

June 2001

**Revised June 2001** 

# AIRCHIL

SEMICONDUCTOR

## **FSTD3125** 4-Bit Bus Switch with Level Shifting

#### **General Description**

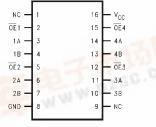
The Fairchild Switch FSTD3125 provides four high-speed CMOS TTL-compatible bus switches. The low On Resistance of the switch allows inputs to be connected to outputs without adding propagation delay or generating additional ground bounce noise. A diode to  $V_{\mbox{\scriptsize CC}}$  has been integrated into the circuit to allow for level shifting between 5V inputs and 3.3V outputs.

The device is organized as four 1-bit switches with separate  $\overline{OE}$  inputs. When  $\overline{OE}$  is LOW, the switch is ON and Port A is connected to Port B. When  $\overline{\text{OE}}$  is HIGH, the switch is OPEN and a high-impedance state exists between the two ports.

#### **Features**

- $\blacksquare$  4 $\Omega$  switch connection between two ports
- Minimal propagation delay through the switch
- Low I<sub>CC</sub>
- Zero bounce in flow-through mode
- Control inputs compatible with TTL level
- TruTranslation<sup>™</sup> voltage translation from 5.0V inputs to 3.3V outputs

### **Ordering Code:**


| Order Number                                                                                              | Package Number | Package Description                                                          |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------|--|--|--|--|--|
| FSTD3125M                                                                                                 | M14A           | 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow |  |  |  |  |  |
| FSTD3125QSC                                                                                               | MQA16          | 16-Lead Quarter Size Outline Package (QSOP), JEDEC MO-137, 0.150" Wide       |  |  |  |  |  |
| FSTD3125MTC                                                                                               | MTC14          | 14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide  |  |  |  |  |  |
| Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code. |                |                                                                              |  |  |  |  |  |
| Connection Diagrams Pin Descriptions                                                                      |                |                                                                              |  |  |  |  |  |

#### **Connection Diagrams**





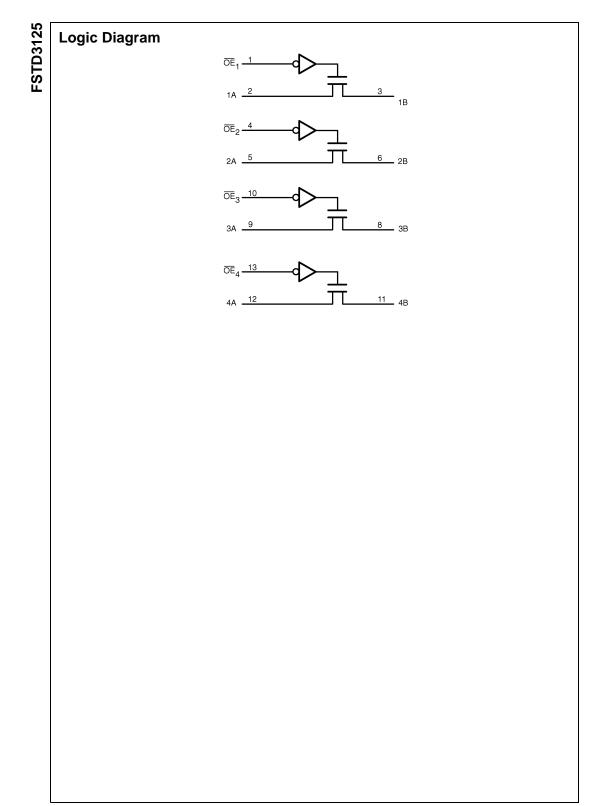
#### Pin Assignment for QSOP



TruTranslation™ is a trademark of Fairchild Semiconductor Corporation.



