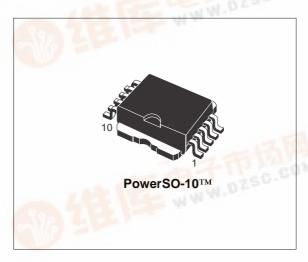
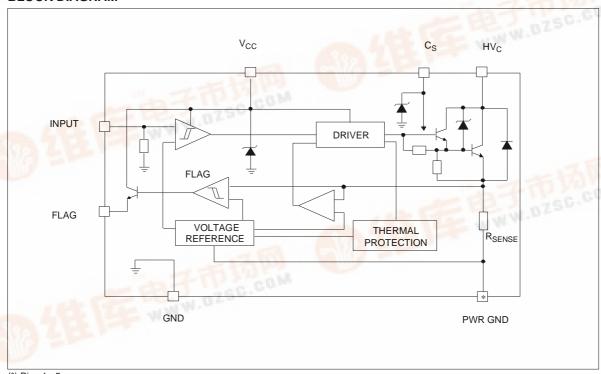


HIGH VOLTAGE IGNITION COIL DRIVER POWER I.C.


TYPE V _{cl}		I _{cl}	I _{CC}	
VB125ASP	340V	11.1A	200mA	

WWW.DZSC.COM

- PRIMARY COIL VOLTAGE INTERNALLY SET
- COIL CURRENT LIMIT INTERNALLY SET
- LOGIC LEVEL COMPATIBLE INPUT
- BATTERY OPERATION
- SINGLE FLAG-ON COIL CURRENT
- TEMPERATURE COMPENSATED HIGH VOLTAGE CLAMP



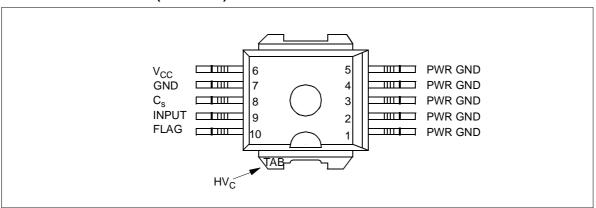
The VB125ASP is a high voltage power integrated circuit made using the STMicroelectronics VIPower™ M1-2 technology, with vertical current flow power darlington and logic level compatible driving circuit. The VB125ASP can be directly biased by using the 12V battery voltage, thus avoiding to use a low voltage regulator. It has

built-in protection circuit for coil current limiting and collector voltage clamping. It is suitable as smart, high voltage, high current interface in advanced electronic ignition system.

BLOCK DIAGRAM

(*) Pins 1...5

December 2000 1/9


ABSOLUTE MAXIMUM RATING

Symbol	Parameter	Value	Unit
HV _c	Collector voltage (Internally limited)	-0.3 to V _{cl}	V
I _C	Collector current (Internally limited)	11.1	А
V _{CC}	Driving stage supply voltage	-0.2 to 40	V
I _{CC}	Driving circuitry supply current	400	mA
Is	Logic circuitry supply current	100	mA
V _{IN}	Input voltage	-0.3 to 6	V
P _{tot}	Power dissipation at T _C ≤25 °C	100	W
V _{ESD}	ESD Voltage (HV _C pin)	-4 to 4	KV
V _{ESD}	ESD Voltage (other pin)	-2 to 2	KV
Tį	Junction operating temperature	-40 to 150	°C
T _{stg}	Storage temperature Range	-55 to 150	°C

THERMAL DATA

Symbol	Parameter		Value	Unit
R _{thj-case}	Thermal resistance junction-case	(MAX)	1.2	°C/W
R _{thi-amb}	Thermal resistance junction-ambient	(MAX)	62.5	°C/W

CONNECTION DIAGRAM (TOP VIEW)

PIN FUNCTION

2/9

No	Name	Function
1÷5	PWR GND	Emitter power ground
6	V _{CC}	Logic supply voltage
7	GND	Control ground (*)
8	C _s	Logic level supply voltage filter capacitor
9	INPUT	Logic input channel
10	FLAG	Diagnostic output signal
TAB	HV _C	Primary coil output driver

(*) Pin 7 must be connected to pins 1÷5 externally.

