

SEMICONDUCTOR™

February 1984
Revised February 1999

MM74HCT273

Octal D-Type Flip-Flop with Clear

General Description

The MM74HCT273 utilizes advanced silicon-gate CMOS technology. It has an input threshold and output drive similar to LS-TTL with the low standby power of CMOS.

These positive edge-triggered flip-flops have a common clock and clear-independent Q outputs. Data on a D input, having the specified set-up and hold time, is transferred to the corresponding Q output on the positive-going transition of the clock pulse. The asynchronous clear forces all outputs LOW when it is LOW.

All inputs to this device are protected from damage due to electrostatic discharge by diodes to V_{CC} and ground.

MM74HCT devices are intended to interface TTL and NMOS components to CMOS components. These parts can be used as plug-in replacements to reduce system power consumption in existing designs.

Features

- Typical propagation delay: 20 ns
- Low quiescent current: 80 μ A maximum (74HCT series)
- Fanout of 10 LS-TTL loads

Ordering Code:

Order Number	Package Number	Package Description
MM74HCT273WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
MM74HCT273SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
MM74HCT273MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
MM74HCT273N	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

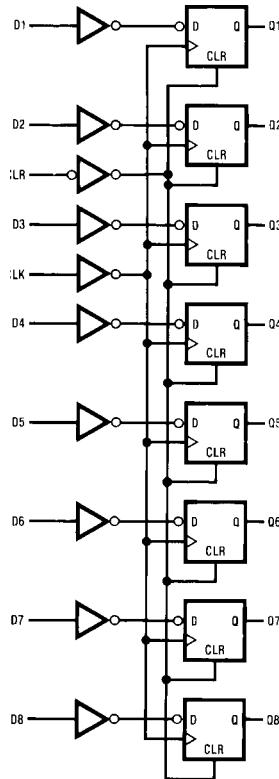
Connection Diagram

MM74HCT273 Octal D-Type Flip-Flop with Clear

Truth Table

(Each Flip-Flop)

Inputs			Outputs
Clear	Clock	D	Q
L	X	X	L
H	↑	H	H
H	↑	L	L
H	L	X	Q0


H = HIGH Level (steady-state)

L = LOW Level (steady-state)

X = Don't Care

↑ = Transition from LOW-to-HIGH level

Q0 = The level of Q before the indicated steady-state input conditions were established.

