

S6B1400X

104 SEG / 65 COM DRIVER & CONTROLLER FOR STN LCD

Mar. 2002

Ver. 0.0

Contents in this document are subject to change without notice. No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without the express written permission of LCD Driver IC Team.

Precautions for Light

Light has characteristics to move electrons in the integrated circuitry of semiconductors, therefore may change the characteristics of semiconductor devices when irradiated with light. Consequently, the users of the packages which may expose chips to external light such as COB, COG, TCP and COF must consider effective methods to block out light from reaching the IC on all parts of the surface area, the top, bottom and the sides of the chip. Follow the precautions below when using the products.

1 Consider and verify the protection of penetrating light to the IC at substrate (board or glass) or product design stage.

Always test and inspect products under the environment with no penetration of light.

S6B1400X Specification Revision History

Version	Content	Date
0.0	Initial version	2002.03

CONTENTS

INTRODUCTION	1
FEATURES	1
BLOCK DIAGRAM	3
PAD CONFIGURATION	4
PAD CENTER COORDINATES	6
POWER SUPPLY	8
LCD DRIVER SUPPLY	8
SYSTEM CONTROL	9
MICROPROCESSOR INTERFACE	10
LCD DRIVER OUTPUTS	12
FUNCTIONAL DESCRIPTION	13
MICROPROCESSOR INTERFACE	13
DISPLAY DATA RAM (DDRAM)	18
LCD DISPLAY CIRCUITS	21
LCD DRIVER CIRCUITS	23
POWER SUPPLY CIRCUITS	24
RESET CIRCUIT	30
INSTRUCTION DESCRIPTION	31
SPECIFICATIONS	46
ABSOLUTE MAXIMUM RATINGS	46
DC CHARACTERISTICS	47
AC CHARACTERISTICS	50
REFERENCE APPLICATIONS	54
MICROPROCESSOR INTERFACE	54
CONNECTIONS BETWEEN S6B1400X AND LCD PANEL	56

INTRODUCTION

The S6B1400X is a single-chip driver & controller LSI for graphic dot-matrix liquid crystal display systems. This chip can be connected directly to a microprocessor, accepts serial or 8-bit parallel display data from the microprocessor, stores the display data in an on-chip display data RAM of 65×104 bits and generates a liquid crystal display drive signal independent of the microprocessor. It provides a high-flexible display section due to 1-to-1 correspondence between on-chip display data RAM bits and LCD panel pixels. It contains 65 common driver circuits and 104 segment driver circuits, so that a single chip can drive a 65×104 dot display. This chip is able to minimize power consumption because it performs display data RAM read/write operation with no external operation clock. In addition, because it contains power supply circuits necessary to drive liquid crystal, which is a display clock oscillator circuit, high performance voltage converter circuit, high-accuracy voltage regulator circuit, low power consumption voltage divider resistors and OP-Amp for liquid crystal driver power voltage, it is possible to make the lowest power consumption display system with the fewest components for high performance portable systems.

FEATURES

Display Driver Output Circuits

- 65 common outputs and 104 segment outputs

On-chip Display Data RAM

- Capacity: $65 \times 104 = 6,760$ bits
- RAM bit data “1”: a dot of display is illuminated
- RAM bit data “0”: a dot of display is not illuminated

Applicable Duty Ratios

Duty ratio	Applicable LCD bias	Maximum display area
1/65	1/7 or 1/9	65×104
1/55	1/6 or 1/8	55×104
1/49	1/6 or 1/8	49×104
1/33	1/5 or 1/6	33×104

Microprocessor Interface

- High-speed 8-bit parallel bi-directional interface with 6800-series or 8080-series
- SPI (Serial Peripheral Interface) available. (only write operation)

Various Function Set

- Display ON / OFF, set initial display line, set page address, set column address, read status, write/read display data, select segment driver output, reverse display ON / OFF, entire display ON / OFF, select LCD bias, set/reset modify-read, select common driver output, control display power circuit, select internal regulator resistor ratio for VLCD voltage regulation, electronic volume, set static indicator state.
- H/W and S/W Reset available
- Static drive circuit equipped internally for indicators with 4 flashing mode

Built-in Analog Circuit

- On-chip oscillator circuit for display clock
- High performance voltage converter (with booster ratios of x3 and x4)
- High accuracy voltage regulator (temperature coefficient: $-0.05 \pm 0.03\text{%/}^{\circ}\text{C}$ or external input)
- Electronic contrast control function (64 steps)
- $V_{ref} = 2.1\text{V} \pm 3\%$ (VLCD voltage adjustment voltage)
- High performance voltage follower (V1 to V4 voltage divider resistors and OP-Amp for increasing drive capacity)

Operating Voltage Range

- Supply voltage (VDD): 2.4 to 3.6 V
- Booster input voltage (VCI): VDD to 3.0 V (x4), VDD to 3.6 V (x3)
- LCD driving voltage (VLCD): 4.5 to 9.0 V

Low Power Consumption

- Operating power: 120 μA typical (conditions: VDD = 3V, x 3 boosting (VCI = VDD), VLCD = 7.6V, Internal power supply ON, display OFF and normal mode is selected)
- Standby power: 10 μA maximum (during power save[standby] mode)

Operating Temperatures

- Wide range of operating temperatures : -40 to 85 $^{\circ}\text{C}$

CMOS Process**Package Type**

- Gold bumped chip

BLOCK DIAGRAM

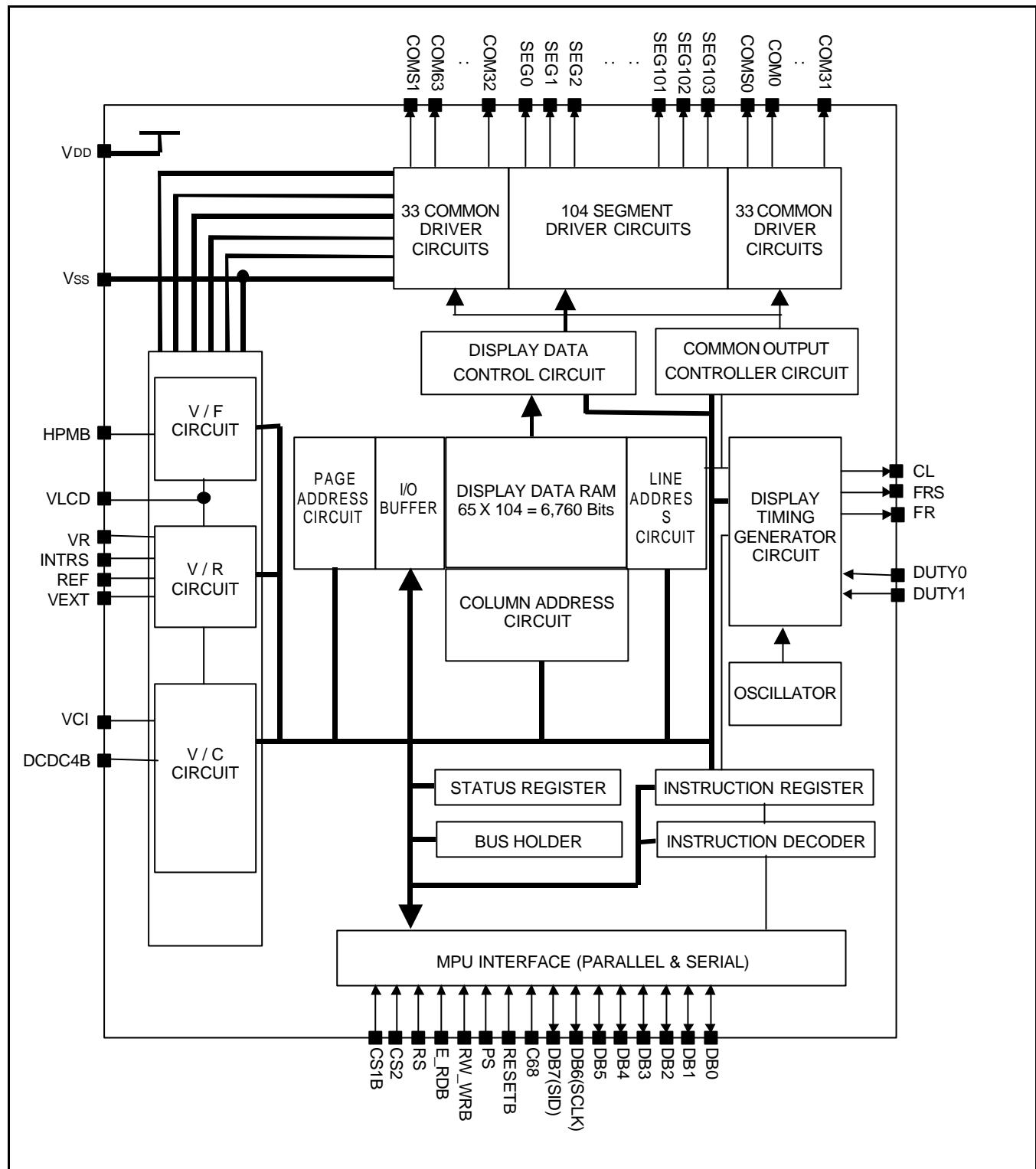


Figure 1. Block Diagram

PAD CONFIGURATION

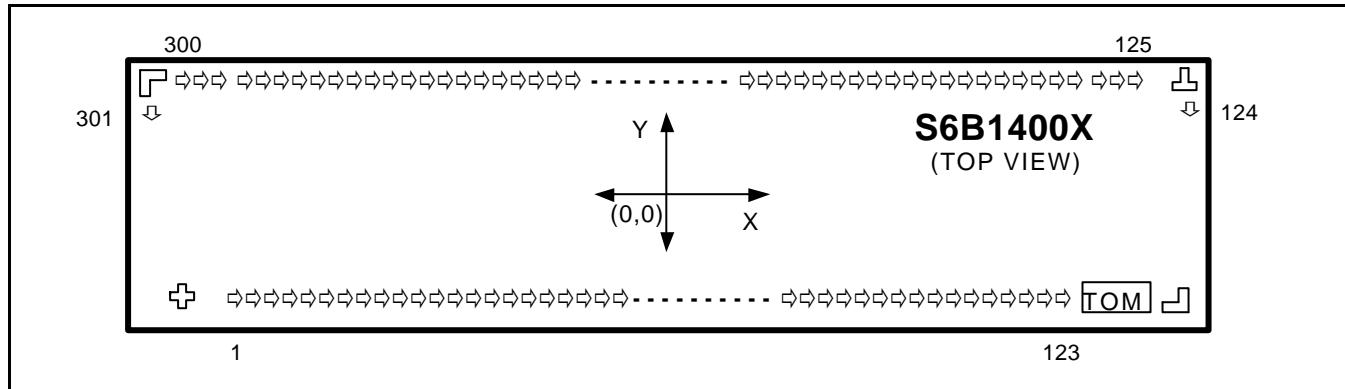
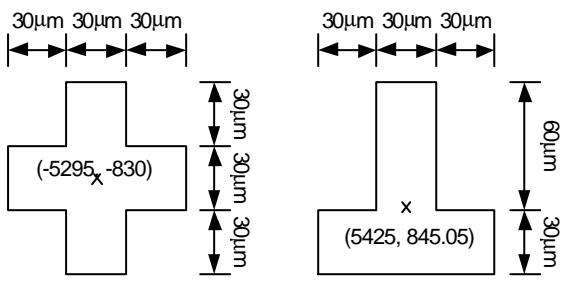
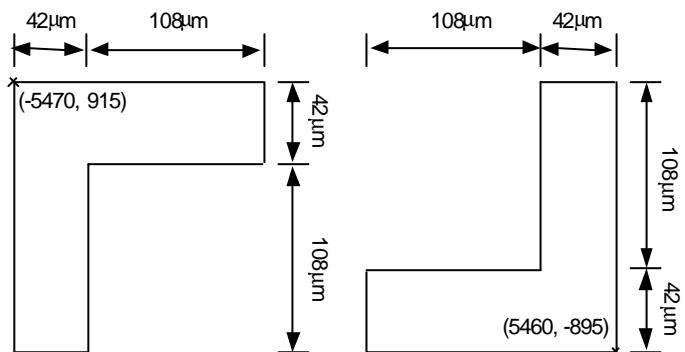
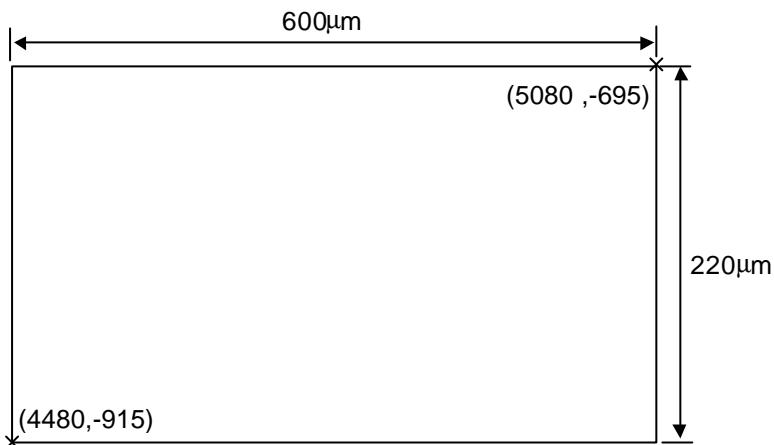




Figure 2. S6B1400X Chip Configuration

Table 1. S6B1400X Pad Dimensions


Item	Pad No.	Size		Unit
		X	Y	
Chip size	-	11080	1970	
Chip height	-	470 μ (\pm 10)		
Pad pitch	1 to 123		70(Min.)	μ m
	125 to 300		60(Min.)	
Bumped pad size (TOP)	1 to 123	50	100	
	124, 301	110	40	
	125 to 300	40	110	
Bumped pad height	All pad	14 (Typ.)		

COG Align Key Coordinate**ILB Align Key Coordinate (with Gold Bump *)**

* When designing COG pattern, ITO pattern must be prohibited on ILB Align Key, DUMMY pads, TEST pads. If ITO pattern is used for routing over these area, it can be happened pattern-short through bumped pattern on these area.

TOM (TEG On Main chip) Coordinate

The TOM has test items for process evaluation. There are many bumped PADs in this area as like main chip. So when designing COG pattern, ITO pattern must be prohibited on this area (TOM). If ITO pattern is used for routing over this area, it can be happened pattern-short through bumped PAD on TOM.