#### **Pin Descriptions**


| Pin Name                                                             | Description        |  |  |  |
|----------------------------------------------------------------------|--------------------|--|--|--|
| $\overline{OE}_1, \overline{OE}_2, \overline{OE}_3, \overline{OE}_4$ | Bus Switch Enables |  |  |  |
| 1A, 2A, 3A, 4A                                                       | Bus A              |  |  |  |
| 1B, 2B, 3B, 4B                                                       | Bus B              |  |  |  |
| NC                                                                   | Not Connected      |  |  |  |

#### **Truth Table**

| Inputs | Inputs/Outputs |  |  |
|--------|----------------|--|--|
| OE     | A, B           |  |  |
| L      | A = B          |  |  |
| Н      | Z              |  |  |
|        |                |  |  |



STD3125 4-Bit Bus Switch with Level Shifting



#### Absolute Maximum Ratings(Note 1)

| Supply Voltage (V <sub>CC</sub> )                                    | -0.5V to +7.0V                 |
|----------------------------------------------------------------------|--------------------------------|
| DC Switch Voltage (V <sub>S</sub> )                                  | -0.5V to +7.0V                 |
| DC Input Voltage (VIN)(Note 2)                                       | -0.5V to +7.0V                 |
| DC Input Diode Current (I <sub>IK</sub> ) $V_{IN} < 0V$              | -50 mA                         |
| DC Output (I <sub>OUT</sub> ) Sink Current                           | 128 mA                         |
| DC V <sub>CC</sub> /GND Current (I <sub>CC</sub> /I <sub>GND</sub> ) | +/- 100 mA                     |
| Storage Temperature Range (T <sub>STG</sub> )                        | –65°C to +150 $^\circ\text{C}$ |

# Recommended Operating Conditions (Note 3)

| Power Supply Operating ( $V_{CC}$ )              | 4.5V to 5.5V     |
|--------------------------------------------------|------------------|
| Input Voltage (V <sub>IN</sub> )                 | 0V to 5.5V       |
| Output Voltage (V <sub>OUT</sub> )               | 0V to 5.5V       |
| Input Rise and Fall Time $(t_r, t_f)$            |                  |
| Switch Control Input                             | 0 ns/V to 5 ns/V |
| Switch I/O                                       | 0 ns/V to DC     |
| Free Air Operating Temperature (T <sub>A</sub> ) | -40 °C to +85 °C |

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

Note 3: Unused control inputs must be held HIGH or LOW. They may not float.

| Symbol          | Parameter                             | V <sub>CC</sub><br>(V) | $T_A = -40 \ ^\circ C$ to +85 $^\circ C$ |                 |      | Units | Conditions                               |
|-----------------|---------------------------------------|------------------------|------------------------------------------|-----------------|------|-------|------------------------------------------|
|                 |                                       |                        | Min                                      | Typ<br>(Note 4) | Max  | Units | Conditions                               |
| VIK             | Clamp Diode Voltage                   | 4.5                    |                                          |                 | -1.2 | V     | I <sub>IN</sub> = -18 mA                 |
| VIH             | HIGH Level Input Voltage              | 4.5-5.5                | 2.0                                      |                 |      | V     |                                          |
| V <sub>OH</sub> | HIGH Level                            | 4.0-5.5                |                                          | Figure 3        |      | V     |                                          |
| VIL             | LOW Level Input Voltage               | 4.5-5.5                |                                          |                 | 0.8  | V     |                                          |
| I <sub>I</sub>  | Input Leakage Current                 | 5.5                    |                                          |                 | ±1.0 | μA    | $0 \le V_{IN} \le 5.5V$                  |
|                 |                                       | 0                      |                                          |                 | 10   | μA    | $V_{IN} = 5.5V$                          |
| I <sub>OZ</sub> | OFF-STATE Leakage Current             | 5.5                    |                                          |                 | ±1.0 | μA    | $0 \le A, B \le V_{CC}$                  |
| R <sub>ON</sub> | Switch On Resistance                  | 4.5                    |                                          | 4               | 7    | Ω     | $V_{IN} = 0V$ , $I_{IN} = 64 \text{ mA}$ |
|                 | (Note 5)                              | 4.5                    |                                          | 4               | 7    | Ω     | $V_{IN} = 0V$ , $I_{IN} = 30$ mA         |
|                 |                                       | 4.5                    |                                          | 35              | 50   | Ω     | $V_{IN} = 2.4V, I_{IN} = 1.5mA$          |
| I <sub>CC</sub> | Quiescent Supply Current              | 5.5                    |                                          |                 | 1.5  | mA    | $OE_1 = OE_2 = GND$                      |
|                 |                                       |                        |                                          |                 |      |       | $V_{IN} = V_{CC}$ or GND, $I_{OUT} = 0$  |
|                 |                                       |                        |                                          |                 | 10   | μΑ    | $OE_1 = OE_2 = V_{CC}$                   |
|                 |                                       |                        |                                          |                 |      |       | $V_{IN} = V_{CC}$ or GND, $I_{OUT} = 0$  |
| $\Delta I_{CC}$ | Increase in I <sub>CC</sub> per Input | 5.5                    |                                          |                 | 2.5  | mA    | One Input at 3.4V.                       |
|                 |                                       |                        |                                          |                 |      |       | Other Inputs at V <sub>CC</sub> or GND   |

