Note 2)

|                                                      |                        |
|------------------------------------------------------|------------------------|
| Supply Voltage ( $V_{CC}$ )                          | -0.5 to +7.0V          |
| DC Input Voltage ( $V_{IN}$ )                        | -1.5 to $V_{CC}$ +1.5V |
| DC Output Voltage ( $V_{OUT}$ )                      | -0.5 to $V_{CC}$ +0.5V |
| Clamp Diode Current ( $I_{IK}$ , $I_{OK}$ )          | ±20 mA                 |
| DC Output Current, per pin ( $I_{OUT}$ )             | ±35 mA                 |
| DC $V_{CC}$ or GND Current, per pin ( $I_{CC}$ )     | ±70 mA                 |
| Storage Temperature Range ( $T_{STG}$ )              | -65°C to +150°C        |
| Power Dissipation ( $P_D$ )<br>(Note 3)              | 600 mW                 |
| S.O. Package only                                    | 500 mW                 |
| Lead Temperature ( $T_L$ )<br>(Soldering 10 seconds) | 260°C                  |

**Recommended Operating Conditions**

|                                                        | Min | Max      | Units |
|--------------------------------------------------------|-----|----------|-------|
| Supply Voltage ( $V_{CC}$ )                            | 4.5 | 5.5      | V     |
| DC Input or Output Voltage<br>( $V_{IN}$ , $V_{OUT}$ ) | 0   | $V_{CC}$ | V     |
| Operating Temperature Range ( $T_A$ )                  | -40 | +85      | °C    |
| Input Rise or Fall Times<br>( $t_r$ , $t_f$ )          | 500 | ns       |       |

**Note 1:** Absolute Maximum Ratings are those values beyond which damage to the device may occur.**Note 2:** Unless otherwise specified all voltages are referenced to ground.**Note 3:** Power Dissipation temperature derating — plastic "N" package: -12 mW/°C from 65°C to 85°C.**DC Electrical Characteristics** $V_{CC} = 5V \pm 10\%$  (unless otherwise specified)

| Symbol   | Parameter                              | Conditions                                                                                                                                                                      | $T_A = 25^\circ\text{C}$ |                                | $T_A = -40$ to $85^\circ\text{C}$ | $T_A = -55$ to $125^\circ\text{C}$ | Units |
|----------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------|-----------------------------------|------------------------------------|-------|
|          |                                        |                                                                                                                                                                                 | Typ                      | Guaranteed Limits              |                                   |                                    |       |
| $V_{IH}$ | Minimum HIGH Level Input Voltage       |                                                                                                                                                                                 |                          | 2.0                            | 2.0                               | 2.0                                | V     |
| $V_{IL}$ | Maximum LOW Level Input Voltage        |                                                                                                                                                                                 |                          | 0.8                            | 0.8                               | 0.8                                | V     |
| $V_{OH}$ | Minimum HIGH Level Output Voltage      | $V_{IN} = V_{IH}$ or $V_{IL}$<br>$ I_{OUT}  = 20 \mu\text{A}$<br>$ I_{OUT}  = 6.0 \text{ mA}$ , $V_{CC} = 4.5\text{V}$<br>$ I_{OUT}  = 7.2 \text{ mA}$ , $V_{CC} = 5.5\text{V}$ | $V_{CC}$<br>4.2<br>5.2   | $V_{CC} - 0.1$<br>3.98<br>4.98 | $V_{CC} - 0.1$<br>3.84<br>4.84    | $V_{CC} - 0.1$<br>3.7<br>4.7       | V     |
| $V_{OL}$ | Maximum LOW Level Voltage              | $V_{IN} = V_{IH}$ or $V_{IL}$<br>$ I_{OUT}  = 20 \mu\text{A}$<br>$ I_{OUT}  = 6.0 \text{ mA}$ , $V_{CC} = 4.5\text{V}$<br>$ I_{OUT}  = 7.2 \text{ mA}$ , $V_{CC} = 5.5\text{V}$ | 0<br>0.2<br>0.2          | 0.1<br>0.26<br>0.26            | 0.1<br>0.33<br>0.33               | 0.1<br>0.4<br>0.4                  | V     |
| $I_{IN}$ | Maximum Input Current                  | $V_{IN} = V_{CC}$ or GND                                                                                                                                                        |                          | ±0.1                           | ±1.0                              | ±1.0                               | µA    |
| $I_{OZ}$ | Maximum 3-STATE Output Leakage Current | $V_{OUT} = V_{CC}$ or GND<br>$\bar{G} = V_{IH}$                                                                                                                                 |                          | ±0.5                           | ±5.0                              | ±10                                | µA    |
| $I_{CC}$ | Maximum Quiescent Supply Current       | $V_{IN} = V_{CC}$ or GND<br>$I_{OUT} = 0 \mu\text{A}$<br>$V_{IN} = 2.4\text{V}$ or $0.5\text{V}$ (Note 4)                                                                       | 8.0<br>0.6               | 80<br>1.0                      | 160<br>1.3                        | 1.5                                | mA    |