PAD CENTER COORDINATES

Table 2. Pad Center Coordinates

[Unit: μm]

Pad No.	Pad Name	Coordinate		Pad No.	Pad Name	Coordinate		Pad No.	Pad Name	Coordinate	
		X	Y			X	Y			X	Y
1	DUMMY<0>	-5020	-870	51	VSS	-1088	-870	101	VSS	2412	-870
2	FRS	-4950	-870	52	C68	-1018	-870	102	VR	2482	-870
3	FRI	-4880	-870	53	VDD	-948	-870	103	VSS	2552	-870
4	CL	-4810	-870	54	E RDB	-878	-870	104	TESTA0	2622	-870
5	TEST	-4740	-870	55	RW WRB	-808	-870	105	TESTB0	2692	-870
6	VDD	-4670	-870	56	VSS	-738	-870	106	VSS	2762	-870
7	VDD	-4600	-870	57	CS1B	-668	-870	107	VLCD	2832	-870
8	VDD	-4530	-870	58	CS2	-598	-870	108	VLCD	2902	-870
9	VDD	-4460	-870	59	VDD	-528	-870	109	VLCD	2972	-870
10	VDD	-4390	-870	60	VCI	-458	-870	110	VLCD	3042	-870
11	VDD	-4320	-870	61	VCI	-388	-870	111	VLCD	3112	-870
12	VDD	-4250	-870	62	VCI	-318	-870	112	VLCD	3182	-870
13	VDD	-4180	-870	63	VCI	-248	-870	113	TESTA1	3252	-870
14	VDD	-4110	-870	64	VCI	-178	-870	114	TESTB1	3322	-870
15	VDD	-4040	-870	65	VCI	-108	-870	115	TESTA2	3392	-870
16	VDD	-3970	-870	66	VCI	-38	-870	116	TESTB2	3462	-870
17	VDD	-3900	-870	67	VCI	32	-870	117	TESTA3	3532	-870
18	VCI	-3830	-870	68	VCI	102	-870	118	TESTB3	3602	-870
19	VCI	-3760	-870	69	VCI	172	-870	119	TESTA4	3888	-870
20	VCI	-3690	-870	70	VCI	242	-870	120	TESTB4	3958	-870
21	VCI	-3620	-870	71	VCI	312	-870	121	DUMMY<5>	4244	-870
22	VCI	-3550	-870	72	VDD	382	-870	122	RESETB	4314	-870
23	VCI	-3480	-870	73	VEXT	452	-870	123	DUMMY<6>	4384	-870
24	VCI	-3410	-870	74	VSS	522	-870	124	DUMMY<7>	5420	722
25	VCI	-3340	-870	75	REF	592	-870	125	DUMMY<8>	5284	838
26	VCI	-3270	-870	76	VDD	662	-870	126	COM<31>	5224	838
27	VCI	-3200	-870	77	DCDC4B	732	-870	127	COM<30>	5164	838
28	VCI	-3130	-870	78	VSS	802	-870	128	COM<29>	5104	838
29	VCI	-3060	-870	79	HPMB	872	-870	129	COM<28>	5044	838
30	VDD	-2990	-870	80	VDD	942	-870	130	COM<27>	4984	838
31	DB<0>	-2920	-870	81	INTRS	1012	-870	131	COM<26>	4924	838
32	DB<1>	-2850	-870	82	VSS	1082	-870	132	COM<25>	4864	838
33	DB<2>	-2780	-870	83	VSS	1152	-870	133	COM<24>	4804	838
34	DB<3>	-2710	-870	84	VSS	1222	-870	134	COM<23>	4744	838
35	DB<4>	-2640	-870	85	VSS	1292	-870	135	COM<22>	4684	838
36	DB<5>	-2570	-870	86	VSS	1362	-870	136	COM<21>	4624	838
37	DB<6>	-2500	-870	87	VSS	1432	-870	137	COM<20>	4564	838
38	DUMMY<1>	-2430	-870	88	VSS	1502	-870	138	COM<19>	4504	838
39	DUMMY<2>	-2144	-870	89	VSS	1572	-870	139	COM<18>	4444	838
40	DB<7>	-2074	-870	90	VSS	1642	-870	140	COM<17>	4384	838
41	DUMMY<3>	-2004	-870	91	VSS	1712	-870	141	COM<16>	4324	838
42	DUMMY<4>	-1718	-870	92	VSS	1782	-870	142	COM<15>	4264	838
43	VSS	-1648	-870	93	VSS	1852	-870	143	COM<14>	4204	838
44	DUTY0	-1578	-870	94	VSS	1922	-870	144	COM<13>	4144	838
45	VDD	-1508	-870	95	VSS	1992	-870	145	COM<12>	4084	838
46	DUTY1	-1438	-870	96	VSS	2062	-870	146	COM<11>	4024	838
47	VSS	-1368	-870	97	VSS	2132	-870	147	COM<10>	3964	838
48	RS	-1298	-870	98	VSS	2202	-870	148	COM<9>	3904	838
49	VDD	-1228	-870	99	VSS	2272	-870	149	COM<8>	3844	838
50	PS	-1158	-870	100	VSS	2342	-870	150	COM<7>	3784	838

Table 2. Pad Center Coordinates (Continued)

[Unit: μm]

Pad No.	Pad Name	Coordinate		Pad No.	Pad Name	Coordinate		Pad No.	Pad Name	Coordinate	
		X	Y			X	Y			X	Y
151	COM<6>	3724	838	201	SEG<63>	724	838	251	SEG<13>	-2276	838
152	COM<5>	3664	838	202	SEG<62>	664	838	252	SEG<12>	-2336	838
153	COM<4>	3604	838	203	SEG<61>	604	838	253	SEG<11>	-2396	838
154	COM<3>	3544	838	204	SEG<60>	544	838	254	SEG<10>	-2456	838
155	COM<2>	3484	838	205	SEG<59>	484	838	255	SEG<9>	-2516	838
156	COM<1>	3424	838	206	SEG<58>	424	838	256	SEG<8>	-2576	838
157	COM<0>	3364	838	207	SEG<57>	364	838	257	SEG<7>	-2636	838
158	COMS<0>	3304	838	208	SEG<56>	304	838	258	SEG<6>	-2696	838
159	DUMMY<9>	3244	838	209	SEG<55>	244	838	259	SEG<5>	-2756	838
160	DUMMY<10>	3184	838	210	SEG<54>	184	838	260	SEG<4>	-2816	838
161	SEG<103>	3124	838	211	SEG<53>	124	838	261	SEG<3>	-2876	838
162	SEG<102>	3064	838	212	SEG<52>	64	838	262	SEG<2>	-2936	838
163	SEG<101>	3004	838	213	SEG<51>	4	838	263	SEG<1>	-2996	838
164	SEG<100>	2944	838	214	SEG<50>	-56	838	264	SEG<0>	-3056	838
165	SEG<99>	2884	838	215	SEG<49>	-116	838	265	DUMMY<11>	-3116	838
166	SEG<98>	2824	838	216	SEG<48>	-176	838	266	DUMMY<12>	-3176	838
167	SEG<97>	2764	838	217	SEG<47>	-236	838	267	COM<32>	-3236	838
168	SEG<96>	2704	838	218	SEG<46>	-296	838	268	COM<33>	-3296	838
169	SEG<95>	2644	838	219	SEG<45>	-356	838	269	COM<34>	-3356	838
170	SEG<94>	2584	838	220	SEG<44>	-416	838	270	COM<35>	-3416	838
171	SEG<93>	2524	838	221	SEG<43>	-476	838	271	COM<36>	-3476	838
172	SEG<92>	2464	838	222	SEG<42>	-536	838	272	COM<37>	-3536	838
173	SEG<91>	2404	838	223	SEG<41>	-596	838	273	COM<38>	-3596	838
174	SEG<90>	2344	838	224	SEG<40>	-656	838	274	COM<39>	-3656	838
175	SEG<89>	2284	838	225	SEG<39>	-716	838	275	COM<40>	-3716	838
176	SEG<88>	2224	838	226	SEG<38>	-776	838	276	COM<41>	-3776	838
177	SEG<87>	2164	838	227	SEG<37>	-836	838	277	COM<42>	-3836	838
178	SEG<86>	2104	838	228	SEG<36>	-896	838	278	COM<43>	-3896	838
179	SEG<85>	2044	838	229	SEG<35>	-956	838	279	COM<44>	-3956	838
180	SEG<84>	1984	838	230	SEG<34>	-1016	838	280	COM<45>	-4016	838
181	SEG<83>	1924	838	231	SEG<33>	-1076	838	281	COM<46>	-4076	838
182	SEG<82>	1864	838	232	SEG<32>	-1136	838	282	COM<47>	-4136	838
183	SEG<81>	1804	838	233	SEG<31>	-1196	838	283	COM<48>	-4196	838
184	SEG<80>	1744	838	234	SEG<30>	-1256	838	284	COM<49>	-4256	838
185	SEG<79>	1684	838	235	SEG<29>	-1316	838	285	COM<50>	-4316	838
186	SEG<78>	1624	838	236	SEG<28>	-1376	838	286	COM<51>	-4376	838
187	SEG<77>	1564	838	237	SEG<27>	-1436	838	287	COM<52>	-4436	838
188	SEG<76>	1504	838	238	SEG<26>	-1496	838	288	COM<53>	-4496	838
189	SEG<75>	1444	838	239	SEG<25>	-1556	838	289	COM<54>	-4556	838
190	SEG<74>	1384	838	240	SEG<24>	-1616	838	290	COM<55>	-4616	838
191	SEG<73>	1324	838	241	SEG<23>	-1676	838	291	COM<56>	-4676	838
192	SEG<72>	1264	838	242	SEG<22>	-1736	838	292	COM<57>	-4736	838
193	SEG<71>	1204	838	243	SEG<21>	-1796	838	293	COM<58>	-4796	838
194	SEG<70>	1144	838	244	SEG<20>	-1856	838	294	COM<59>	-4856	838
195	SEG<69>	1084	838	245	SEG<19>	-1916	838	295	COM<60>	-4916	838
196	SEG<68>	1024	838	246	SEG<18>	-1976	838	296	COM<61>	-4976	838
197	SEG<67>	964	838	247	SEG<17>	-2036	838	297	COM<62>	-5036	838
198	SEG<66>	904	838	248	SEG<16>	-2096	838	298	COM<63>	-5096	838
199	SEG<65>	844	838	249	SEG<15>	-2156	838	299	COMS<1>	-5156	838
200	SEG<64>	784	838	250	SEG<14>	-2216	838	300	DUMMY<13>	-5216	838
								301	DUMMY<14>	-5420	662

PIN DESCRIPTION

POWER SUPPLY

Table 3. Power Supply Pins Description

Name	I/O	Description
VDD	Supply	Power supply
VSS	Supply	Ground

LCD DRIVER SUPPLY

Table 4. LCD Driver Supply Pins Description

Name	I/O	Description
VLCD	O	LCD power supply output pin Connect this pin to Vss through capacitor.(Capacitor is greater than 1 μ F)
DCDC4B	I	4 times boosting circuit enable input pin – DCDC4B = "H": 3 times boosting – DCDC4B = "L": 4 times boosting
VR	I	VLCD voltage adjustment pin It is valid only when internal voltage regulator resistors are not used (INTRS = "L").
VCI	I	This is the reference voltage for the voltage converter circuit for the LCD driving. Whether internal voltage converter use or not use, this pin should be fixed. The voltage should have the following range: $2.4V \leq VCI \leq 3.6V$ ($VCI \geq VDD$)
VEXT	I	This is the external-input reference voltage (VREF) for the internal voltage regulator. It is valid only when external VREF is used (REF = "L"). When using internal VREF, this pin is Open
REF	I	Select the external VREF voltage via VEXT pin – REF = "L": using the external VREF – REF = "H": using the internal VREF

SYSTEM CONTROL

Table 5. System Control Pins Description

Name	I/O	Description															
CL	O	Display clock output pin															
FRS	O	Static driver segment output pin This pin is used together with the FR pin.															
FR	O	Static driver common output pin This pin is used together with the FRS pin.															
INTRS	I	Internal resistor select pin This pin selects the resistors for adjusting VLCD voltage level. – INTRS = “H”: the internal resistors are used – INTRS = “L”: the external resistors are used VLCD voltage is controlled by VR pin and external resistive divider. (* refer to page 28)															
DUTY0 DUTY1	I	The LCD driver duty ratio depends on the following table.															
		<table border="1"> <thead> <tr> <th>DUTY1</th> <th>DUTY0</th> <th>Duty ratio</th> </tr> </thead> <tbody> <tr> <td>L</td> <td>L</td> <td>1/33</td> </tr> <tr> <td>L</td> <td>H</td> <td>1/49</td> </tr> <tr> <td>H</td> <td>L</td> <td>1/55</td> </tr> <tr> <td>H</td> <td>H</td> <td>1/65</td> </tr> </tbody> </table>	DUTY1	DUTY0	Duty ratio	L	L	1/33	L	H	1/49	H	L	1/55	H	H	1/65
DUTY1	DUTY0	Duty ratio															
L	L	1/33															
L	H	1/49															
H	L	1/55															
H	H	1/65															
HPMB	I	Power control pin of the power supply circuits for LCD driver. – HPMB = “H”: normal mode – HPMB = “L”: high power mode															

MICROPROCESSOR INTERFACE

Table 6. Microprocessor Interface Pins Description

Name	I/O	Description						
RESETB	I	Reset input pin When RESETB is "L", initialization is executed.						
PS	I	Parallel / Serial data input select input						
		PS	Interface mode	Chip select	Data / instruction	Data	Read / Write	Serial clock
		H	Parallel	CS1B, CS2	RS	DB0 to DB7	E_RDB RW_WRB	-
		L	Serial	CS1B, CS2	RS	SID (DB7)	Write only	SCLK (DB6)
*Note: In serial mode, it is impossible to read data from the on-chip RAM. And DB0 to DB5 are high impedance and E_RDB and RW_WRB must be fixed to either "H" or "L".								
C68	I	Microprocessor interface select input pin – PS = "H", C68 = "H": 6800-series parallel MPU interface – PS = "H", C68 = "L": 8080-series parallel MPU interface – PS = "L", C68 = "H": 4 pin-SPI serial MPU interface – PS = "L", C68 = "L": 3 pin-SPI serial MPU interface						
CS1B CS2	I	Chip select input pins Data/instruction I/O is enabled only when CS1B is "L" and CS2 is "H". When chip select is non-active, DB0 to DB7 may be high impedance.						
RS	I	Register select input pin – RS = "H": DB0 to DB7 are display data – RS = "L": DB0 to DB7 are control data * This pin must be fixed to either "H" or "L" in case of 3 pin-SPI serial MPU interface mode						
RW_WRB	I	Read / Write execution control pin						
		C68	MPU Type	RW_WRB	Description			
		H	6800-series	RW	Read / Write control input pin – RW_WRB = "H": read – RW_WRB = "L": write			
		L	8080-series	/WR	Write enable clock input pin The data on DB0 to DB7 are latched at the rising edge of the RW_WRB signal.			

Table 6. Microprocessor Interface Pins Description (Continued)

Name	I/O	Description		
E_RDB	I	Read / Write execution control pin		
		C68	MPU Type	E_RDB
		H	6800-series	E
		L	8080-series	/RD
				Read/Write control input pin – RW_WRB = "H": When E_RDB is "H", DB0 to DB7 are in an output status. – RW_WRB = "L": The data on DB0 to DB7 are latched at the falling edge of the E_RDB signal. Read enable clock input pin When E_RDB is "L", DB0 to DB7 are in an output status.
DB0 to DB7	I/O	8-bit bi-directional data bus that is connected to the standard 8-bit microprocessor data bus. When the serial interface selected (PS = "L"), – DB0 to DB5: high impedance – DB6: serial input clock (SCLK) – DB7: serial input data (SID) When chip select is not active, DB0 to DB7 may be high impedance.		
TESTs	I/O	These are pins for chip test. They are set to open.		

NOTE: DUMMYs – These pins should be opened (floated).

LCD DRIVER OUTPUTS

Table 7. LCD Driver Output Pins Description

Name	I/O	Description			
SEG0 to SEG103	O	LCD segment driver outputs The display data and the FR signal control the output voltage of segment driver.			
		Display data	FR	Segment driver output voltage	
				Normal display	Reverse display
		H	H	VLCD	V2
		H	L	VSS	V3
		L	H	V2	VLCD
		L	L	V3	VSS
		Power save mode		VSS	VSS
COM0 to COM63	O	LCD common driver outputs The internal scanning data and FR signal control the output voltage of common driver.			
		Scan data	FR	Common driver output voltage	
		H	H	VSS	
		H	L	VLCD	
		L	H	V1	
		L	L	V4	
		Power save mode		VSS	
COMS0 COMS1	O	Common output for the icons The output signals of two pins are same. When not used, these pins should be left open.			

FUNCTIONAL DESCRIPTION

MICROPROCESSOR INTERFACE

Chip Select Input

There are CS1B and CS2 pins for chip selection. The S6B1400X can interface with an MPU only when CS1B is "L" and CS2 is "H". When these pins are set to any other combination, RS, E_RDB, and RW_WRB inputs are disabled and DB0 to DB7 are to be high impedance. And, in case of serial interface, the internal shift register and the counter are reset.

Parallel / Serial Interface

S6B1400X has four types of interface with an MPU, which are two serial and two parallel interfaces. This parallel or serial interface is determined by PS pin as shown in table 8.