Logic Diagram

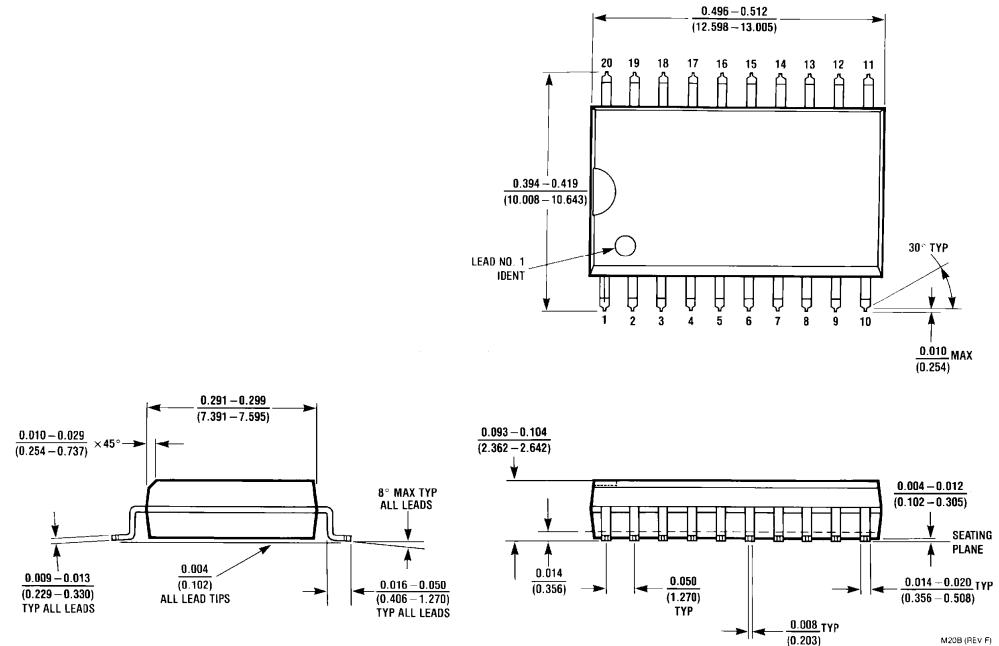
Absolute Maximum Ratings ^(Note 1)			Recommended Operating Conditions					
(Note 2)								
Supply Voltage (V_{CC})	-0.5V to + 7.0V		Min	Max	Units			
DC Input Voltage (V_{IN})	-1.5V to V_{CC} + 1.5V		Supply Voltage (V_{CC})	4.5	5.5 V			
DC Output Voltage (V_{OUT})	-0.5V to V_{CC} + 0.5V		DC Input or Output Voltage					
Clamp Diode Current (I_{IK}, I_{OK})	±20 mA	(V_{IN}, V_{OUT})	0	V_{CC}	V			
DC Output Current, per Pin (I_{OUT})	±25 mA	Operating Temperature Range (T_A)	-40	+85	°C			
DC V_{CC} or GND Current, per Pin (I_{CC})	±50 mA	Input Rise or Fall Times						
Storage Temperature Range (T_{STG})	-65°C to + 150°C	(t_r, t_f)		500	ns			
Power Dissipation (P_D)			Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.					
(Note 3)	600 mW		Note 2: Unless otherwise specified all voltages are referenced to ground.					
S.O. Package only	500 mW		Note 3: Power dissipation temperature derating—plastic "N" package: -12 mW/°C from 65°C to 85°C.					
Lead Temperature (T_L)								
(Soldering, 10 seconds)	260°C							
DC Electrical Characteristics								
$V_{CC} = 5V \pm 10\%$ unless otherwise specified								
Symbol	Parameter	Conditions	$T_A = 25^\circ\text{C}$	$T_A = -40^\circ\text{C} \text{ to } 85^\circ\text{C}$	$T_A = -55^\circ\text{C} \text{ to } 125^\circ\text{C}$	Units		
			Typ	Guaranteed Limits				
V_{IH}	Minimum HIGH Level Input Voltage			2.0	2.0	2.0	V	
V_{IL}	Maximum LOW Level Input Voltage			0.8	0.8	0.8	V	
V_{OH}	Minimum HIGH Level Output Voltage	$V_{IN} = V_{IH}$ or V_{IL} $ I_{OUT} = 20 \mu\text{A}$ $ I_{OUT} = 4.0 \text{ mA}, V_{CC} = 4.5\text{V}$ $ I_{OUT} = 4.8 \text{ mA}, V_{CC} = 5.5\text{V}$	V_{CC} 4.2 5.2	$V_{CC}-0.1$ 3.98 4.98	$V_{CC}-0.1$ 3.84 4.84	$V_{CC}-0.1$ 3.7 4.7	V V V	
V_{OL}	Minimum LOW Level Voltage	$V_{IN} = V_{IH}$ or V_{IL} $ I_{OUT} = 20 \mu\text{A}$ $ I_{OUT} = 4.0 \text{ mA}, V_{CC} = 4.5\text{V}$ $ I_{OUT} = 4.8 \text{ mA}, V_{CC} = 5.5\text{V}$	0 0.2 0.2	0.1 0.26 0.26	0.1 0.33 0.33	0.1 0.4 0.4	V V V	
I_{IN}	Maximum Input Current	$V_{IN} = V_{CC}$ or GND, V_{IH} or V_{IL}		±0.1	±1.0	±1.0	µA	
I_{CC}	Maximum Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND $I_{OUT} = 0 \mu\text{A}$ $V_{IN} = 2.4\text{V}$ or 0.5V (Note 4)		8	80	160	µA	
Note 4: Measured per pin, all other inputs held at V_{CC} or GND.								