**Note 4:** Measured per input. All other inputs at  $V_{CC}$  or GND.

## AC Electrical Characteristics

MM74HCT540:  $V_{CC} = 5.0V$ ,  $t_r = t_f = 6$  ns,  $T_A = 25^\circ C$ , (unless otherwise specified)

| Symbol             | Parameter                        | Conditions                            | Typ | Guaranteed Limits | Units |
|--------------------|----------------------------------|---------------------------------------|-----|-------------------|-------|
| $t_{PHL}, t_{PLH}$ | Maximum Output Propagation Delay | $C_L = 45$ pF                         | 12  | 18                | ns    |
| $t_{PZL}, t_{PZH}$ | Maximum Output Enable Time       | $C_L = 45$ pF<br>$R_L = 1$ k $\Omega$ | 14  | 28                | ns    |
| $t_{PLZ}, t_{PHZ}$ | Maximum Output Disable Time      | $C_L = 5$ pF<br>$R_L = 1$ k $\Omega$  | 13  | 25                | ns    |

## AC Electrical Characteristics

MM74HCT540:  $V_{CC} = 5.0V \pm 10\%$ ,  $t_r = t_f = 6$  ns (unless otherwise specified)

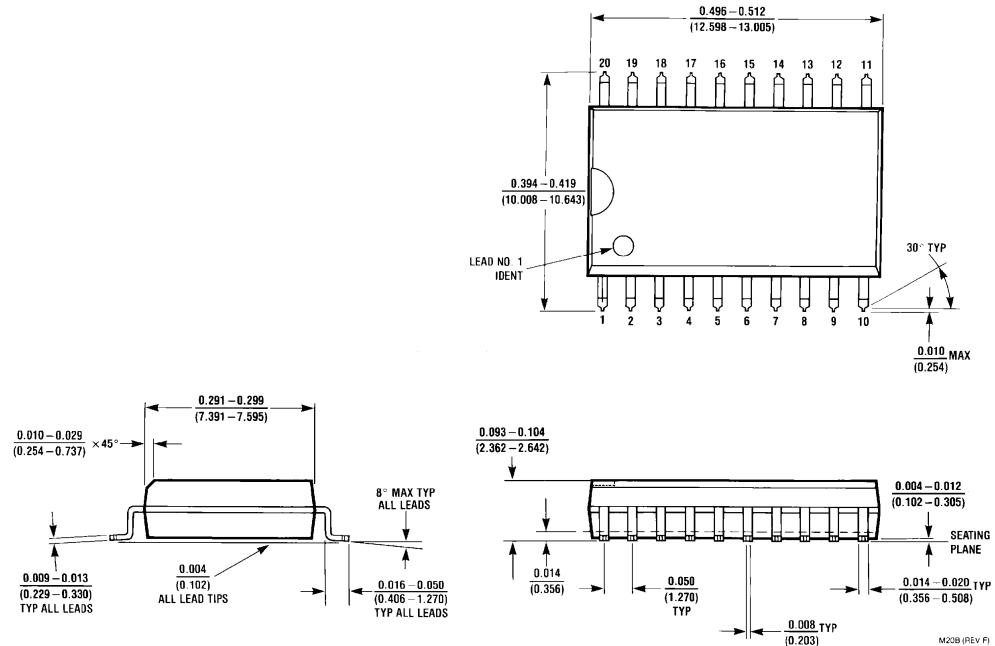
| Symbol             | Parameter                                 | Conditions                                            | $T_A = 25^\circ C$ |                   | $T_A = -40$ to $85^\circ C$ | $T_A = -55$ to $125^\circ C$ | Units    |
|--------------------|-------------------------------------------|-------------------------------------------------------|--------------------|-------------------|-----------------------------|------------------------------|----------|
|                    |                                           |                                                       | Typ                | Guaranteed Limits |                             |                              |          |
| $t_{PHL}, t_{PLH}$ | Maximum Output Propagation Delay          | $C_L = 50$ pF                                         | 12                 | 20                | 25                          | 30                           | ns       |
|                    |                                           | $C_L = 150$ pF                                        | 22                 | 30                | 38                          | 45                           | ns       |
| $t_{PZH}, t_{PZL}$ | Maximum Output Enable Time                | $R_L = 1$ k $\Omega$                                  | 15                 | 30                | 38                          | 45                           | ns       |
|                    |                                           | $C_L = 150$ pF                                        | 20                 | 40                | 50                          | 60                           | ns       |
| $t_{PHZ}, t_{PLZ}$ | Maximum Output Disable Time               | $R_L = 1$ k $\Omega$<br>$C_L = 50$ pF                 | 15                 | 30                | 38                          | 45                           | ns       |
| $t_{THL}, t_{TLH}$ | Maximum Output Rise and Fall Time         | $C_L = 50$ pF                                         | 6                  | 12                | 15                          | 18                           | ns       |
| $C_{IN}$           | Maximum Input Capacitance                 |                                                       | 5                  | 10                | 10                          | 10                           | pF       |
| $C_{OUT}$          | Maximum Output Capacitance                |                                                       | 15                 | 20                | 20                          | 20                           | pF       |
| $C_{PD}$           | Power Dissipation<br>Capacitance (Note 5) | (per output)<br>$\bar{G} = V_{CC}$<br>$\bar{G} = GND$ | 12<br>50           |                   |                             |                              | pF<br>pF |

**Note 5:**  $C_{PD}$  determines the no load dynamic power consumption,  $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$ , and the no load dynamic current consumption,  $I_S = C_{PD} V_{CC} f + I_{CC}$ .