Table 8. Parallel / Serial Interface Mode

PS	Type	CS1B	CS2	C68	Interface mode
H	Parallel	CS1B	CS2	H	6800-series MPU mode
				L	8080-series MPU mode
L	Serial	CS1B	CS2	H	4 pin-SPI serial MPU mode
				L	3 pin-SPI serial MPU mode

Parallel Interface (PS = "H")

The 8-bit bi-directional data bus is used in parallel interface and the type of MPU is selected by C68 as shown in table 9. The type of data transfer is determined by signals at RS, E_RDB and RW_WRB as shown in table 10.

Table 9. Microprocessor Selection for Parallel Interface

C68	CS1B	CS2	RS	E_RDB	RW_WRB	DB0 to DB7	MPU bus
H	CS1B	CS2	RS	E	RW	DB0 to DB7	6800-series
L	CS1B	CS2	RS	/RD	/WR	DB0 to DB7	8080-series

Table 10. Parallel Data Transfer

Common	6800-series		8080-series		Description
RS	E_RDB (E)	RW_WRB (RW)	E_RDB (/RD)	RW_WRB (/WR)	
H	H	H	L	H	Display data read out
H	H	L	H	L	Display data write
L	H	H	L	H	Register status read
L	H	L	H	L	Writes to internal register (instruction)

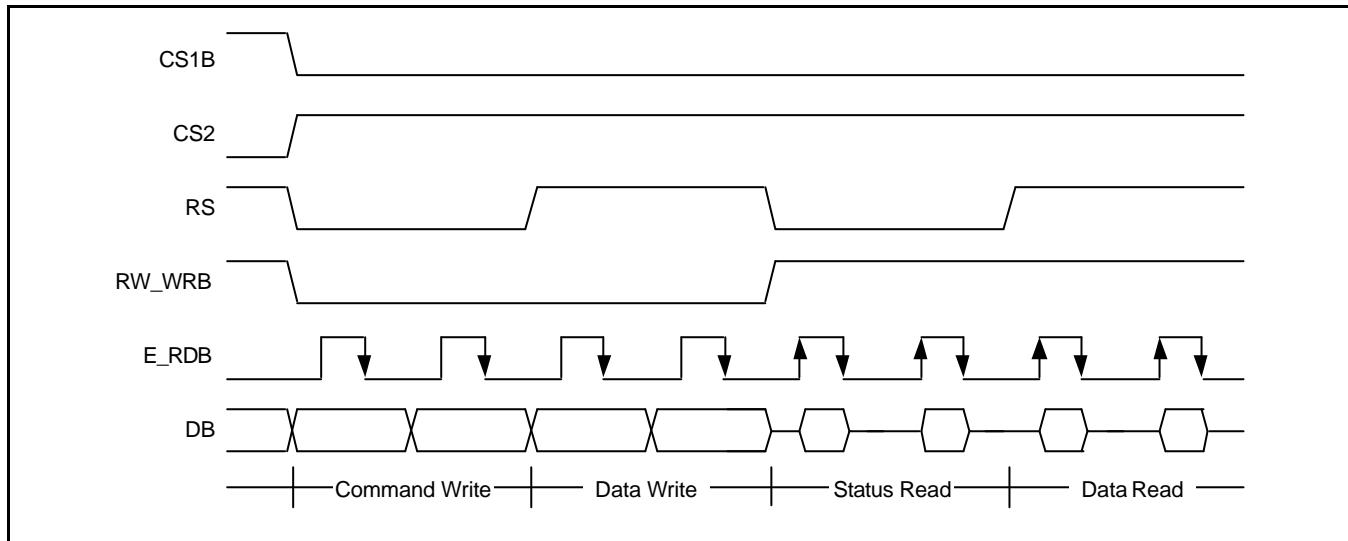


Figure 2-1. 6800-Series MPU Interface protocol (PS="H", C68="H")

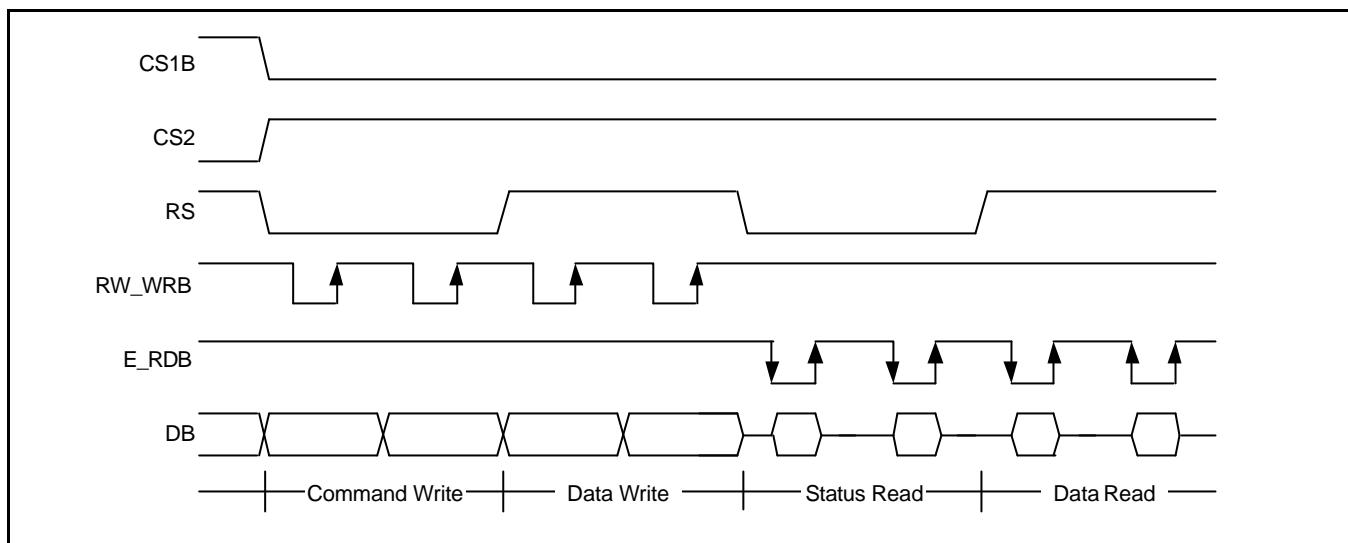


Figure 2-2. 8080-Series MPU Interface Protocol (PS="H", C68="L")

Serial Interface (PS = "L")

When the S6B1400X is active (CS1B="L", CS2="H"), serial data (DB7) and serial clock (DB6) inputs are enabled. And not active, the internal 8-bit shift register and the 3-bit counter are reset. The display data/command indication may be controlled either via software or the Register Select (RS) Pin, based on the setting of C68. When the RS pin is used (PS = "H"), data is display data when RS is high, and command data when RS is low. When RS is not used (C68 = "L"), the LCD Driver will receive command from MPU by default. If messages on the data pin are data rather than command, MPU should send Data Direction command (10000000) to control the data direction and then one more command to define the number of data bytes will be write. After these two continuous commands are sending, the following messages will be data rather than command. Serial data can be read on the rising edge of serial clock going into DB6 and processed as 8-bit parallel data on the eighth serial clock. And the DDRAM column address pointer will be increased by one automatically. The next bytes after the display data string is handled as command data.

Serial data can be read on the rising edge of serial clock going into DB6 and processed as 8-bit parallel data on the eighth serial clock. Since the clock signal (DB6) is easy to be affected by the external noise caused by the line length, the operation check on the actual machine is recommended.

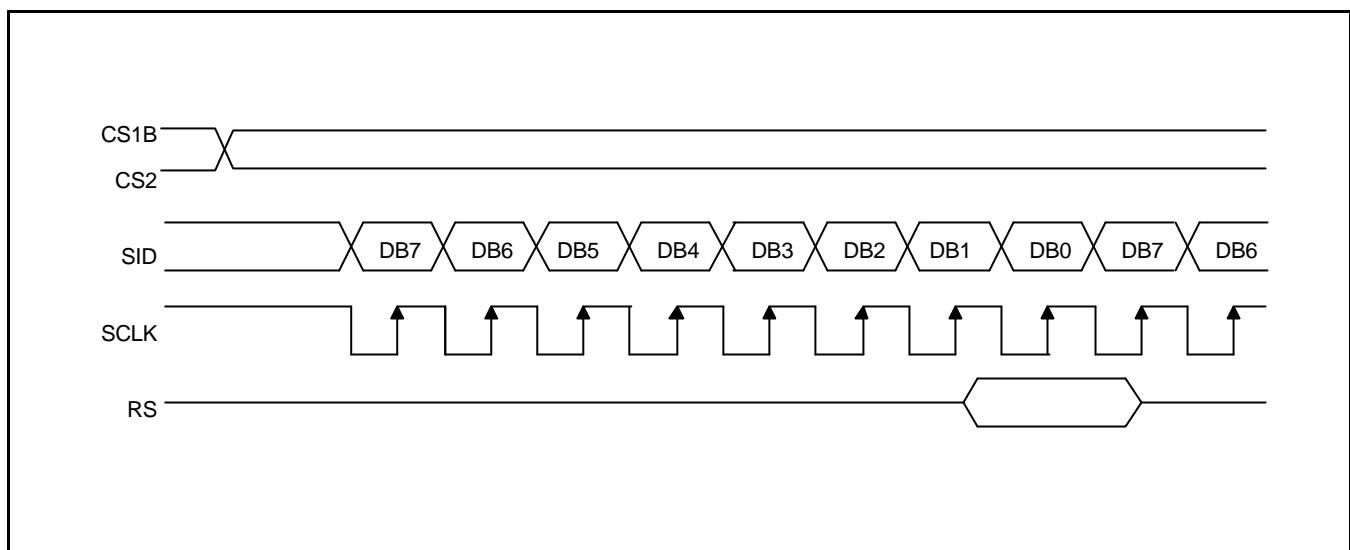

The serial interface type is selected by setting C68 as shown in table 11.

Table 11. Parallel / Serial Interface Mode

Serial Mode	PS	C68	Chip Select	Register Select	Serial Data / Clock input
4 pin SPI serial mode	L	H	CS1B, CS2	RS pin	DB7 / DB6
3 pin SPI serial mode	L	L	CS1B, CS2	Software	DB7 / DB6

4 Pin SPI Serial Interface (PS = "L", C68 = "H")

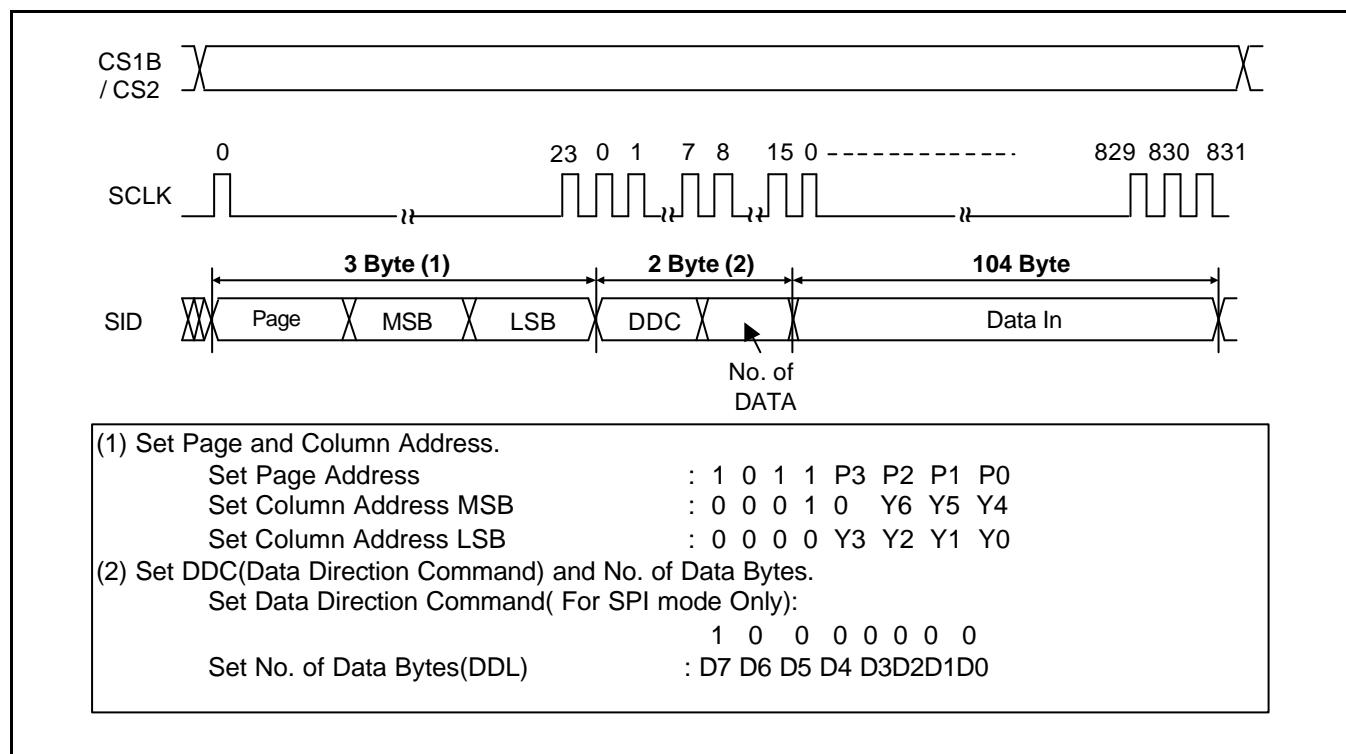

In 4-pin serial interface mode, RS pin is used for indicating whether serial data input is display or instruction data. Data is display data when RS is high and instruction data when RS is low.

Figure 3. 4 Pin SPI serial Interface Timing (RS used)

3 Pin-SPI Interface (PS = "L", C68 = "L")

In 3-Pin SPI Interface mode, the pre-defined instruction called Display Data Length, is used to indicate whether serial data input is display or instruction data instead of RS pin. The data is handled as instruction data until the Display Data Length instruction is issued. This Display Data Length instruction consists of two bytes instruction. The first byte instruction enables the next instruction to be valid, and the data of the second byte indicates that a specified number of display data bytes (1 to 256) are to be transmitted. The next byte after the display data string is handled as instruction data. For details, refers to figure 4.

Figure 4. 3 Pin SPI Timing (RS is not used)

This command is used in 3-Pin SPI mode only. It will be two continuous commands, the first byte controls the data direction and informs the LCD driver the second byte will be number of data bytes will be write. After these two commands sending out, the following messages will be data. If data is stopped in transmitting, it is not valid data. New data will be transferred serially with most significant bit first.

*NOTES:

- In spite of transmission of data, if CS1B will be disable, state terminates abnormally. Next state is initialized.
- The number of writing display data = DDL register value + 1

Busy Flag

The busy flag indicates whether the S6B1400X is operating or not. When DB7 is "H" in read status operation, this device is in busy status and will accept only read status instruction. If the cycle time is correct, the microprocessor needs not to check this flag before each instruction, which improves the MPU performance.

Data Transfer

The S6B1400X uses bus holder and internal data bus for data transfer with the MPU. When writing data from the MPU to on-chip RAM, data is automatically transferred from the bus holder to the RAM as shown in figure 5. And when reading data from on-chip RAM to the MPU, the data for the initial read cycle is stored in the bus holder (dummy read) and the MPU reads this stored data from bus holder for the next data read cycle as shown in figure 6. This means that a dummy read cycle must be inserted between each pair of address sets when a sequence of address sets is executed. Therefore, the data of the specified address cannot be output with the read display data instruction right after the address sets, but can be output at the second read of data.