ELECTRICAL CHARACTERISTICS (V_{CC}=6 to 24V; -40°C<Tj<125°C; R_{coil}=400 to 700m Ω ; L_{coil}=2 to 6mH unless otherwise specified; see note 1)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
V	Lligh voltage elegen	I _C =7A; (See note 2)	340	370	400	V
V_{cl}	High voltage clamp	I _C =2A; (Switching off from 7A)	300		400	V
V	Power stage saturation	I _C =6A; V _{CC} =14V; V _{IN} =4V			2	V
$V_{cg(sat)}$	voltage	I _C =7A; V _{CC} =14V; V _{IN} =4V (See note 3)			3	V
1	Power-off supply current	V _{IN} =0.4V; V _{CC} =14V			20	mA
I _{CC(off)}	Power-on supply current	V _{IN} =0.4V; V _{CC} =24V (See note 4;5)			80	mA
	Dower on ounnly ourrent	V _{IN} =4V; V _{CC} <14V; I _C =4A			200	mA
I _{CC(on)}	Power-on supply current	V _{IN} =4V; V _{CC} =24V; I _C =4A (See note 4; 5)			300	mA
I _{cl}	Collector current limit	V _{IN} =4V; 10V <v<sub>CC<19V (See note 6; 7)</v<sub>	8.8		11.1	Α
V _{INH}	High level input voltage		4			V
V_{INL}	Low level input voltage				0.8	V
V _{IN(hyst)}	Hysteresis input voltage		0.4			V
I _{INH}	High level input current	V _{IN} =4V	10		150	μΑ
I _{INL}	Low level input current	V _{IN} =0.8V	0		30	μΑ
V_{diagH}	High level diagnostic output voltage	R _{EXT} =22KΩ; C _{EXT} =1nF (See note 8)	3.5		5.5	V
V_{diagL}	Low level diagnostic output voltage	R _{EXT} =22KΩ; C _{EXT} =1nF (See note 8)			0.5	V
		T _j =-40°C; 10V <v<sub>CC<19V</v<sub>	5.45		6.8	Α
I	Threshold level collector current	T _j =25°C; 10V <v<sub>CC<19V</v<sub>	5.55		6.35	Α
I _{C(diag)}		T _j =125°C; 10V <v<sub>CC<19V</v<sub>	5.5		6.35	Α
		(See note 7; 9 and fig. 5)				
		T _j =-40°C; V _{CC} =7V	5.9		6.6	Α
	Threshold level collector	T _j =25°C; V _{CC} =7V	5.7		6.3	Α
I _{C(diag)}	current	T _j =125°C; V _{CC} =7V	5.5		6.3	Α
		(See note 7; 9 and fig. 5)				
I _{diag}	High level flag output current	I _C >I _{C(diag)} (See note 7)	0.5			mA
I _{diag(leak)}	Leakage current on flag output	V _{IN} =LOW			10	μΑ
V _f	Diode forward voltage	I _f =10A			3.5	V
E _{s/b}	Single pulse avalanche energy		300			mJ
Tj	Thermal output current control	IN=ON (See note 10)	150			°C
t _{d(on)}	Turn-on delay time of output current	(See note 11)		1		μs
$t_{d(off)}$	Turn-off delay time of output current	(See note 12)	7		60	μs

NOTE 1: Only functionality is guaranteed with 6V<V $_{CC}$ <10V and V $_{CC}$ >24V and not parameter values.

NOTE 2: In the high voltage clamping structure of this device a temperature compensation has been implemented. The circuit schematic is shown in fig. 1. The KVbe cell takes care of the temperature compensation. The whole electrical characteristic of the new circuit is shown in fig. 2. Up to V_{CE} =n V_{Z} no current will flow into the collector (just the leakage current of the power stage); for n V_{Z} < V_{CE} < V_{cl} a current begins to flow across the resistances of the KVbe compensation circuit (typical slope \cong 20 K Ω) as soon as the V_{cl} reached the dinamic resistance drop to \sim 4 Ω to protect the device against overvoltage (See figure 3).

NOTE 3: The saturation voltage of the Power stage includes the drop on the sensing resistor.