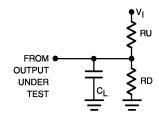
Note 4: Typical values are at  $V_{CC}$  = 5.0V and  $T_A$  = +25  $^{\circ}C$ 

Note 5: Measured by the voltage drop between A and B pins at the indicated current through the switch. On Resistance is determined by the lower of the voltages on the two (A or B) pins.

# **FSTD3125**

#### **AC Electrical Characteristics**

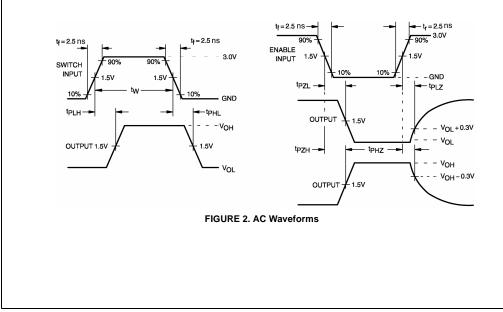
| Symbol                              | Parameter                             | C <sub>L</sub> = 50pF, RU |      |    | Conditions                                             | Figure<br>Number |  |
|-------------------------------------|---------------------------------------|---------------------------|------|----|--------------------------------------------------------|------------------|--|
|                                     |                                       | Min                       | Max  |    |                                                        |                  |  |
| t <sub>PHL</sub> , t <sub>PLH</sub> | Propagation Delay Bus to Bus (Note 6) |                           | 0.25 | ns | V <sub>I</sub> = OPEN                                  | Figures<br>1, 2  |  |
| t <sub>PZH</sub> , t <sub>PZL</sub> | Output Enable Time                    | 1.0                       | 6.1  | ns | $V_I = 7V$ for $t_{PZL}$<br>$V_I = OPEN$ for $t_{PZH}$ | Figures<br>1, 2  |  |
| t <sub>PHZ</sub> , t <sub>PLZ</sub> | Output Disable Time                   | 1.5                       | 6.4  | ns | $V_I = 7V$ for $t_{PLZ}$<br>$V_I = OPEN$ for $t_{PHZ}$ | Figures<br>1, 2  |  |

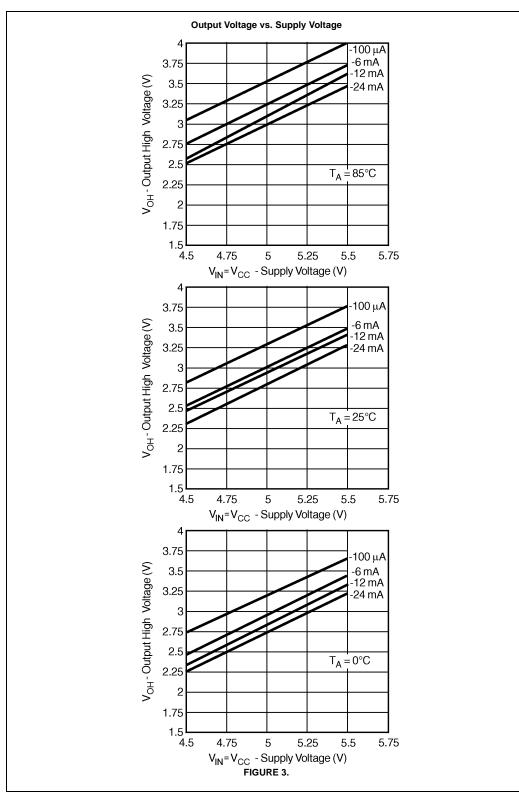

Note 6: This parameter is guaranteed by design but is not tested. The bus switch contributes no propagation delay other than the RC delay of the typical On Resistance of the switch and the 50pF load capacitance, when driven by an ideal voltage source (zero output impedance).