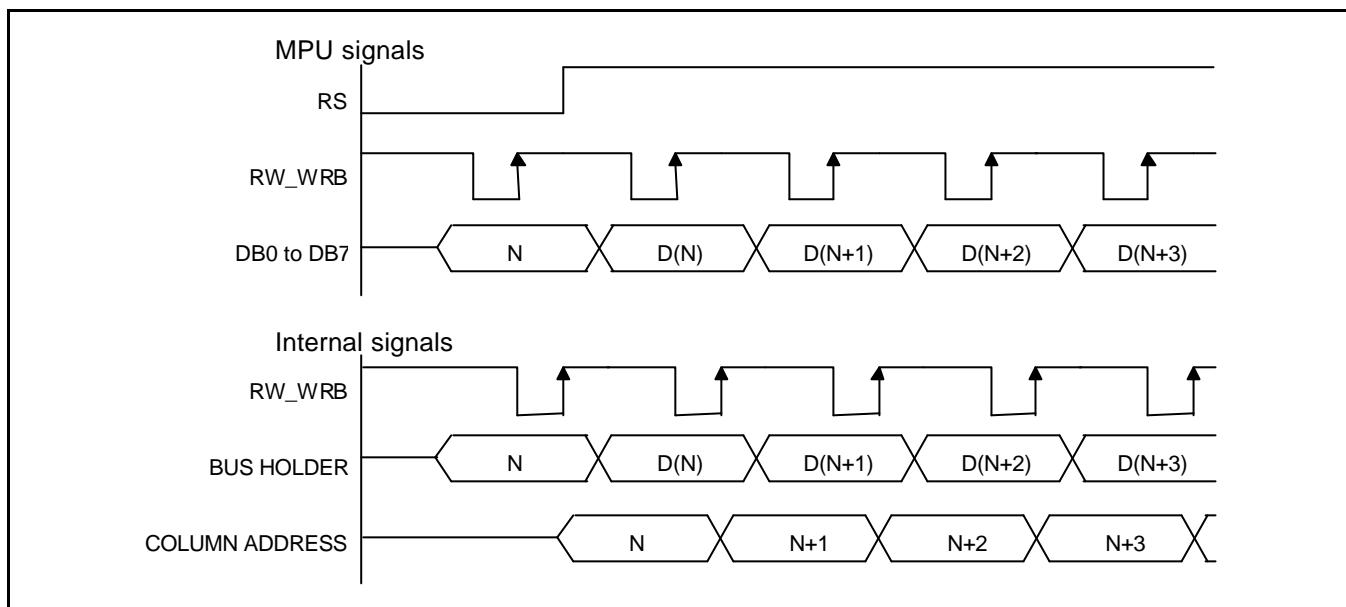


Figure 5. Write Timing

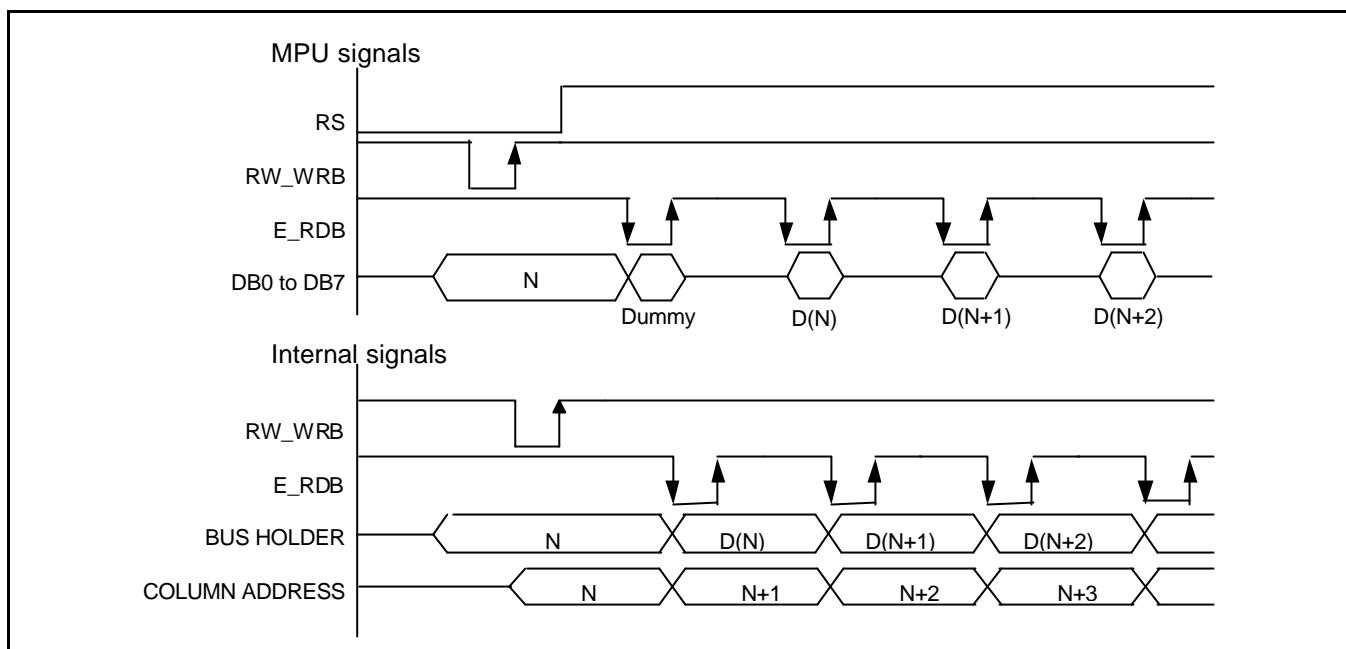


Figure 6. Read Timing

DISPLAY DATA RAM (DDRAM)

The Display Data RAM stores pixel data for the LCD. It is 65-row by 104-column addressable array. Each pixel can be selected when the page and column addresses are specified. The 65 rows are divided into 8 pages of 8 lines and the 9th page with a single line (DB0 only). Data is read from or written to the 8 lines of each page directly through DB0 to DB7. The display data of DB0 to DB7 from the microprocessor correspond to the LCD common lines as shown in figure 7. The microprocessor can read from and write to RAM through the I/O buffer. Since the LCD controller operates independently, data can be written into RAM at the same time as data is being displayed without causing the LCD flicker.

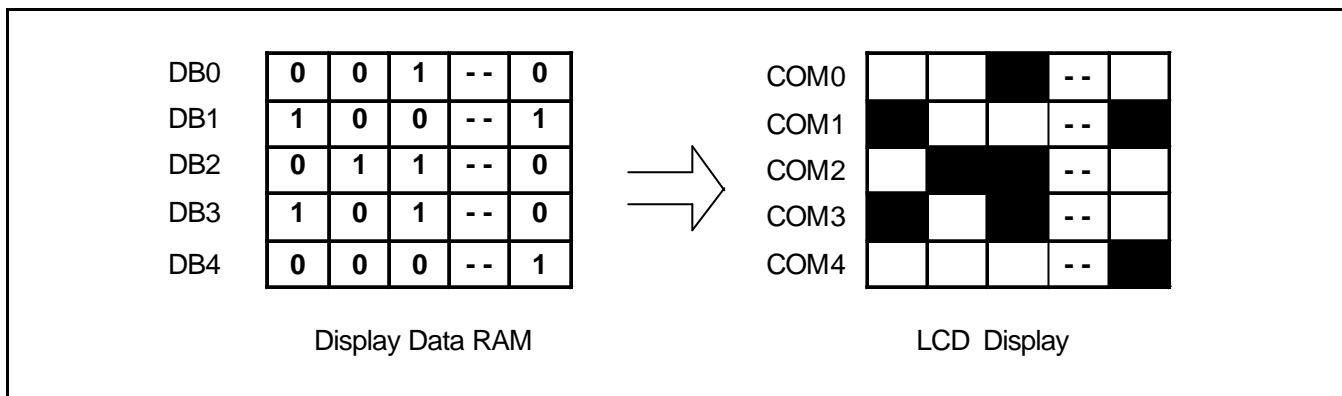


Figure 7. RAM-to-LCD Data Transfer

Page Address Circuit

This circuit is for providing a page address to Display Data RAM shown in figure 9. It incorporates 4-bit page address register changed by only the "Set Page" instruction. Page Address 8 (DB3 is "H", but DB2, DB1 and DB0 are "L") is a special RAM area for the icons and display data DB0 is only valid. When Page Address is above 8, it is impossible to access to on-chip RAM.

Line Address Circuit

This circuit assigns DDRAM a line address corresponding to the first line (COM0) of the display. Therefore, by setting line address repeatedly, it is possible to realize the screen scrolling and page switching without changing the contents of on-chip RAM as shown in figure 9. It incorporates 6-bit line address register changed by only the Initial Display Line instruction and 6-bit counter circuit. At the beginning of each LCD frame, the contents of register are copied to the line counter which is increased by CL signal and generates the line address for transferring the 104-bit RAM data to the display data latch circuit. However, display data of icons are not scrolled because the MPU cannot access line address of icons.

Column Address Circuit

Column address circuit has a 7-bit preset counter that provides column address to the Display Data RAM as shown in figure 9. When Set Column Address MSB / LSB instruction is issued, 7-bit [Y6:Y0] is updated. And, since this address is increased by 1 each a Read or Write data instruction, microprocessor can access the display data continuously. However, the counter is not increased and locked if a non-existing address above 67H. It is unlocked if a column address is set again by set Column Address MSB/LSB instruction. And the column address counter is independent of page address register.

ADC Select instruction makes it possible to invert the relationship between the column address and the segment outputs. It is necessary to rewrite the display data on built-in RAM after issuing ADC Select instruction. Refer to the following figure 8.

SEG output	SEG 0	SEG 1	SEG 2	SEG 3	SEG 100	SEG 101	SEG 102	SEG 103
Column address [Y7:Y0]	00H	01H	02H	03H	64H	65H	66H	67H
Display data	1	0	1	0		1	1	0	0
LCD panel display (ADC = 0)	█	█	█	█	█	█	█	█
LCD panel display (ADC = 1)	█	█	█	█	█	█	█	█	█

Figure 8. The Relationship between the Column Address and the Segment Outputs

Segment Control Circuit

This circuit controls the display data by the display ON / OFF, reverse display ON / OFF and entire display ON / OFF instructions without changing the data in the display data RAM.

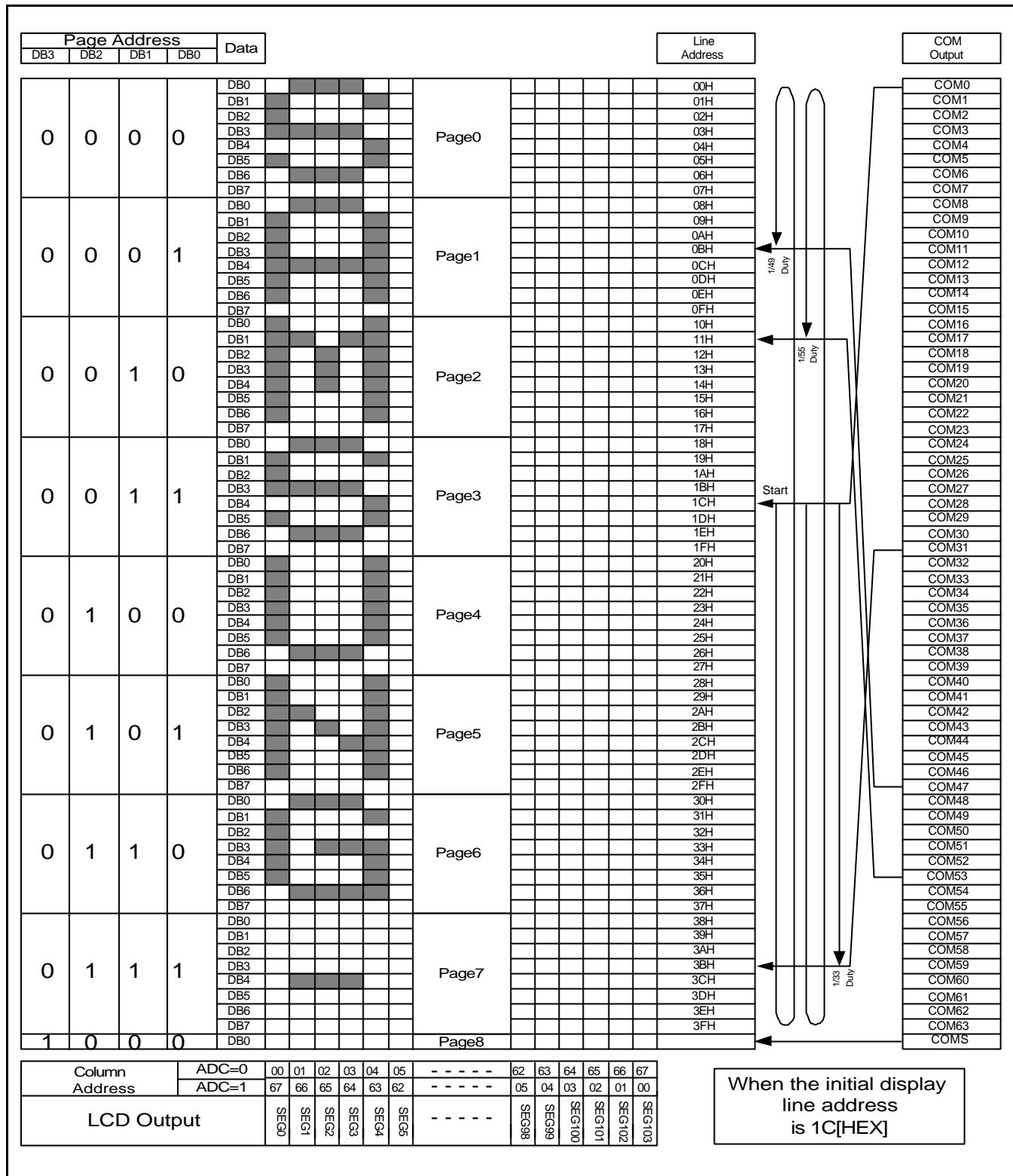


Figure 9. Display Data RAM Map

LCD DISPLAY CIRCUITS

Oscillator

This is completely on-chip oscillator and its frequency is nearly independent of VDD. This oscillator signal is used in display timing generation circuit.

Display Timing Generator Circuit

This circuit generates some signals to be used for displaying LCD. The display clock, CL generated by oscillation clock, generates a clock to the line counter and a latch signal to the display data latch. The line address of on-chip RAM is generated in synchronization with the display clock (CL) and the 104-bit display data is latched by the display data latch circuit in synchronization with the display clock. The display data which is read to the LCD driver is completely independent of the access to the display data RAM from the microprocessor. The LCD AC signal, FR is generated from the display clock. 2-frame AC driver waveforms with internal timing signal are shown in figure 10.

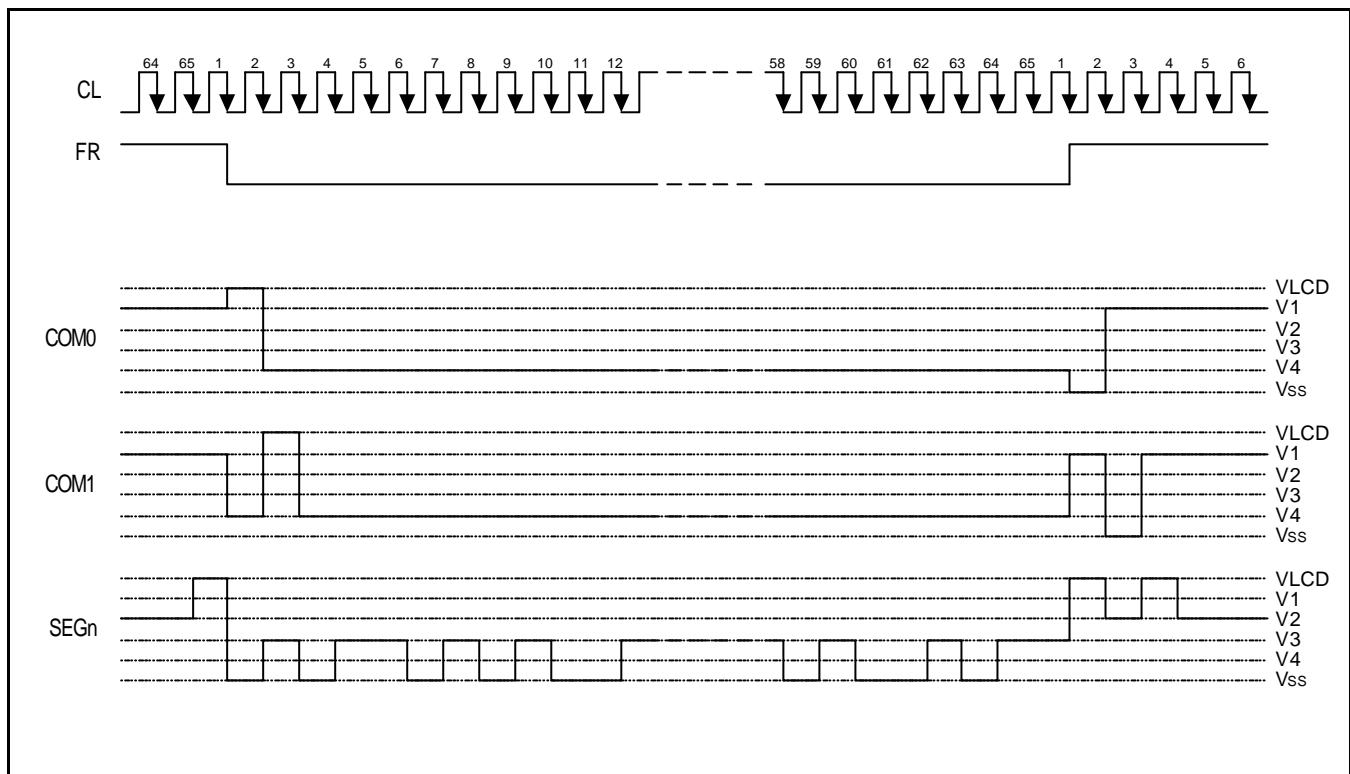


Figure 10. 2-frame AC Driving Waveform (Duty Ratio = 1/65)

Common Output Control Circuit

This circuit controls the relationship between the number of common output and specified duty ratio. SHL Select Instruction specifies the scanning direction of the common output pins.