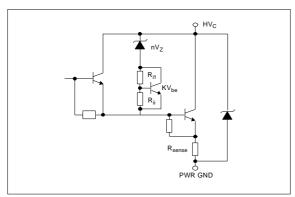
NOTE 4: Considering the different ways of operation of the device (with or without spark, etc...) there are some short periods of time in which the output terminal (HV_C) is pulled below ground by a negative current due to leakage inductances and stray capacitances of the ignition coil. With VIPower devices, if no corrective action is taken, these negative currents can cause parasitic glitches on the diagnostic output. To kill this potential problem, a circuit that avoids the possibility for the HV_C to be pulled underground, by sending the required negative current from the battery is implemented in the VB125ASP. For this reason there are some short periods in which a current exceeding 220 mA flows in the V_{CC} pin.

NOTE 5: A zener protection of 16V (typical) is placed on the supply pin (V_{CC}) of the chip to protect the internal circuitry. For this reason, when the battery voltage exceeds that value, the current flowing into V_{CC} pin can be greater than the maximum current specified at V_{CC} =14V (both in power on and power off conditions): it will be limited by an internal resistor.

NOTE 6: The primary coil current value I_{cl} must be measured 1 ms after desaturation of the power stage.

NOTE 7: These limits apply with regard to the minimum battery voltage and resistive drop on the coil and cables that permit to reach the limitation or diagnostic level.

NOTE 8: No internal Pull-Down.


NOTE 9: When I_C gets over $I_{C(diag)}$, the diagnostic output voltage rises to the high level and so it remains until the end of the input signal.

NOTE 10: T_{jmin} =150°C means that the behavior of the device will not be affected for junction temperature lower than 150°C. For higher temperature, the thermal protection circuit will begin its action reducing the I_{cl} limit according with the power dissipation. Chip temperature is a function of the R_{th} of the whole system in which the device will be operating (See Fig.4).

NOTE 11: Turn on delay time measured from 90% of input voltage rising edge to 10% of output voltage falling edge.

NOTE 12: Turn off delay time is defined as the time between the 90% of input pulse falling edge and the point where the HV_C reaches 200V.

FIGURE 1: Temperature compensated high voltage clamp

FIGURE 2: Electrical characteristic of the circuit shown in Figure 1.

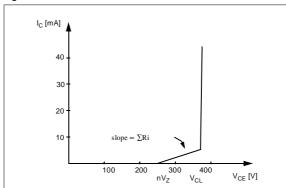


FIGURE 3: V_{cl} with load L≅4mH

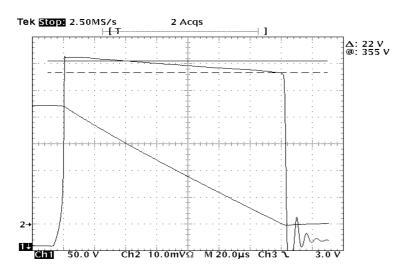


FIGURE 4: Output Current Waveform after Thermal Protection Activation.

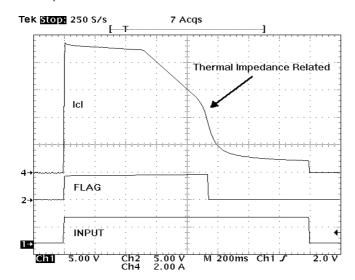


FIGURE 5: Waveforms

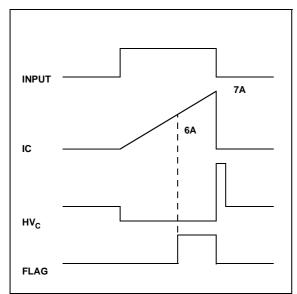
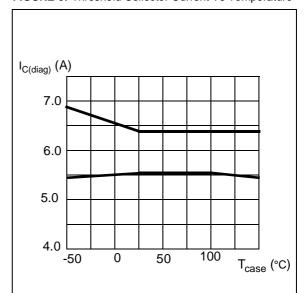
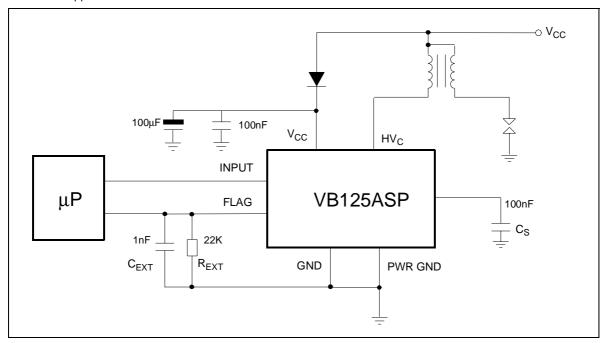
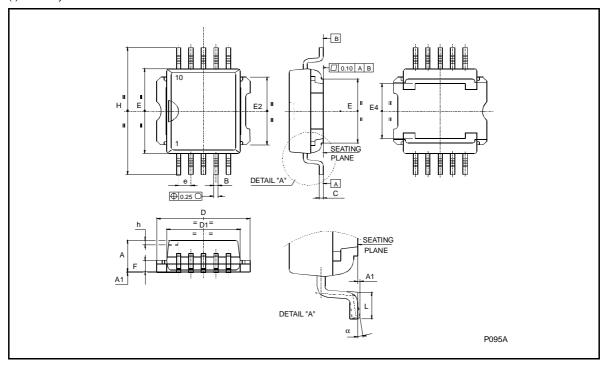