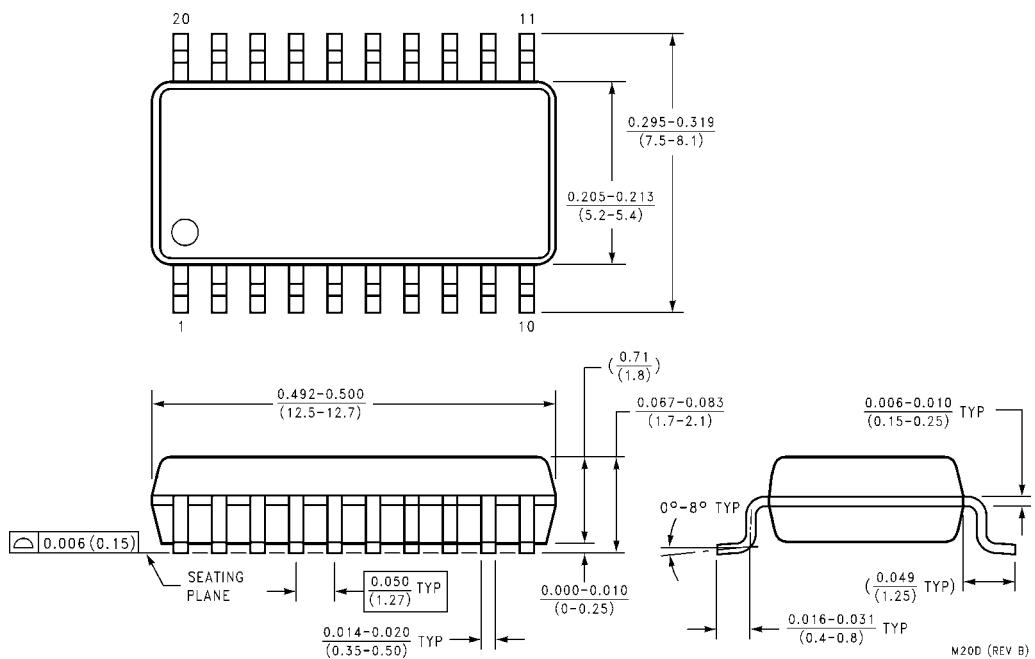
## AC Electrical Characteristics

MM74HCT541:  $V_{CC} = 5.0V$ ,  $t_r = t_f = 6$  ns,  $T_A = 25^\circ C$ , (unless otherwise specified)

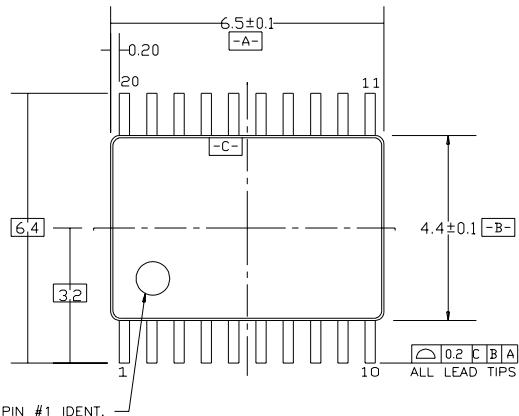
| Symbol             | Parameter                        | Conditions                            | Typ | Guaranteed Limits | Units |
|--------------------|----------------------------------|---------------------------------------|-----|-------------------|-------|
| $t_{PHL}, t_{PLH}$ | Maximum Output Propagation Delay | $C_L = 45$ pF                         | 13  | 20                | ns    |
| $t_{PZH}, t_{PZL}$ | Maximum Output Enable Time       | $C_L = 45$ pF<br>$R_L = 1$ k $\Omega$ | 17  | 28                | ns    |
| $t_{PLZ}, t_{PHZ}$ | Maximum Output Disable Time      | $C_L = 5$ pF<br>$R_L = 1$ k $\Omega$  | 15  | 25                | ns    |


## AC Electrical Characteristics

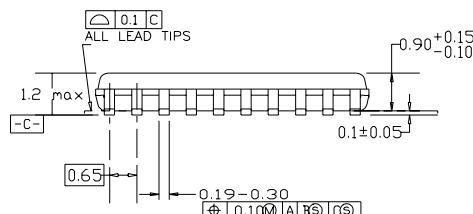
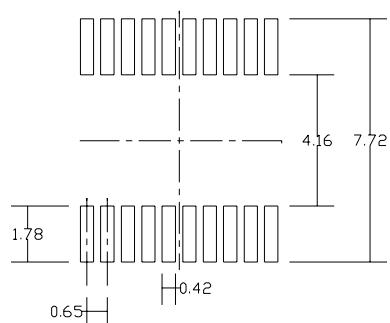
MM74HCT541:  $V_{CC} = 5.0V \pm 10\%$ ,  $t_r = t_f = 6$  ns (unless otherwise specified)


| Symbol             | Parameter                              | Conditions           | $T_A = 25^\circ C$      |                   | $T_A = -40$ to $85^\circ C$ | $T_A = -55$ to $125^\circ C$ | Units |
|--------------------|----------------------------------------|----------------------|-------------------------|-------------------|-----------------------------|------------------------------|-------|
|                    |                                        |                      | Typ                     | Guaranteed Limits |                             |                              |       |
| $t_{PHL}, t_{PLH}$ | Maximum Output Propagation Delay       | $C_L = 50$ pF        | 14                      | 23                | 29                          | 34                           | ns    |
