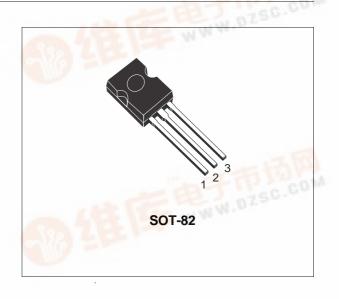
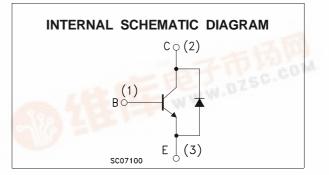
BULK128D-B

HIGH VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR

- STMicroelectronics PREFERRED SALESTYPE
- INTEGRATED ANTIPARALLEL COLLECTOR-EMITTER DIODE
- NPN TRANSISTOR
- HIGH VOLTAGE CAPABILITY
- LOW SPREAD OF DYNAMIC PARAMETERS
- MINIMUM LOT-TO-LOT SPREAD FOR RELIABLE OPERATION
- VERY HIGH SWITCHING SPEED

APPLICATIONS:


- ELECTRONIC BALLASTS FOR
 FLUORESCENT LIGHTING
- FLYBACK AND FORWARD SINGLE TRANSISTOR LOW POWER CONVERTERS


DESCRIPTION

The device is manufactured using high voltage Multi Epitaxial Planar technology for high switching speeds and medium voltage capability.

It uses a Cellular Emitter structure with planar edge termination to enhance switching speeds while maintaining the wide RBSOA.

The device is designed for use in lighting applications and low cost switch-mode power supplies.

Symbol	Parameter	Value	Unit V	
V _{CES}	Collector-Emitter Voltage (V _{BE} = 0)	700		
Vceo	Collector-Emitter Voltage (I _B = 0)	400	V	
Vebo	Emitter-Base Voltage ($I_C = 0$, $I_B = 2$ A, $t_p < 10\mu$ s, $T_j < 150^{\circ}$ C)	BV _{EBO}	V	
Ι _C	Collector Current	4	Α	
Ісм	Collector Peak Current (t _P < 5 ms)	8	Α	
IB	Base Current	2	Α	
I _{BM}	Base Peak Current (t _p < 5 ms)	4	Α	
Ptot	Total Dissipation at $T_c = 25 \ ^{\circ}C$	55	W	
T _{stg}	Storage Temperature	-65 to 150	°C	
Τ _i	Max. Operating Junction Temperature	150	°C	

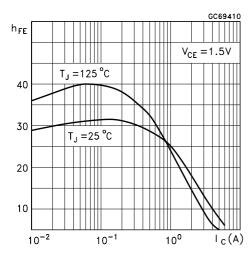
ABSOLUTE MAXIMUM RATINGS

BULK128D-B

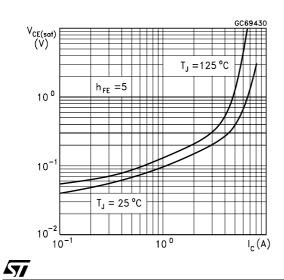
THERMAL DATA

R _{thj-case}	Thermal Resistance Junction-Case	Max	2.27	°C/W
R _{thj-amb}	Thermal Resistance Junction-Ambient	Max	80	°C/W

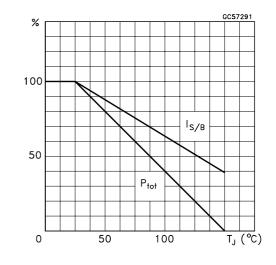
ELECTRICAL CHARACTERISTICS ($T_{case} = 25 \ ^{\circ}C$ unless otherwise specified)

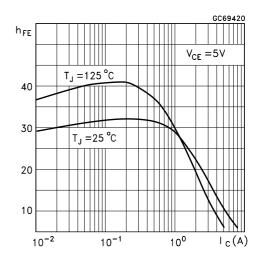

Symbol	ParameterCollector Cut-off Current (VBE = -1.5 V)	Test C	Min.	Тур.	Max.	Unit	
ICES		V _{CE} = 700 V V _{CE} = 700 V	T _C = 125 °C			100 500	μΑ μΑ
I _{CEO}	Collector-Emitter Leakage Current (I _B = 0)	V _{CE} = 400 V				250	μA
BV _{EBO}	Emitter-Base Breakdown Voltage (I _C = 0)	I _E = 10 mA		9		18	V
$V_{CEO(sus)^*}$	Collector-Emitter Sustaining Voltage (I _B = 0)	I _C = 100 mA	L = 25 mH	400			V
V _{CE(sat)} *	Collector-Emitter Saturation Voltage	I _C = 0.5 A I _C = 1 A I _C = 2.5 A	$I_B = 0.1 A$ $I_B = 0.2 A$ $I_B = 0.5 A$			0.7 1 1.5	V V V
V _{BE(sat)} *	Base-Emitter Saturation Voltage	$I_{C} = 0.5 A$ $I_{C} = 1 A$ $I_{C} = 2.5 A$	$I_{B} = 0.1 A$ $I_{B} = 0.2 A$ $I_{B} = 0.5 A$			1.1 1.2 1.3	V V V
h _{FE} *	DC Current Gain	$I_C = 10 \text{ mA}$ $I_C = 2 \text{ A}$	V _{CE} = 5 V V _{CE} = 5 V	10 8		40	
Vf	Forward Voltage Drop	$I_f = 2 A$				2.5	V
t _s t _f	RESISTIVE LOAD Storage Time Fall Time	V _{CC} = 250 V I _{B1} = 0.4 A T _p = 30 μs	$I_{C} = 2 A$ $I_{B2} = -0.4 A$ (see fig. 2)	2	0.2	2.9	μs μs
t _s t _f	INDUCTIVE LOAD Storage Time Fall Time		$I_{C} = 2 A$ $V_{BE(off)} = -5 V$ $L = 200 \mu H$		0.6 0.1		μs μs