AC Electrical Characteristics

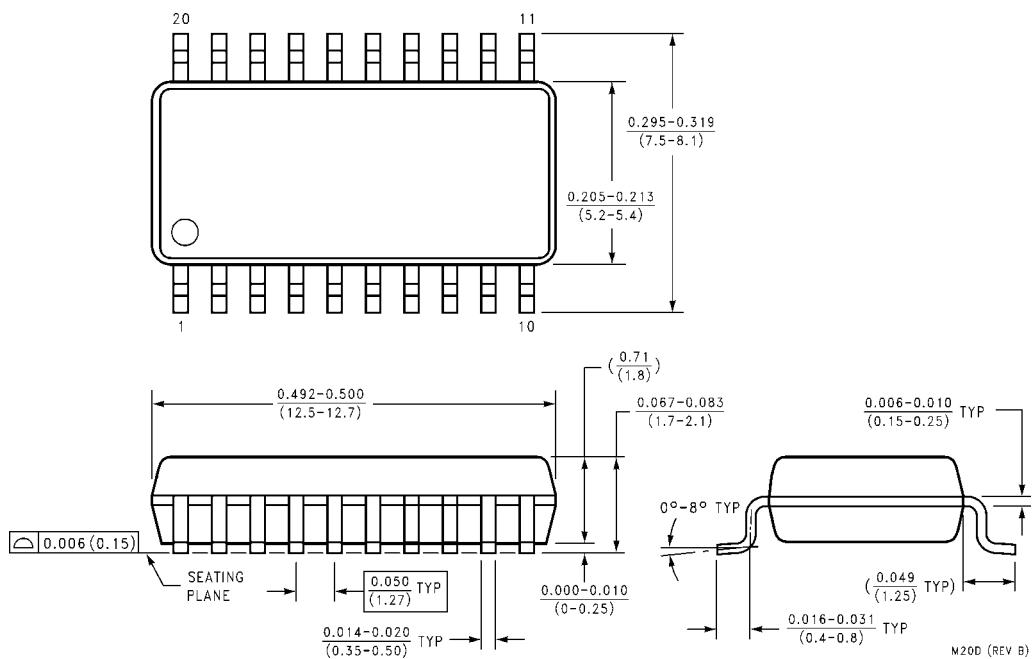
$V_{CC} = 5V$, $T_A = 25^\circ C$, $C_L = 15 \text{ pF}$, $t_r = t_f = 6 \text{ ns}$

Symbol	Parameter	Conditions	Typ	Guaranteed Limits	Units
f_{MAX}	Maximum Operating Frequency		68	30	MHz
t_{PHL}, t_{PLH}	Maximum Propagation Delay from Clock to Q		18	30	ns
t_{PHL}, t_{PLH}	Maximum Propagation Delay from Clear to Q		21	30	ns
t_{REM}	Minimum Removal Time, Clear to Clock		-1	5	ns
t_S	Minimum Set-Up Time D to Clock		6	20	ns
t_H	Minimum Hold Time Clock to D		-3	5	ns
t_W	Minimum Pulse Width Clock or Clear		10	16	ns

AC Electrical Characteristics

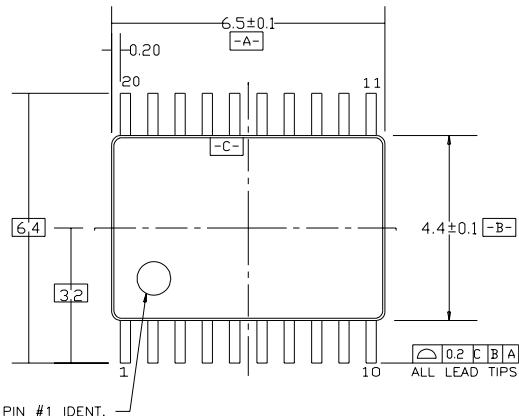

$V_{CC} = 5.0V \pm 10\%$, $C_L = 50 \text{ pF}$, $t_r = t_f = 6 \text{ ns}$ unless otherwise specified

Symbol	Parameter	Conditions	$T_A = 25^\circ C$		$T_A = -40^\circ C \text{ to } 85^\circ C$	$T_A = -55^\circ C \text{ to } 125^\circ C$	Units
			Typ	Guaranteed Limits			
f_{MAX}	Maximum Operating Frequency		68	27	21	18	MHz
t_{PHL}, t_{PLH}	Maximum Propagation Delay from Clock to Q		22	37	46	56	ns
t_{PHL}, t_{PLH}	Maximum Propagation Delay from Clear to Q		25	35	44	52	ns
t_{REM}	Minimum Removal Time Clear to Clock		-1	5	6	7	ns
t_S	Minimum Set-Up Time D to Clock		6	20	25	30	ns
t_H	Minimum Hold Time Clock to D		-3	5	5	5	ns
t_W	Minimum Pulse Width Clock or Clear		10	16	25	30	ns
t_r, t_f	Maximum Input Rise and Fall Time, Clock		500	500	500	500	ns
t_{THL}, t_{TLH}	Maximum Output Rise and Fall Time		11	15	19	22	ns
C_{PD}	Power Dissipation Capacitance (Note 5)	(Per Flip-Flop)	50				pF
C_{IN}	Maximum Input Capacitance		6	10	10	10	pF