FIGURE 6: Threshold Collector Current Vs Temperature

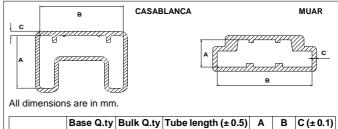




FIGURE 7: Application Circuit

PowerSO- 10^{TM} MECHANICAL DATA

DIM.		mm.		inch		
DIIVI.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α	3.35		3.65	0.132		0.144
A (*)	3.4		3.6	0.134		0.142
A1	0.00		0.10	0.000		0.004
В	0.40		0.60	0.016		0.024
B (*)	0.37		0.53	0.014		0.021
Ċ	0.35		0.55	0.013		0.022
C (*)	0.23		0.32	0.009		0.0126
D	9.40		9.60	0.370		0.378
D1	7.40		7.60	0.291		0.300
Е	9.30		9.50	0.366		0.374
E2	7.20		7.60	0.283		300
E2 (*)	7.30		7.50	0.287		0.295
E4	5.90		6.10	0.232		0.240
E4 (*)	5.90		6.30	0.232		0.248
е		1.27			0.050	
F	1.25		1.35	0.049		0.053
F (*)	1.20		1.40	0.047		0.055
Н	13.80		14.40	0.543		0.567
H (*)	13.85		14.35	0.545		0.565
h		0.50			0.002	
L	1.20		1.80	0.047		0.070
L (*)	0.80		1.10	0.031		0.043
α	0°		8°	00		8º
α (*)	2º		8°	2º		8º

(*) Muar only POA P013P


9.5

PowerSO-10TM SUGGESTED PAD LAYOUT

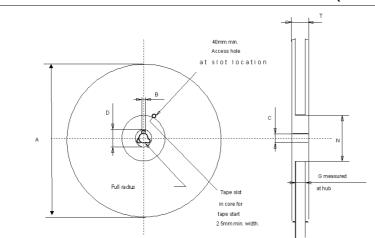
6.30

0.54 - 0.6

TUBE SHIPMENT (no suffix)

1000

1000


50

50

TAPE AND REEL SHIPMENT (suffix "13TR")

Casablanca

Muar

REEL DIMENSIONS

532

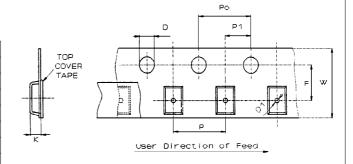
532

10.4 16.4

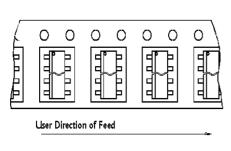
4.9 17.2

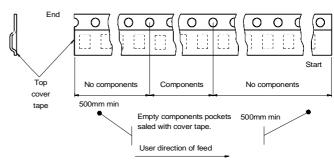
0.8

0.8


600
600
330
1.5
13
20.2
24.4
60
30.4

All dimensions are in mm.


TAPE DIMENSIONS


According to Electronic Industries Association (EIA) Standard 481 rev. A, Feb 1986

Tape width	W	24
Tape Hole Spacing	P0 (± 0.1)	4
Component Spacing	Р	24
Hole Diameter	D (± 0.1/-0)	1.5
Hole Diameter	D1 (min)	1.5
Hole Position	F (± 0.05)	11.5
Compartment Depth	K (max)	6.5
Hole Spacing	P1 (± 0.1)	2

All dimensions are in mm.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 2000 STMicroelectronics - Printed in ITALY- All Rights Reserved.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