#### Capacitance (Note 7)

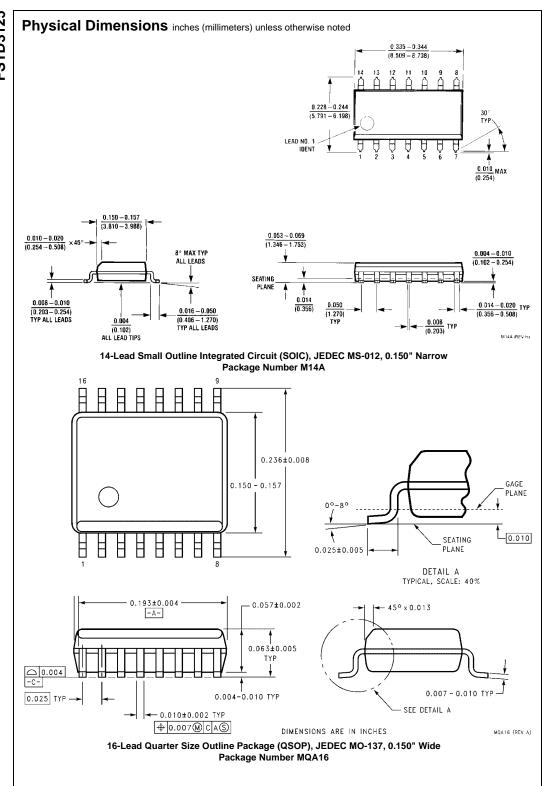
| Symbol           | Parameter                     | Тур | Max | Units | Conditions                     |
|------------------|-------------------------------|-----|-----|-------|--------------------------------|
| C <sub>IN</sub>  | Control Pin Input Capacitance | 3   |     | pF    | $V_{CC} = 5.0V$                |
| C <sub>I/O</sub> | Input/Output Capacitance      | 6   |     | pF    | $V_{CC}, \overline{OE} = 5.0V$ |

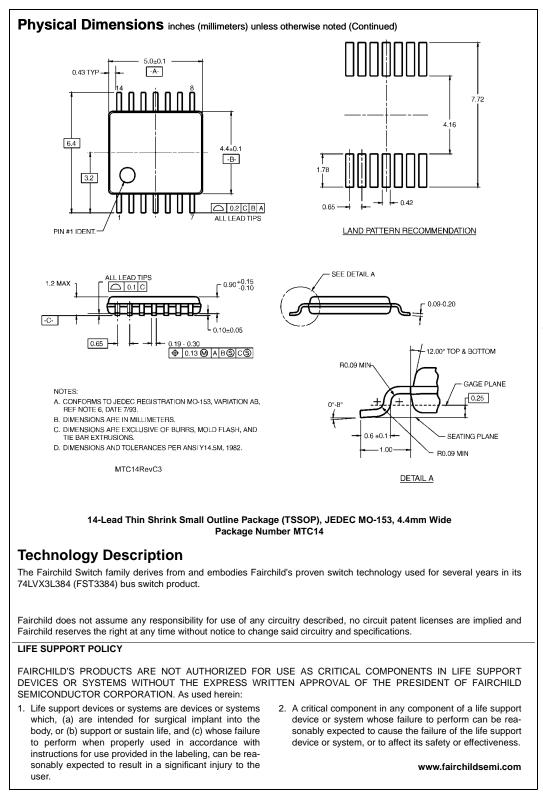
Note 7:  $T_A = +25^{\circ}C$ , f = 1 MHz, Capacitance is characterized but not tested.


#### AC Loading and Waveforms




Note: Input driven by 50  $\Omega$  source terminated in 50  $\Omega$  Note: CL includes load and stray capacitance


Note: Input PRR = 1.0 MHz,  $t_W = 500$ ns


#### FIGURE 1. AC Test Circuit









