

September 1983

Revised April 1999

MM74HCT14 Hex Inverting Schmitt Trigger

FAIRCHILD

SEMICONDUCTOR

MM74HCT14 Hex Inverting Schmitt Trigger

General Description

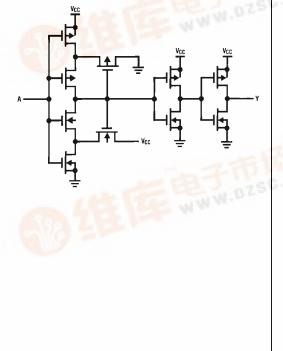
The MM74HCT14 utilizes advanced silicon-gate CMOS technology to achieve the low power dissipation and high noise immunity of standard CMOS, as well as the capability to drive 10 LS-TTL loads.

The 74HCT logic family is functionally and pinout compatible with the standard 74LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to $\rm V_{CC}$ and ground.

Features

- Typical propagation delay: 13 ns
- Wide power supply range: 2–6V
- Low quiescent current: 10 µA maximum
- Low input current: 1 μA maximum
- Fanout of 10 LS-TTL loads
- Typical hysteresis voltage: 0.9V at V_{CC} = 4.5V
- TTL, LS pin-out and input threshold compatible

Ordering Codes:


Order Number	Package Number	Package Description
MM74HCT14M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150" Narrow
MM74HCT14SJ	M14D	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
MM74HCT14MTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
MM74HCT14N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram

Schematic Diagram

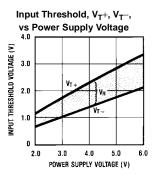
Absolute Maximum Ratings(Note 1) (Note 2)

Supply Voltage (V _{CC})	-0.5 to +7.0V
DC Input Voltage (V _{IN})	-1.5 to $V_{CC}{+}1.5V$
DC Output Voltage (V _{OUT})	-0.5 to $V_{CC} + 0.5 V$
Clamp Diode Current (I _{IK} , I _{OK})	\pm 20 mA
DC Output Current, per pin (I _{OUT})	\pm 25 mA
DC V_{CC} or GND Current, per pin (I_{CC})	\pm 50 mA
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Lead Temperature (T _L)	
(Soldering 10 seconds)	260°C

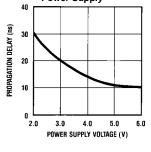
Recommended Operating Conditions

	Min	Max	Units
Supply Voltage (V _{CC})	2	6	V
DC Input or Output Voltage			
(V _{IN} , V _{OUT})	0	V_{CC}	V
Operating Temperature Range (T_A)	-40	+85	°C
Note 1: Absolute Maximum Ratings are those age to the device may occur.	values b	eyond whi	ch dam-

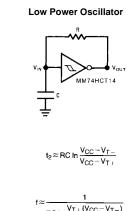
Note 2: Unless otherwise specified all voltages are referenced to ground.

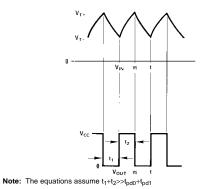

DC Electrical Characteristics (Note 3)

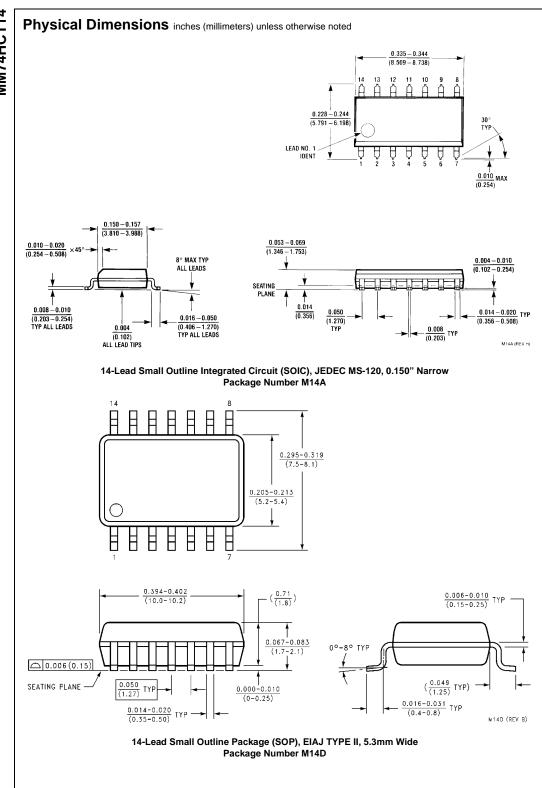
Symbol	Parameter	Conditions	V _{CC}	T _A =	25°C	$T_A = -40$ to $85^{\circ}C$	Units
Symbol	Farameter	Conditions	VCC	Тур	Guar	anteed Limits	Units
V _{T+}	Positive Going	Minimum	4.5V	1.5	1.2	1.2	V
	Threshold Voltage		5.5V	1.7	1.4	1.4	V
		Maximum	4.5V	1.5	1.9	1.9	V
			5.5V	1.7	2.1	2.1	V
V _{T-}	Negative Going	Minimum	4.5V	0.9	0.5	0.5	V
	Threshold Voltage		5.5V	1.0	0.6	0.6	V
		Maximum	4.5V	0.9	1.2	1.2	V
			5.5V	1.0	1.4	1.4	V
V _H	Hysteresis Voltage	Minimum	4.5V	0.6	0.4	0.4	V
			5.5V	0.7	0.4	0.4	V
		Maximum	4.5V	0.6	1.4	1.4	V
			5.5V	0.7	1.5	1.5	V
V _{OH}	Minimum HIGH Level	$V_{IN} = V_{IL}$					
	Output Voltage	$ I_{OUT} = 20 \ \mu A$		V _{CC}	V _{CC} - 0.1	$V_{CC} - 0.1$	V
		$ I_{OUT} = 4.0 \text{ mA}, V_{CC} = 4.5 \text{V}$		4.2	3.98	3.84	V
		$ I_{OUT} = 4.8 \text{ mA}, V_{CC} = 5.5 \text{V}$		5.2	4.98	4.98	V
V _{OL}	Maximum LOW Level	$V_{IN} = V_{IH}$					
	Voltage	I _{OUT} = 20 μA		0	0.1	0.1	V
		$ I_{OUT} = 4.0 \text{ mA}, V_{CC} = 4.5 \text{V}$		0.2	0.26	0.33	V
		$ I_{OUT} = 4.8 \text{ mA}, V_{CC} = 5.5 \text{V}$		0.2	0.26	0.33	V
I _{IN}	Maximum Input Current	$V_{IN} = V_{CC}$ or GND			±0.1	11.0	A
		V _{IH} or V _{IL}			±0.1	±1.0	μA
I _{CC}	Maximum Quiescent	$V_{IN} = V_{CC}$ or GND	E E\/		1.0	10	
	Supply Current	$I_{OUT} = 0 \ \mu A$	5.5V		1.0	10	μA
		V _{IN} =2.4V or 0.5V (Note 3)	5.5V		2.4	2.4	mA