|                    |                                        | $C_L = 150$ pF       | 17                      | 33                | 42                          | 49                           | ns    |
| $t_{PZH}, t_{PZL}$ | Maximum Output Enable Time             | $R_L = 1$ k $\Omega$ | 17                      | 30                | 38                          | 45                           | ns    |
|                    |                                        | $C_L = 50$ pF        | 22                      | 40                | 50                          | 60                           | ns    |
| $t_{PHZ}, t_{PLZ}$ | Maximum Output Disable Time            | $R_L = 1$ k $\Omega$ | 17                      | 30                | 38                          | 45                           | ns    |
|                    |                                        | $C_L = 50$ pF        |                         |                   |                             |                              |       |
| $t_{THL}, t_{TLH}$ | Maximum Output Rise and Fall Time      | $C_L = 50$ pF        | 6                       | 12                | 15                          | 18                           | ns    |
| $C_{IN}$           | Maximum Input Capacitance              |                      | 5                       | 10                | 10                          | 10                           | pF    |
| $C_{OUT}$          | Maximum Output Capacitance             |                      | 15                      | 20                | 20                          | 20                           | pF    |
| $C_{PD}$           | Power Dissipation Capacitance (Note 6) | (per output)         | $\overline{G} = V_{CC}$ | 12                |                             |                              | pF    |
|                    |                                        |                      | $\overline{G} = GND$    | 45                |                             |                              | pF    |