Table 12. The Relationship between Duty Ratio and Common Output

Duty	SHL	Common output pins									
		COM [0:15]	COM [16:23]	COM [24:26]	COM [27:36]	COM [37:39]	COM [40:47]	COM [48:63]	COMS		
1/33	0	COM[0:15]	*NC			COM[16:31]		COMS	COMS		
	1	COM[31:16]	*NC			COM[15:0]					
1/49	0	COM[0:23]	*NC			COM[24:47]		COMS	COMS		
	1	COM[47:24]	*NC			COM[23:0]					
1/55	0	COM[0:26]		*NC	COM[27:53]			COMS	COMS		
	1	COM[53:27]		*NC	COM[26:0]						
1/65	0	COM[0:63]				COM[63:0]					
	1	COM[63:0]				COM[63:0]					

*NC: No Connection

LCD DRIVER CIRCUITS

This driver circuit is configured by 66-channel (including 2 COMS channels) common driver and 104-channel segment driver. This LCD panel driver voltage depends on the combination of display data and FR signal.

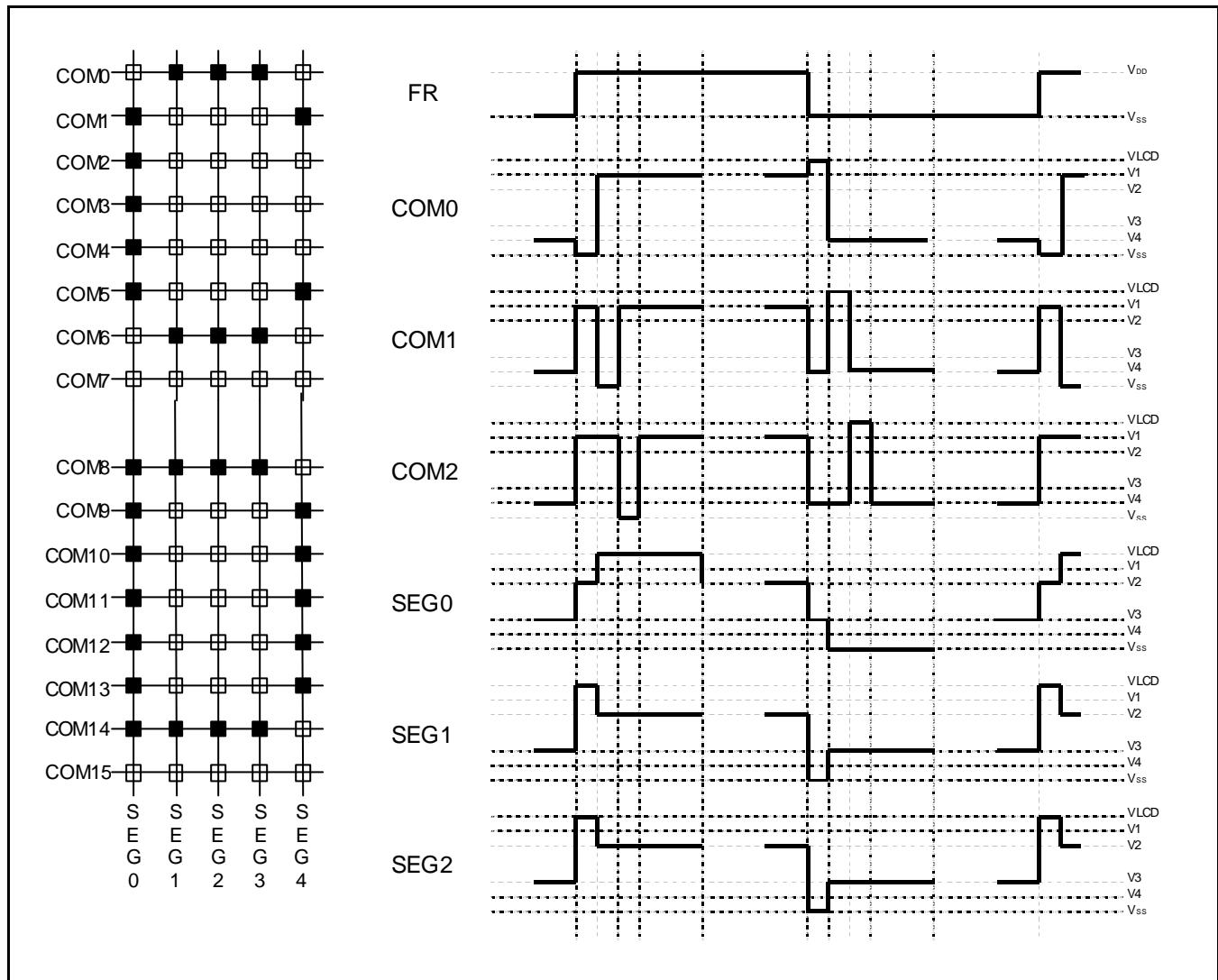


Figure 11. Segment and Common Timing

POWER SUPPLY CIRCUITS

The power supply circuits generate the voltage levels necessary to drive liquid crystal driver circuits with low-power consumption and the fewest components. There are voltage converter circuits, voltage regulator circuits, and voltage follower circuits. They are controlled by power control instruction. For details, refers to "Instruction Description".

Voltage Converter Circuits

These circuits boost up the electric potential between VCI and VSS to 3 or 4 times toward positive side.

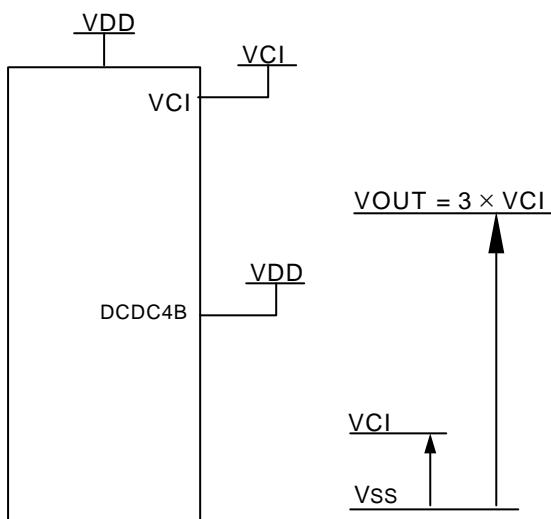


Figure 12. Three Times Boosting Circuit

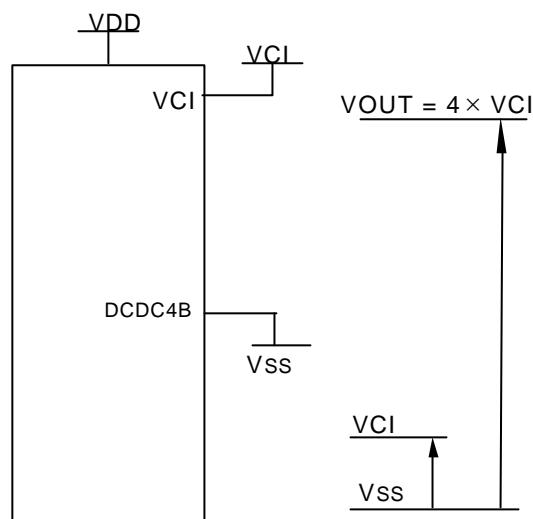


Figure 13. Four Times Boosting Circuit

* The VCI voltage range must be set so that the VOUT (Voltage converter output) does not exceed the absolute maximum rating value

Voltage Regulator Circuits

The function of the internal voltage regulator circuits is to determine liquid crystal operating voltage, VLCD, by adjusting resistors, Ra and Rb, within the range of $|VLCD| < |VOUT|$. Because VOUT is the operating voltage of operational-amplifier circuits shown in figure 14, it is necessary to be applied internally.

For the Eq. 1, we determine VLCD by Ra, Rb and VEV. The Ra and Rb are connected internally or externally by INTRS pin. And VEV called the voltage of electronic volume is determined by Eq. 2, where the parameter α is the value selected by instruction, "Set Reference Voltage Register", within the range 0 to 63. VREF voltage at $Ta = 25^\circ C$ is shown in table 13.

$$VLCD = \left(1 + \frac{Rb}{Ra} \right) \times VEV \quad [V] \quad \text{----- (Eq. 1)}$$

$$VEV = \left(1 - \frac{(63 - \alpha)}{162} \right) \times VREF \quad [V] \quad \text{----- (Eq. 2)}$$

Table 13. VREF Voltage at $Ta = 25^\circ C$

REF	Temp. coefficient	VREF [V]
H	-0.05% / $^\circ C$	2.1
L	External input	VEXT

Table 14. Electronic Contrast Control Register (64 Steps)

SV5	SV4	SV3	SV2	SV1	SV0	Reference voltage parameter (a)	VLCD	Contrast
0	0	0	0	0	0	0	Minimum	Low
0	0	0	0	0	1	1		
:	:	:	:	:	:	:		
:	:	:	:	:	:	:		
1	0	0	0	0	0	32 (default)		
:	:	:	:	:	:	:		
:	:	:	:	:	:	:		
1	1	1	1	1	0	62		
1	1	1	1	1	1	63		High

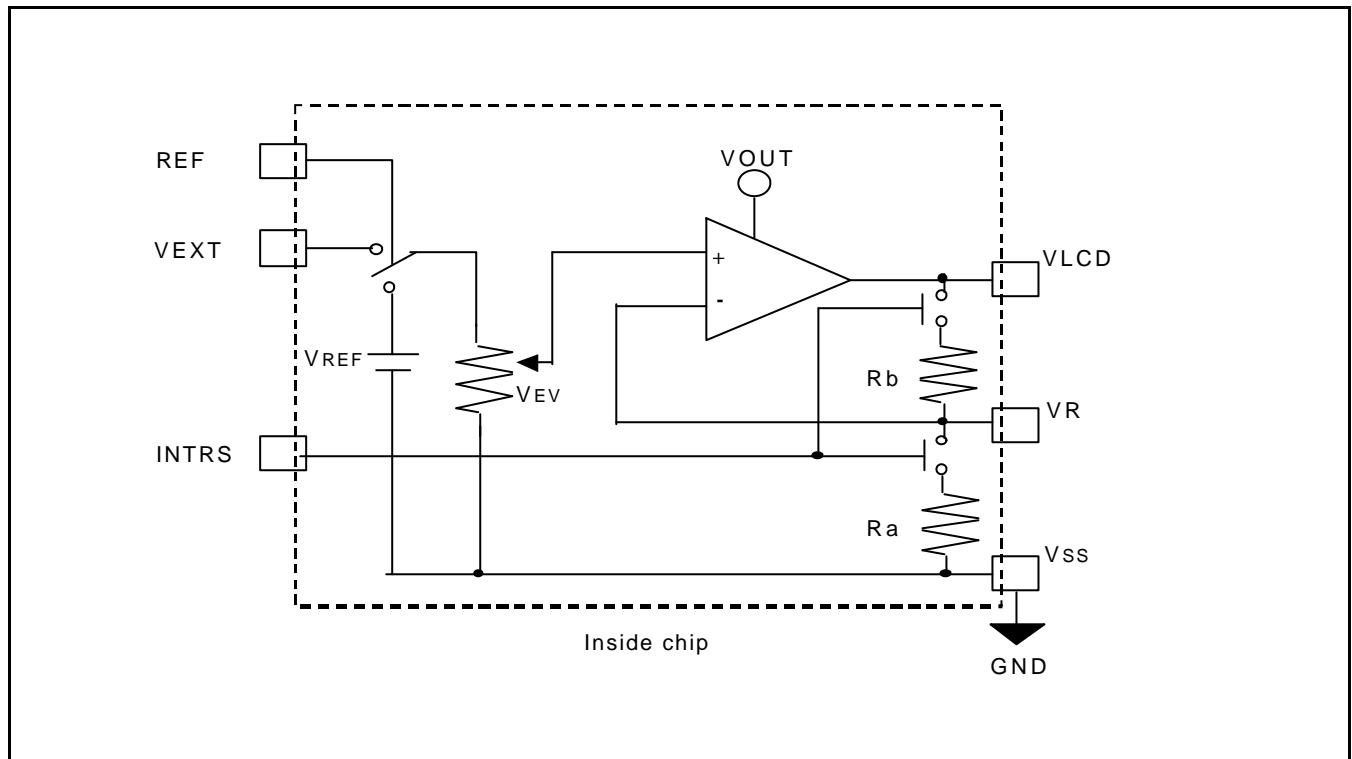
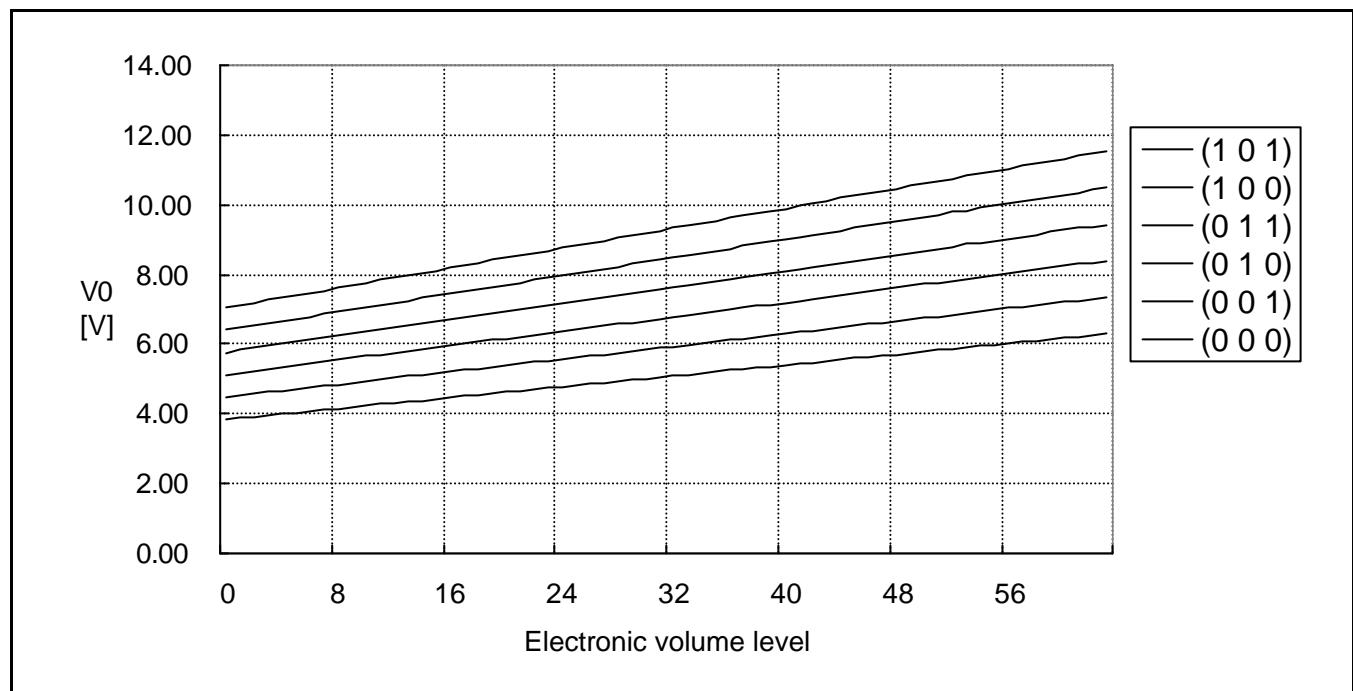


Figure 14. Internal Voltage Regulator Circuit


In Case of Using Internal Resistors, Ra and Rb (INTRS = "H")

When INTRS pin is "H", resistor Ra is connected internally between VR pin and VSS, and Rb is connected between VLCD and VR. We determine VLCD by two instructions, "Regulator Resistor Select" and "Set Reference Voltage".