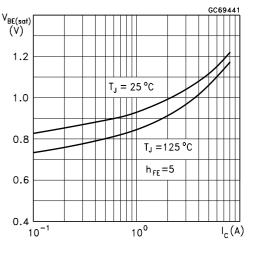
 \ast Pulsed: Pulse duration = 300 $\mu s,$ duty cycle 1.5 %

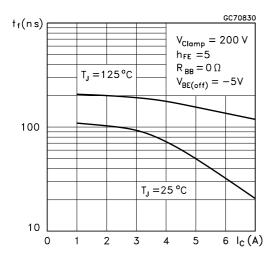

$I_{c}(A)$ I_C MAX PULSED PULSE OPERATION * 10¹ $10 \mu s$ Ic MAX CONT 100 μs 10⁰ 500 μs D.C. OPERATION 10 , ms For single non repetitive pulse 10^{-2} 10¹ 4 6 ⁸10² 10⁰ ⁴V_{CE}⁶(V)

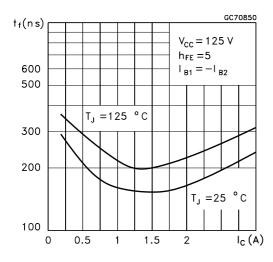
DC Current Gain

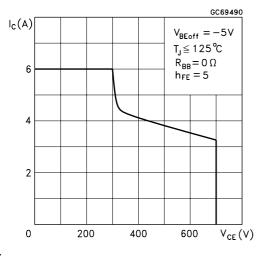

Safe Operating Areas

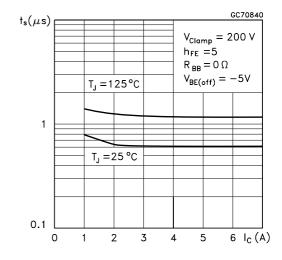

Collector Emitter Saturation Voltage

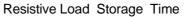

Derating Curve

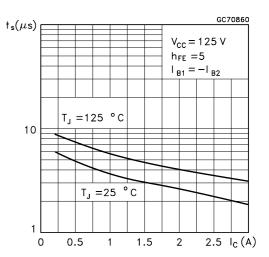

DC Current Gain


Base Emitter Saturation Voltage


Inductive Fall Time


Resistive Load Fall Time




Reverse Biased SOA

Inductive Storage Time

A7

4/7

Figure 1: Inductive Load Switching Test Circuit.

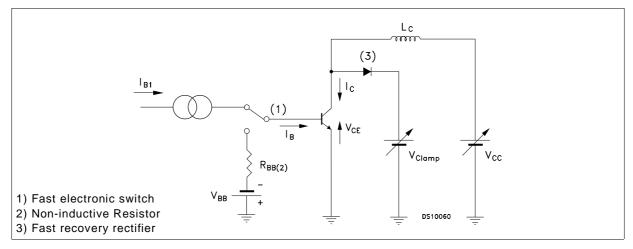
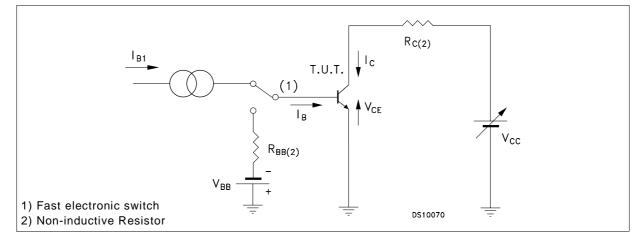
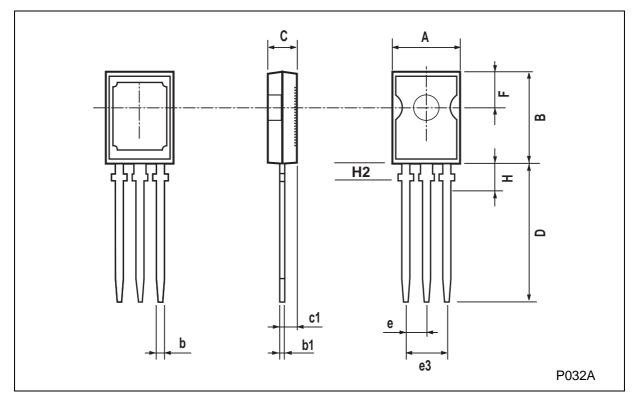



Figure 2: Resistive Load Switching Test Circuit.


A7/

BULK128D-B

DIM.	mm			inch			
2	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А	7.4		7.8	0.291		0.307	
В	10.5		10.8	0.413		0.444	
b	0.7		0.9	0.028		0.035	
b1	0.49		0.75	0.019		0.030	
С	2.4		2.7	0.04		0.106	
c1	1.0		1.3	0.039		0.05	
D	15.4		16	0.606		0.629	
е		2.2			0.087		
e3	4.15		4.65	0.163		0.183	
F		3.8			0.150		
Н			2.54		0.100		
H2		2.15			0.084		

SOT-82 MECHANICAL DATA

57

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a trademark of STMicroelectronics

© 2001 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco -Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