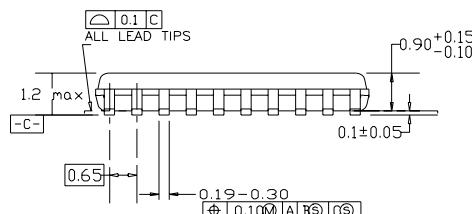
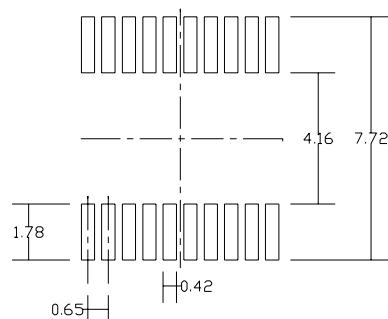

Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} V_{CC}^2 f + I_{CC}$.

Physical Dimensions

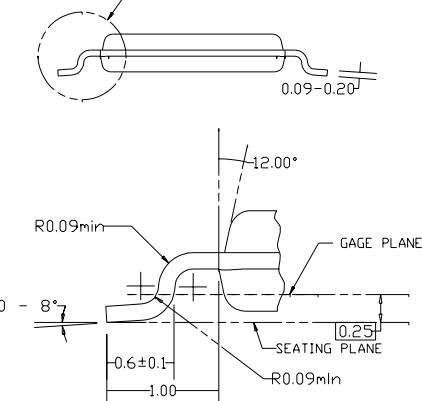
inches (millimeters) unless otherwise noted



20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
Package Number M20B

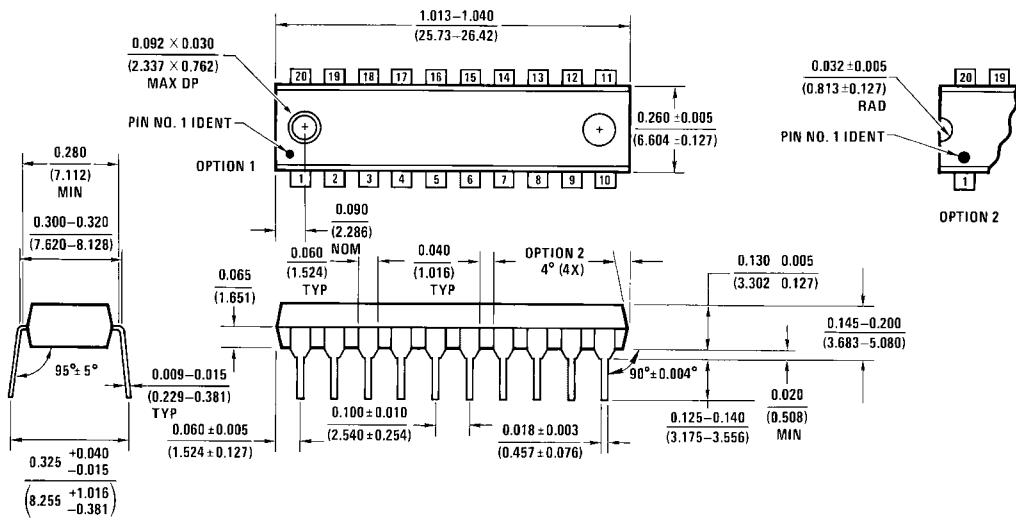
20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
Package Number M20D


Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LAND PATTERN RECOMMENDATION

DIMENSIONS ARE IN MILLIMETERS

DETAIL A


NOTES:

- A. CONFORMS TO JEDEC REGISTRATION MO-153, VARIATION AC,
REF NOTE 6, DATE 7/93.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLDS FLASH,
AND TIE BAR EXTRUSIONS.
- D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1982.

**20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
Package Number MTC20**

MM74HCT273 Octal D-Type Flip-Flop with Clear

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

**20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
Package Number N20A**

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com