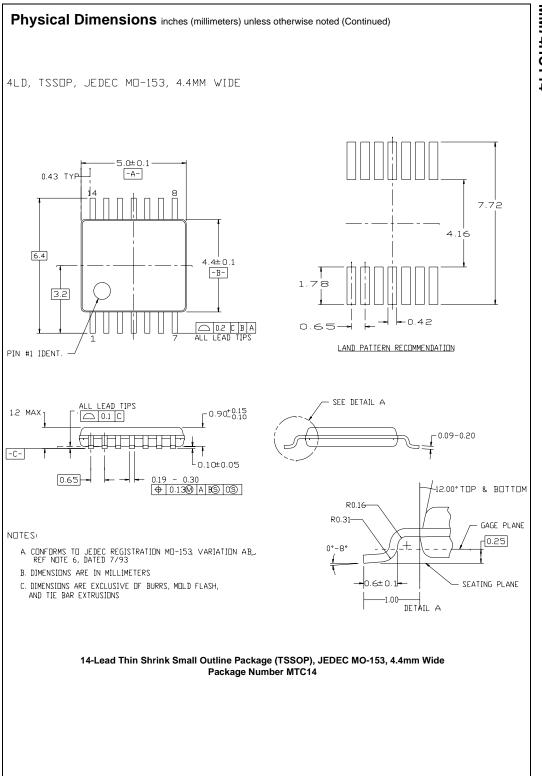

Note 3: For a power supply of 5V \pm 10% the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC} = 5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN}, I_{CC}, and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

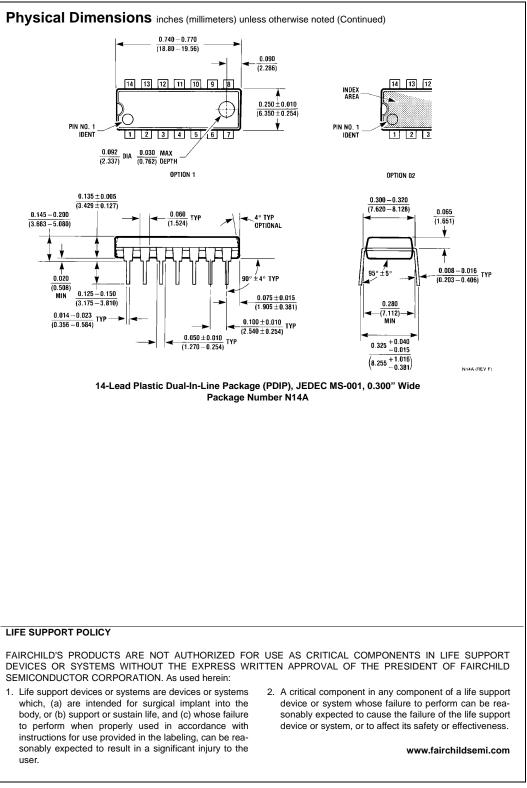
Symbol	Parameter	Conditions		Тур	Guaranteed Limit	Units
_{PHL} , t _{PLH}	Maximum Propagation Delay			10	18	ns
Symbol	Parameter	Conditions		= 25°	$T_A = -40 \text{ to } 85^\circ \text{C}$	Units
		Conditions	T _A : Typ		$T_A = -40 \text{ to } 85^{\circ}\text{C}$ aranteed Limits	Units
Symbol t _{PHL} , t _{PLH}	Parameter Maximum Propagation Delay Maximum Output Rise and Fall Time	Conditions		Gu	aranteed Limits	
t _{PHL} , t _{PLH}	Maximum Propagation Delay	Conditions (per gate)	Тур	Gu 20	aranteed Limits 25	ns


Typical Performance Characteristics


Propagation Delay vs Power Supply


Typical Applications




 $\frac{V_{T+}(V_{CC}-V_{T-})}{V_{T-}(V_{CC}-V_{T+})}$

 V_{CC}

Fairchild does not assume any responsibility for use of any circuity described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.