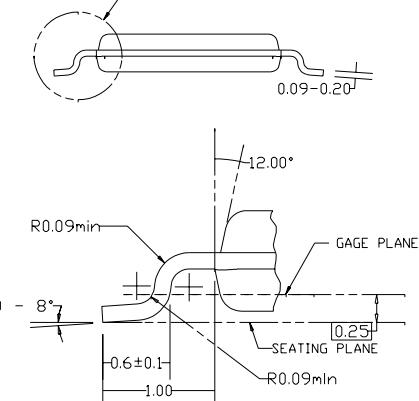
**Note 6:**  $C_{PD}$  determines the no load dynamic power consumption,  $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$ , and the no load dynamic current consumption,  $I_S = C_{PD} V_{CC} f + I_{CC}$ .


**Physical Dimensions** inches (millimeters) unless otherwise noted





20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide  
Package Number M20B




## **Physical Dimensions** inches (millimeters) unless otherwise noted (Continued)

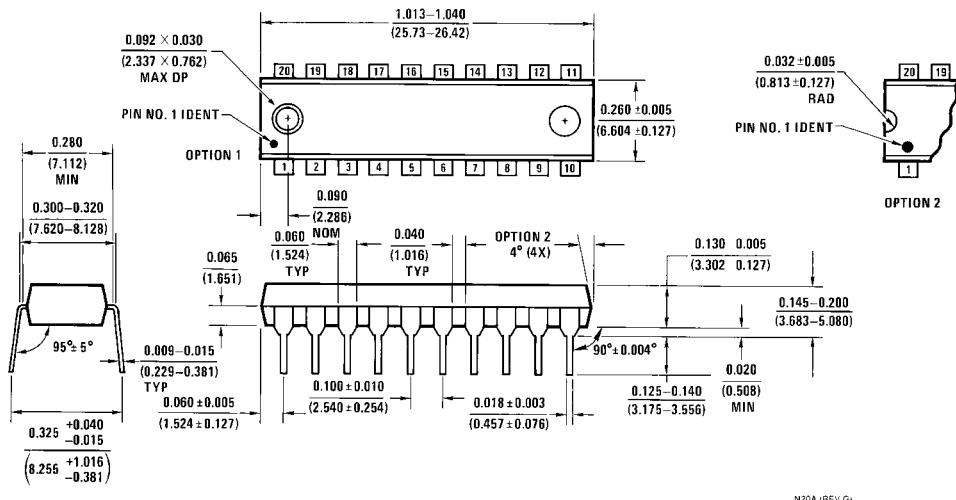


#### LAND PATTERN RECOMMENDATION



DIMENSIONS ARE IN MILLIMETERS




DETAIL A

NOTES:

- A. CONFORMS TO JEDEC REGISTRATION MO-153, VARIATION AC,  
REF NOTE 6, DATE 7/93.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLDS FLASH,  
AND TIE BAR EXTRUSIONS.
- D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1982.

**20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide  
Package Number MTC20**

**Physical Dimensions** inches (millimeters) unless otherwise noted (Continued)



20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide  
Package Number N20A

**LIFE SUPPORT POLICY**

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

[www.fairchildsemi.com](http://www.fairchildsemi.com)