Table 15. Internal Rb / Ra ratio depending on 3-bit data (R2 R1 R0)

	3-bit data settings (R2 R1 R0)							
	0 0 0	0 0 1	0 1 0	0 1 1	1 0 0	1 0 1	1 1 0	1 1 1
1 + (Rb / Ra)	3.0	3.5	4.0	4.5	5.0	5.5	Not available	Not available

The following figure shows VLCD voltage measured by adjusting internal regulator resistor ratio (Rb / Ra) and 6-bit electronic volume registers for each temperature coefficient at Ta = 25 °C.

Figure 15. Electronic Volume Level

In Case of Using External Resistors, Ra and Rb (INTRS = "L")

When INTRS pin is "L", it is necessary to connect external regulator resistor Ra between VR and VSS, and Rb between VLCD and VR.

Example: For the following requirements

1. LCD driver voltage, VLCD = 6V
2. 6-bit reference voltage register = (1, 0, 0, 0, 0, 0)
3. Maximum current flowing Ra, Rb = 1 uA

From Eq. 1

$$6 = \left(1 + \frac{Rb}{Ra} \right) \times VEV \quad [V] \quad \text{----- (Eq. 3)}$$

From Eq. 2

$$VEV = \left(1 - \frac{(63 - 32)}{162} \right) \times 2.1 \approx 1.698 \quad [V] \quad \text{----- (Eq. 4)}$$

From requirement 3.

$$\frac{6}{Ra + Rb} = 1 \quad [\mu A] \quad \text{----- (Eq. 5)}$$

From equations Eq. 3, 4 and 5

$$Ra \approx 1.698 \quad [M\Omega]$$

$$Rb \approx 4.302 \quad [M\Omega]$$

The following table shows the range of VLCD depending on the above requirements.

Table 16. VLCD Depending on Electronic Volume Level

	Electronic volume level				
	0	32	63
VLCD	4.53	6.00	7.42

Voltage Follower Circuits

VLCD voltage is resistively divided into four voltage levels (V1, V2, V3, V4), and those output impedance are converted by the voltage follower for increasing drive capability. The following table shows the relationship between V1 to V4 level and each duty ratio.

Table 17. The Relationship between V1 to V4 Level and Duty Ratio

Duty ratio	DUTY1	DUTY0	LCD bias	V1	V2	V3	V4
1/33	L	L	1/5	(4/5) VLCD	(3/5) VLCD	(2/5) VLCD	(1/5) VLCD
			1/6	(5/6) VLCD	(4/6) VLCD	(2/6) VLCD	(1/6) VLCD
1/49	L	H	1/6	(5/6) VLCD	(4/6) VLCD	(2/6) VLCD	(1/6) VLCD
			1/8	(7/8) VLCD	(6/8) VLCD	(2/8) VLCD	(1/8) VLCD
1/55	H	L	1/6	(5/6) VLCD	(4/6) VLCD	(2/6) VLCD	(1/6) VLCD
			1/8	(7/8) VLCD	(6/8) VLCD	(2/8) VLCD	(1/8) VLCD
1/65	H	H	1/7	(6/7) VLCD	(5/7) VLCD	(2/7) VLCD	(1/7) VLCD
			1/9	(8/9) VLCD	(7/9) VLCD	(2/9) VLCD	(1/9) VLCD

High Power Mode

The power supply circuit equipped in the S6B1400X for LCD drive has very low power consumption (in normal mode: HPMB = "H"). If use for LCD panels with large loads, this low-power power supply may cause display quality to degrade. When this occurs, setting the HPMB pin to "L" (high power mode) can improve the quality of the display.

RESET CIRCUIT

Setting RESETB to "L" or Reset instruction can initialize internal function.

When RESETB becomes "L", the initialized driver has following states.

Display ON / OFF: OFF
 Entire display ON / OFF: OFF (normal)
 ADC select: OFF (normal)
 Reverse display ON / OFF: OFF (normal)
 Power control register (VC, VR, VF) = (0, 0, 0)
 Serial interface internal register data clear
 LCD bias ratio: 1/9 (1/65 duty), 1/8 (1/55 duty), 1/8 (1/49 duty), 1/6 (1/33 duty)
 On-chip oscillator OFF
 Power save release
 Read-modify-write: OFF
 SHL select: OFF (normal)
 Static indicator mode: OFF
 Static indicator register: (S1, S0) = (0, 0)
 Display start line: 0 (first)
 Column address: 0
 Page address: 0
 Regulator resistor select register: (R2, R1, R0) = (0, 1, 1)
 Reference voltage set: OFF
 Reference voltage control register: (SV5, SV4, SV3, SV2, SV1, SV0) = (1, 0, 0, 0, 0, 0)
 Test mode release

When RESET instruction is issued, the initialized driver has following states.

Read-modify-write: OFF
 Static indicator mode: OFF
 Static indicator register: (S1, S0) = (0, 0)
 SHL select: 0
 Display start line: 0 (first)
 Column address: 0
 Page address: 0
 Regulator resistor select register: (R2, R1, R0) = (0, 1, 1)
 Reference voltage set: OFF
 Reference voltage control register: (SV5, SV4, SV3, SV2, SV1, SV0) = (1, 0, 0, 0, 0, 0)
 Test mode release

While RESETB is "L" or Reset instruction is executed, no instruction except read status could be accepted. Reset status appears at DB4. After DB4 becomes "L", any instruction can be accepted. RESETB must be connected to the reset pin of the MPU, and initialize the MPU and this LSI at the same time. The initialization by RESETB is essential before used.

INSTRUCTION DESCRIPTION

Table 18. Instruction Table

Instruction	RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description
Display ON / OFF	0	0	1	0	1	0	1	1	1	DON	Turn ON / OFF LCD panel When DON = 0: display OFF When DON = 1: display ON
Initial display line	0	0	0	1	ST5	ST4	ST3	ST2	ST1	ST0	Specify DDRAM line for COM0
Set page address	0	0	1	0	1	1	P3	P2	P1	P0	Set page address
Set column address MSB	0	0	0	0	0	1	×	Y6	Y5	Y4	Set column address MSB
Set column address LSB	0	0	0	0	0	0	Y3	Y2	Y1	Y0	Set column address LSB
Read status	0	1	BUSY	ADC	ONOFF	RESETB	0	0	0	0	Read the internal status
Write display data	1	0	Write data								Write data into DDRAM
Read display data	1	1	Read data								Read data from DDRAM
ADC select	0	0	1	0	1	0	0	0	0	ADC	Select SEG output direction When ADC = 0: normal direction (SEG0→SEG103) When ADC = 1: reverse direction (SEG103→SEG0)
Reverse display ON / OFF	0	0	1	0	1	0	0	1	1	REV	Select normal / reverse display When REV = 0: normal display When REV = 1: reverse display
Entire display ON / OFF	0	0	1	0	1	0	0	1	0	EON	Select normal/ entire display ON When EON = 0: normal display. When EON = 1: entire display ON
LCD bias select	0	0	1	0	1	0	0	0	1	BAS	Select LCD bias
Set modify-read	0	0	1	1	1	0	0	0	0	0	Set modify-read mode
Reset modify-read	0	0	1	1	1	0	1	1	1	0	Release modify-read mode
Reset	0	0	1	1	1	0	0	0	1	0	Initialize the internal functions
SHL select	0	0	1	1	0	0	SHL	×	×	×	Select COM output direction When SHL = 0: normal direction (COM0→COM63) When SHL = 1: reverse direction (COM63→COM0)
Power control	0	0	0	0	1	0	1	VC	VR	VF	Control power circuit operation
Regulator resistor select	0	0	0	0	1	0	0	R2	R1	R0	Select internal resistance ratio of the regulator resistor
Set reference voltage mode	0	0	1	0	0	0	0	0	0	1	Set reference voltage mode
Set reference voltage register	0	0	×	×	SV5	SV4	SV3	SV2	SV1	SV0	Set reference voltage register
Set static indicator mode	0	0	1	0	1	0	1	1	0	SM	Set static indicator mode
Set static indicator register	0	0	×	×	×	×	×	×	S1	S0	Set static indicator register
Set Data Direction & Display Data Length (DDL)	x	x	1	0	0	0	0	0	0	0	2-byte Instruction to specify the number of data bytes (SPI Mode)
Power save	-	-	-	-	-	-	-	-	-	-	Compound Instruction of display OFF and entire display ON

Table 18. Instruction Table (Continued)

x : Don't care

Instruction	RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description
NOP	0	0	1	1	1	0	0	0	1	1	<u>Non-Operation command</u>
Test instruction_1	0	0	1	1	1	1	x	x	x	x	<u>Don't use this instruction</u>
Test instruction_2	0	0	1	0	0	1	x	x	x	x	<u>Don't use this instruction</u>

DISPLAY ON / OFF

Turns the display ON or OFF

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	0	1	0	1	1	1	DON

DON = 1: display ON

DON = 0: display OFF

INITIAL DISPLAY LINE

Sets the line address of display RAM to determine the initial display line. The RAM display data is displayed at the top row (COM0 when SHL = L, COM63 when SHL = H) of LCD panel.

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	1	ST5	ST4	ST3	ST2	ST1	ST0

ST5	ST4	ST3	ST2	ST1	ST0	Line address
0	0	0	0	0	0	0
0	0	0	0	0	1	1
:	:	:	:	:	:	:
1	1	1	1	1	0	62
1	1	1	1	1	1	63

SET PAGE ADDRESS

Sets the page address of display data RAM from the microprocessor into the page address register. Any RAM data bit can be accessed when its page address and column address are specified. Along with the column address, the page address defines the address of the display RAM to write or read display data. Changing the page address doesn't effect to the display status.

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	0	1	1	P3	P2	P1	P0

P3	P2	P1	P0	Page
0	0	0	0	0
0	0	0	1	1
:	:	:	:	:
0	1	1	1	7
1	0	0	0	8

SET COLUMN ADDRESS

Sets the column address of display RAM from the microprocessor into the column address register. Along with the column address, the column address defines the address of the display RAM to write or read display data. When the microprocessor reads or writes display data to or from display RAM, column addresses are automatically increased.

Set Column Address MSB

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	1	x	Y6	Y5	Y4

Set Column Address LSB

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	Y3	Y2	Y1	Y0

Y6	Y5	Y4	Y3	Y2	Y1	Y0	Column address
0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1
:	:	:	:	:	:	:	:
1	1	0	0	1	1	0	102
1	1	0	0	1	1	1	103

READ STATUS

Indicates the internal status of the S6B1400X

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	1	BUSY	ADC	ON/OFF	RESETB	0	0	0	0

Flag	Description
BUSY	The device is busy when internal operation or reset. Any instruction is rejected until BUSY goes Low. 0: chip is active, 1: chip is being busy
ADC	Indicates the relationship between RAM column address and segment driver. 0: reverse direction (SEG103 → SEG0), 1: normal direction (SEG0 → SEG103)
ON / OFF	Indicates display ON / OFF status. 0: display ON, 1: display OFF
RESETB	Indicates the initialization is in progress by RESETB signal. 0: chip is active, 1: chip is being reset

WRITE DISPLAY DATA

8-bit data of display data from the microprocessor can be written to the RAM location specified by the column address and page address. The column address is increased by 1 automatically so that the microprocessor can continuously write data to the addressed page.

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	0								Write data

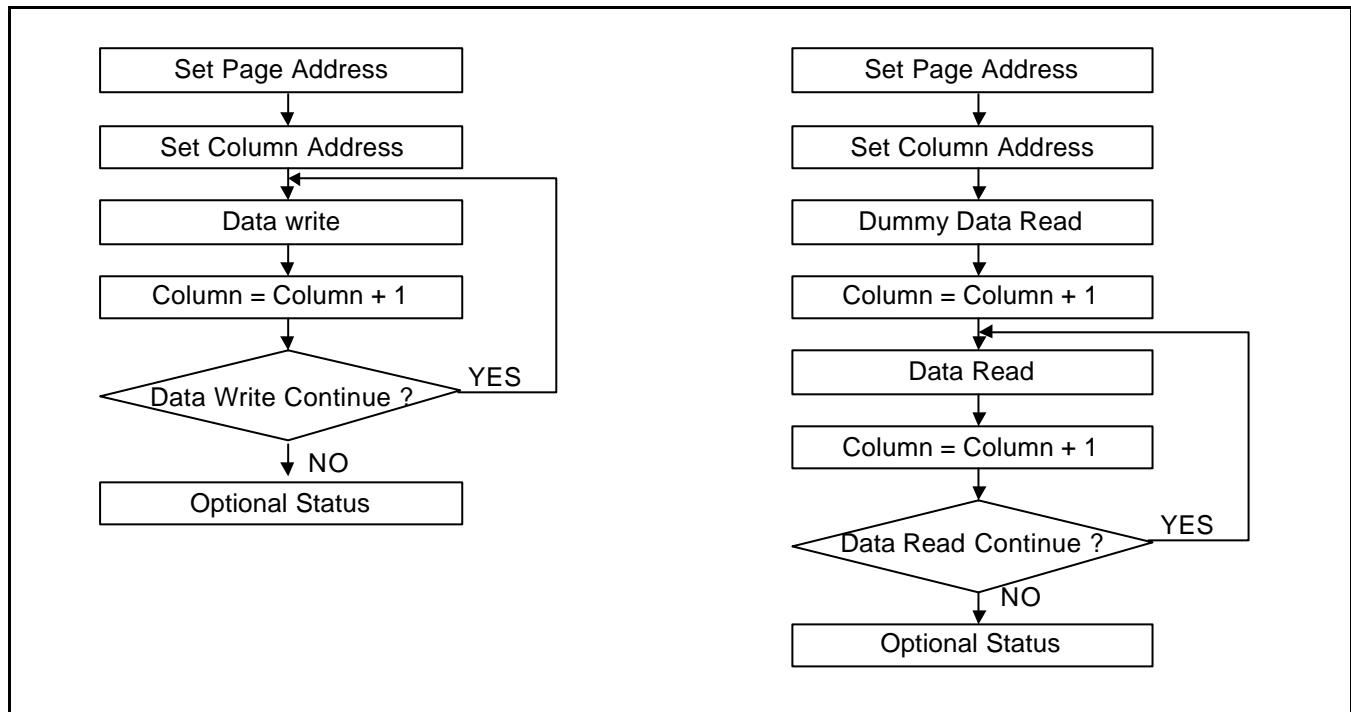


Figure 16. Sequence for Writing Display Data

Figure 17. Sequence for Reading Display Data

Read Display Data

8-bit data from display data RAM specified by the column address and page address can be read by this instruction. As the column address is increased by 1 automatically after each this instruction, the microprocessor can continuously read data from the addressed page. A dummy read is required after loading an address into the column address register. Display data cannot be read through the serial interface.

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	1								Read data

ADC SELECT (SEGMENT DRIVER DIRECTION SELECT)

Changes the relationship between RAM column address and segment driver. The direction of segment driver output pins can be reversed by software. This makes IC layout flexible in LCD module assembly.

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	0	1	0	0	0	0	ADC

ADC = 0: normal direction (SEG0 → SEG103)

ADC = 1: reverse direction (SEG103 → SEG0)

REVERSE DISPLAY ON / OFF

Reverses the display status on LCD panel without rewriting the contents of the display data RAM.

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	0	1	0	0	1	1	REV

REV	RAM bit data = "1"	RAM bit data = "0"
0 (normal)	LCD pixel is illuminated	LCD pixel is not illuminated
1 (reverse)	LCD pixel is not illuminated	LCD pixel is illuminated

ENTIRE DISPLAY ON / OFF

Forces the whole LCD points to be turned on regardless of the contents of the display data RAM. At this time, the contents of the display data RAM are held. This instruction has priority over the Reverse Display On/Off instruction.

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	0	1	0	0	1	0	EON

EON = 0: normal display

EON = 1: entire display ON

SELECT LCD BIAS

Selects LCD bias ratio of the voltage required for driving the LCD.

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	0	1	0	0	0	1	Bias

Duty ratio	DUTY1	DUTY0	LCD bias					
			Bias = 0			Bias = 1		
1/33	0	0	1/6			1/5		
1/49	0	1	1/8			1/6		
1/55	1	0	1/8			1/6		
1/65	1	1	1/9			1/7		

SET MODIFY-READ

This instruction stops the automatic increment of the column address by the read display data instruction, but the column address is still increased by the write display data instruction. And it reduces the load of microprocessor when the data of a specific area is repeatedly changed during cursor blinking or others. This mode is canceled by the reset Modify-read instruction.

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	1	1	0	0	0	0	0

RESET MODIFY-READ

This instruction cancels the Modify-read mode, and makes the column address return to its initial value just before the set Modify-read instruction is started.

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	1	1	0	1	1	1	0

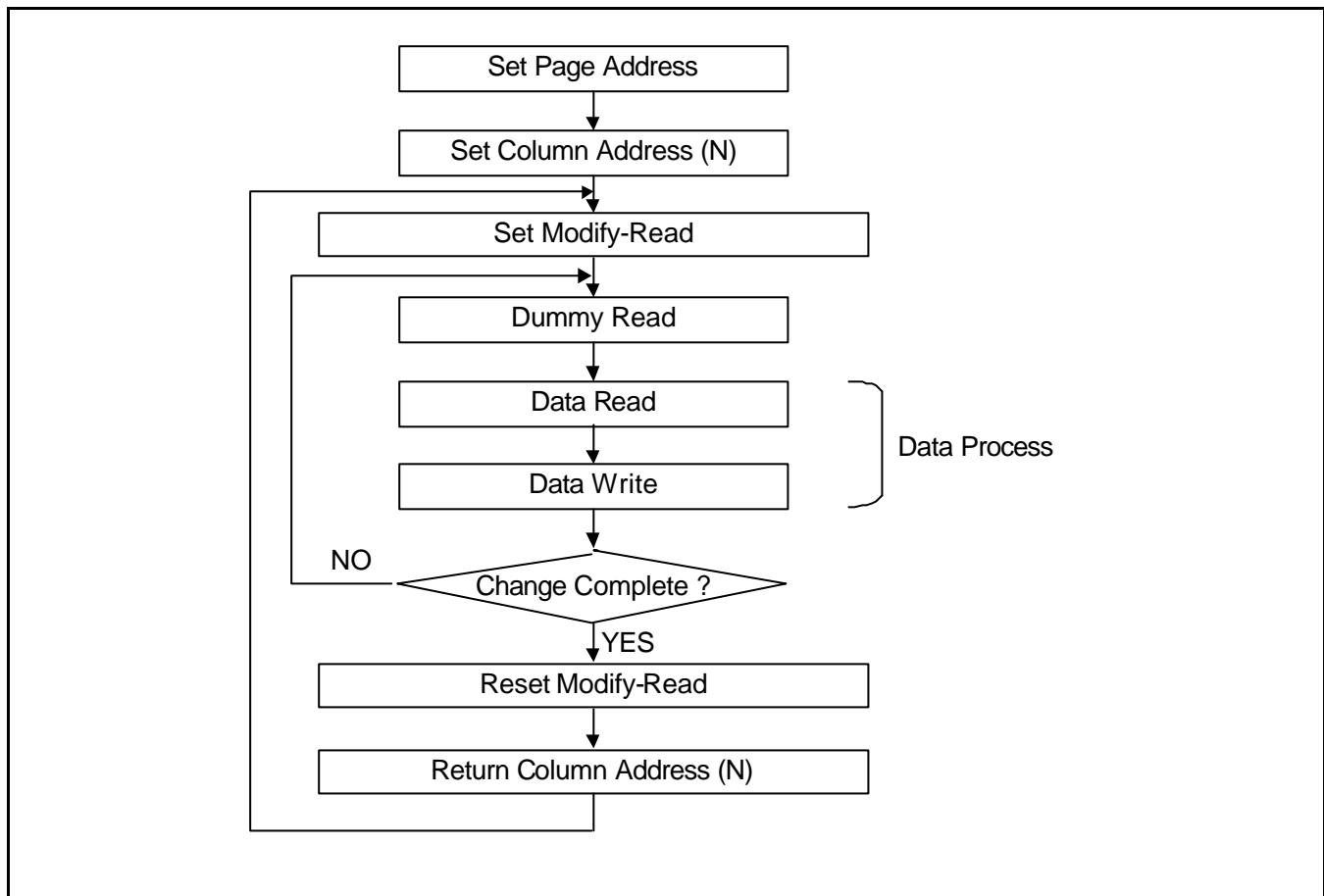


Figure 18. Sequence for Cursor Display

RESET

This instruction resets initial display line, column address, page address, and common output status select to their initial status, but does not affect the contents of display data RAM. This instruction cannot initialize the LCD power supply, which is initialized by the RESETB pin.

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	1	1	0	0	0	1	0

SHL SELECT (COMMON OUTPUT MODE SELECT)

COM output scanning direction is selected by this instruction which determines the LCD driver output status.

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	1	0	0	SHL	×	×	×

× : Don't care

SHL = 0: normal direction (COM0 → COM63)

SHL = 1: reverse direction (COM63 → COM0)

POWER CONTROL

Selects one of eight power circuit functions by using 3-bit register. An external power supply and part of internal power supply functions can be used simultaneously.

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	1	0	1	VC	VR	VF

VC	VR	VF	Status of internal power supply circuits
0			Internal voltage converter circuit is OFF
1			Internal voltage converter circuit is ON
	0		Internal voltage regulator circuit is OFF
	1		Internal voltage regulator circuit is ON
		0	Internal voltage follower circuit is OFF
		1	Internal voltage follower circuit is ON

REGULATOR RESISTOR SELECT

Selects resistance ratio of the internal resistor used in the internal voltage regulator. See voltage regulator section in power supply circuit. Refer to the **Table 15**.

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	1	0	0	R2	R1	R0

R2	R1	R0	(1 + Rb / Ra) ratio
0	0	0	3.0
0	0	1	3.5
0	1	0	4.0
0	1	1	4.5 (default)
1	0	0	5.0
1	0	1	5.5
1	1	0	Not available
1	1	1	Not available

REFERENCE VOLTAGE SELECT

Consists of 2-byte instruction. The 1st instruction sets reference voltage mode, the 2nd one updates the contents of reference voltage register. After second instruction, reference voltage mode is released.

The 1st Instruction: Set Reference Voltage Select Mode

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	0	0	0	0	0	0	1

The 2nd Instruction: Set Reference Voltage Register

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	x	x	SV5	SV4	SV3	SV2	SV1	SV0

SV5	SV4	SV3	SV2	SV1	SV0	Reference voltage parameter (a)	VLCD	Contrast
0	0	0	0	0	0	0	Minimum	Low
0	0	0	0	0	1	1		
:	:	:	:	:	:	:		
:	:	:	:	:	:	:		
1	0	0	0	0	0	32 (default)		
:	:	:	:	:	:	:		
:	:	:	:	:	:	:		
1	1	1	1	1	0	62		
1	1	1	1	1	1	63	Maximum	High

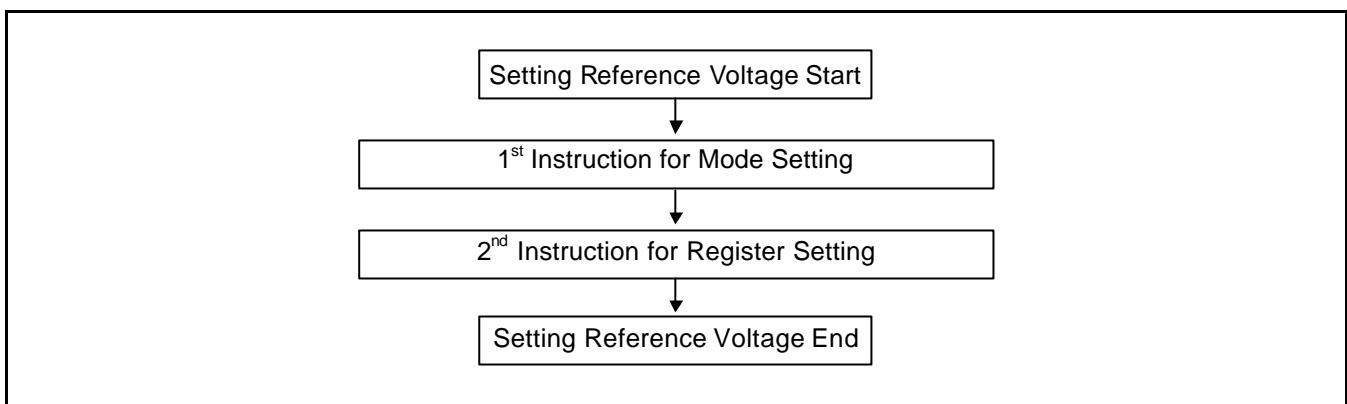


Figure 19. Sequence for Setting the Reference Voltage

SET STATIC INDICATOR STATE

Consists of two bytes instruction. The first byte instruction (Set Static Indicator Mode) enables the second byte instruction (Set Static Indicator Register) to be valid. The first byte sets the static indicator on/off. When it is on, the second byte updates the contents of static indicator register without issuing any other instruction and this static indicator state is released after setting the data of indicator register.

The 1st Instruction: Set Static Indicator Mode (ON / OFF)

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	0	1	0	1	1	0	SM

SM = 0: static indicator OFF

SM = 1: static indicator ON

The 2nd Instruction: Set Static Indicator Register

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	×	×	×	×	×	×	S1	S0

		Status of static indicator output							
0	0	OFF							
0	1	ON (about 1 second blinking)							
1	0	ON (about 0.5 second blinking)							
1	1	ON (always ON)							

SET DATA DIRECTION & DISPLAY DATA LENGTH (3-PIN SPI MODE)

Consists of two bytes instruction.

This command is used in 3-Pin SPI mode only (PS = "L" and C68 = "L"). It will be two continuous commands, the first byte control the data direction (write mode only) and inform the LCD driver the second byte will be number of data bytes will be write. When RS is not used, the Display Data Length instruction is used to indicate that a specified number of display data bytes are to be transmitted. The next byte after the display data string is handled as command data.

The 1st Instruction: Set Data Direction (Only Write Mode)

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
x	x	1	0	0	0	0	0	0	0

The 2nd Instruction: Set Display Data Length (DDL) Register

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
x	x	D7	D6	D5	D4	D3	D2	D1	D0

D7	D6	D5	D4	D3	D2	D1	D0	Display Data Length
0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	1	2
0	0	0	0	0	0	1	0	3
:	:	:	:	:	:	:	:	:
1	1	1	1	1	1	0	1	254
1	1	1	1	1	1	1	0	255
1	1	1	1	1	1	1	1	256

NOP

Non-Operation Instruction

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	1	1	0	0	0	1	1

TEST INSTRUCTION (TEST INSTRUCTION_1 & TEST INSTRUCTION_2)

These are the instruction for IC chip testing. Please do not use it. If the test instruction is used by accident, it can be cleared by applying "0" signal to the RESETB input pin or the reset instruction.

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	1	1	1	x	x	x	x
0	0	1	0	0	1	x	x	x	x

POWER SAVE (COMPOUND INSRTUCTION)

If the entire display ON / OFF instruction is issued during the display OFF state, S6B1400X enters the power save status to reduce the power consumption to the static power consumption value. According to the status of static indicator mode, power save is entered to one mode of sleep and standby mode. When Static Indicator mode is ON, standby mode is issued. When OFF, sleep mode is issued. Power save mode is released by the entire display OFF instruction.

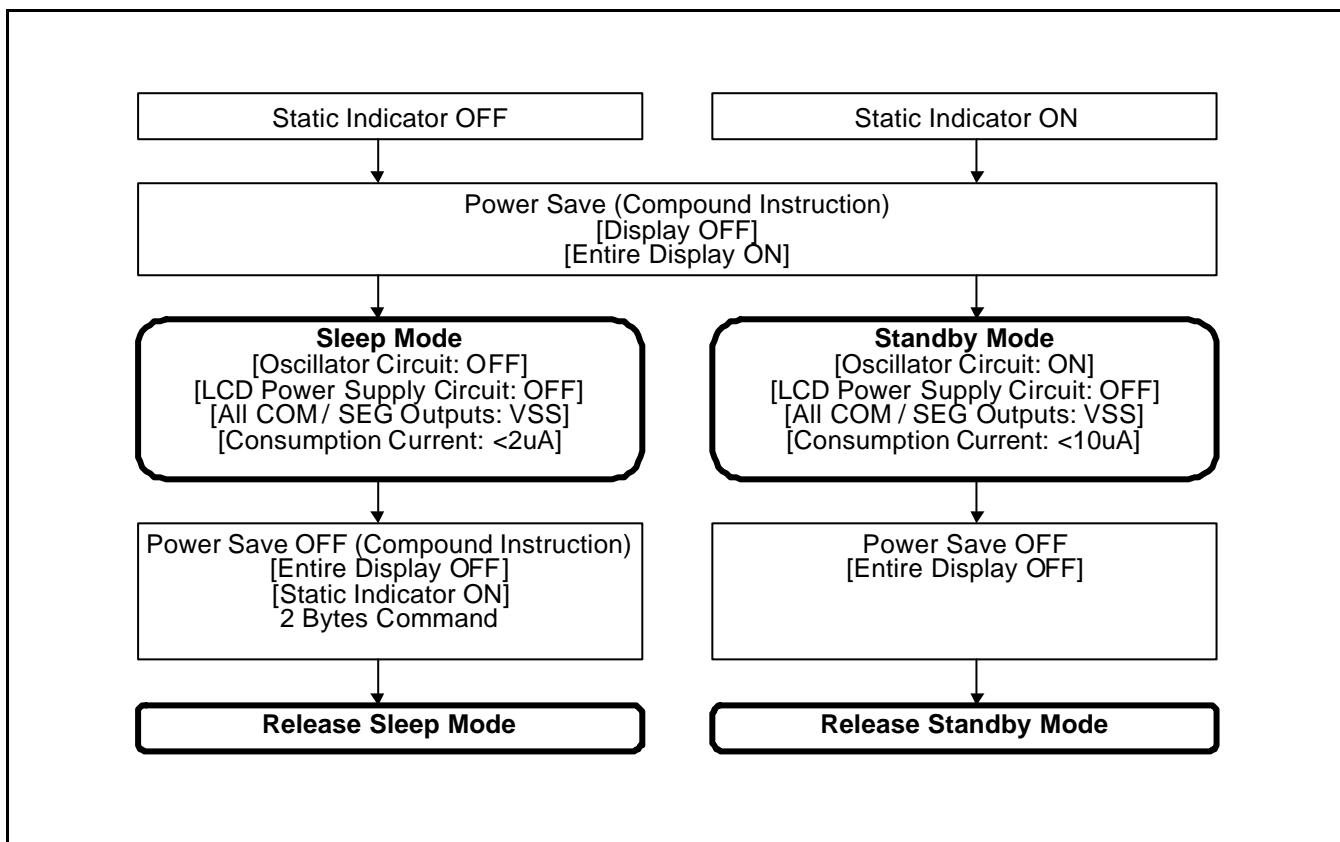


Figure 20. Power Save (Compound Instruction)

- Sleep Mode

This stops all operations in the LCD display system, and as long as there are no access from the MPU, the consumption current is reduced to a value near the static current. The internal modes during sleep mode are as follows:

- The oscillator circuit and the LCD power supply circuit are halted.
- All liquid crystal drive circuits are halted, and the segment and common outputs go to the Vss level.

- Standby Mode

The duty LCD display system operations are halted and only the static drive system for the indicator continues to operate, providing the minimum required consumption current for the static drive.

The internal modes are in the following states during standby mode.

- The LCD power supply circuits are halted. The oscillator circuit continues to operate.
- The duty drive system liquid crystal drive circuits are halted and the segment and common outputs go to the Vss level. The static drive system does not operate.

When a reset command is performed while in standby mode, the system enters sleep mode.

REFERENTIAL INSTRUCTION SETUP FLOW (1)

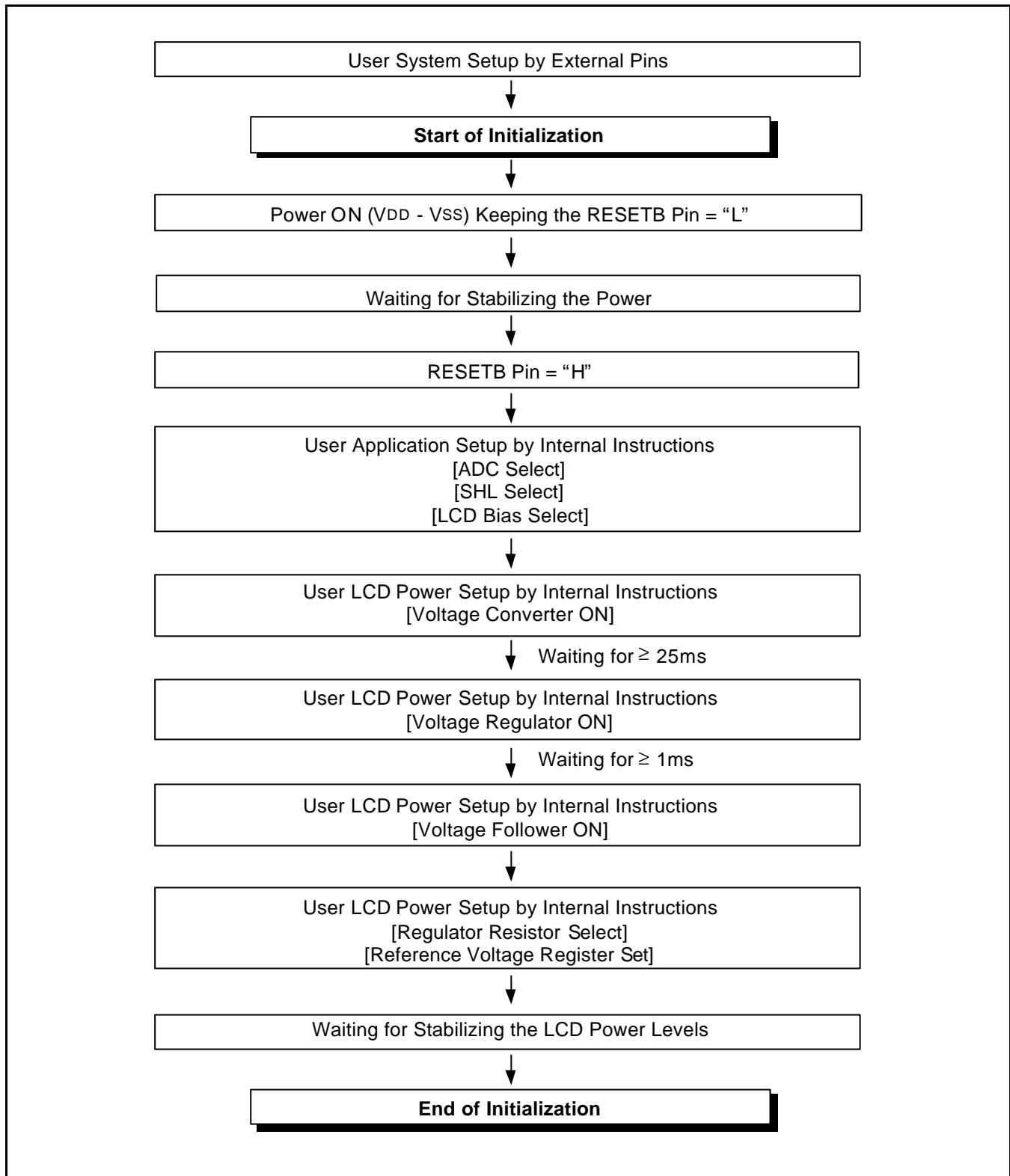


Figure 21. Initializing with the Built-in Power Supply Circuits

REFERENTIAL INSTRUCTION SETUP FLOW (2)

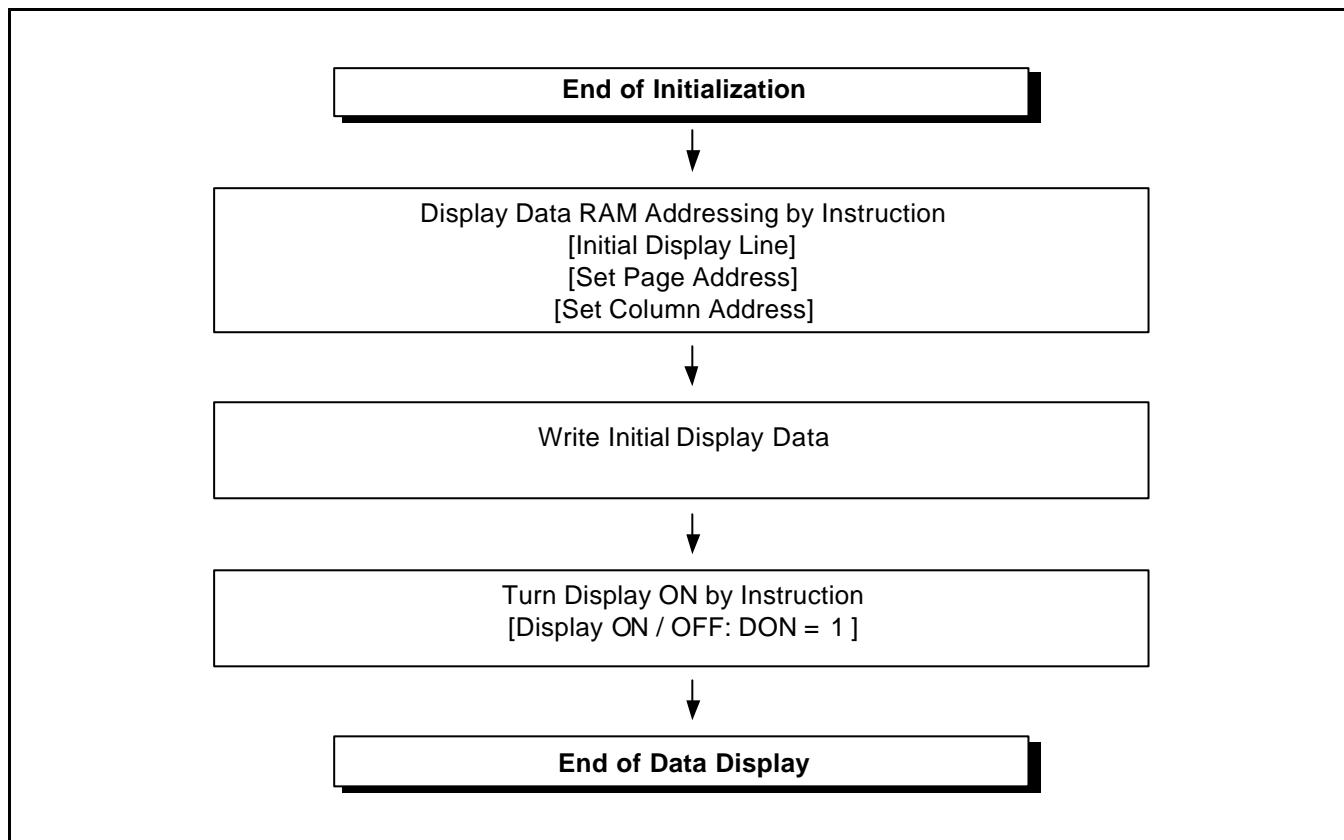


Figure 22. Data Displaying

REFERENTIAL INSTRUCTION SETUP FLOW (3)

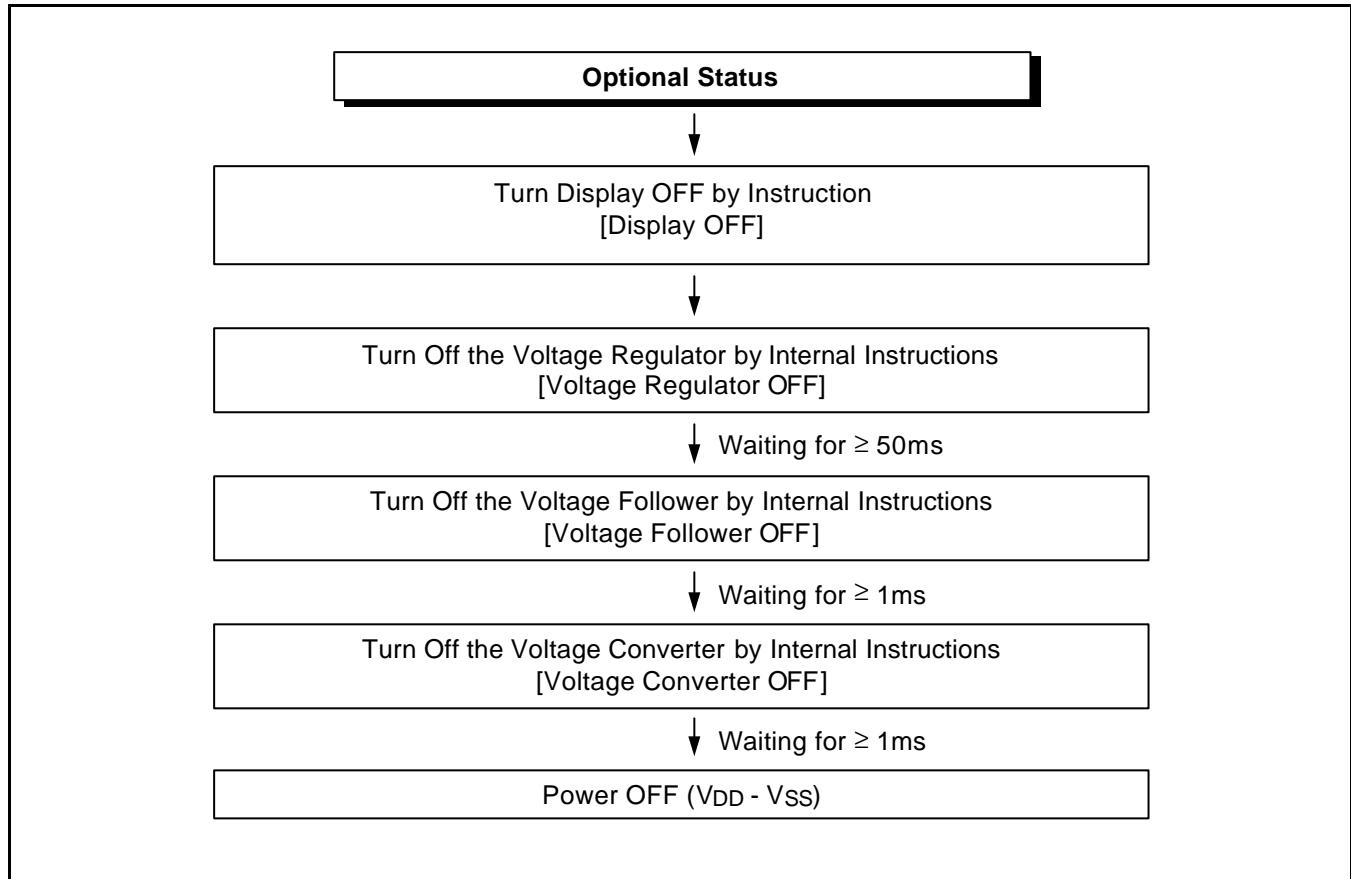


Figure 23. Power OFF

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS

Table 19. Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Supply voltage range	VDD	- 0.3 to +7.0	V
	VLCD	- 0.3 to +13.0	V
Input voltage range	VIN	- 0.3 to VDD + 0.3	V
Operating temperature range	TOPR	- 40 to +85	°C
Storage temperature range	TSTR	- 55 to +125	°C

Notes:

1. VDD and VLCD are based on VSS = 0V.
2. Voltages $VLCD \geq V1 \geq V2 \geq V3 \geq V4 \geq VSS$ must always be satisfied.
3. If supply voltage exceeds its absolute maximum range, this LSI may be damaged permanently. It is desirable to use this LSI under electrical characteristic conditions during general operation. Otherwise, this LSI may malfunction or reduced LSI reliability may result.

DC CHARACTERISTICS

Table 20. DC Characteristics

(V_{SS} = 0V, V_{DD} = 2.4 to 3.6V, Ta = -40 to 85°C)

Item		Symbol	Condition	Min.	Typ.	Max.	Unit	Pin used	
Operating voltage (1)		V _{DD}		2.4	-	3.6	V	V _{DD} *1	
LCD power voltage (2)		V _{LCD}		4.5	-	9.0	V	V _{LCD} *2	
Input voltage	High	V _{IH}		0.8V _{DD}	-	V _{DD}	V	*3	
	Low	V _{IL}		V _{SS}	-	0.2V _{DD}			
Output voltage	High	V _{OH}	I _{OH} = -0.5mA	0.8V _{DD}	-	V _{DD}	V	*4	
	Low	V _{OL}	I _{OL} = 0.5mA	V _{SS}	-	0.2V _{DD}			
Input leakage current		I _{IL}	V _{IN} = V _{DD} or V _{SS}	- 1.0	-	+ 1.0	µA	*5	
Output leakage current		I _{OZ}	V _{IN} = V _{DD} or V _{SS}	- 3.0	-	+ 3.0	µA	*6	
LCD driver ON resistance		R _{ON}	T _a =25°C, V _{LCD} = 8V	-	2.0	3.0	kΩ	SEGn COMn *7	
Oscillator frequency	Internal	f _{OSC}	T _a = 25°C Duty ratio = 1/65	32.7	43.6	54.5	KHz	CL *8	
		f _{CL}		4.09	5.45	6.81			
Voltage converter Input voltage	V _{CI}	× 3		2.4	-	3.6	V	V _{CI}	
		× 4		2.4	-	3.0			
Reference voltage		V _{REF}	T _a =25°C	-0.05%/°C	2.04	2.1	2.16	V	*9

Dynamic Current Consumption when the Built-in Power Circuit is ON (At Operate Mode)

(Ta = 25°C)

Item	Symbol	Condition	Min.	Typ.	Max.	Unit	Pin used
Dynamic current consumption (2)	ID2	VDD = 3.0V, (VCI = VDD, 3 times boosting) VLCD – VSS = 7.64V, 1/65 duty ratio, Display pattern OFF, Normal power mode	-	120	-	µA	*11
		VDD = 3.0V, (VCI = VDD, 3 times boosting) VLCD – VSS = 7.64V, 1/65 duty ratio, Display pattern checker, Normal power mode	-	140	-	µA	*11
		VDD = 3.0V, (VCI = VDD, 4 times boosting) VLCD – VSS = 8.40V, 1/65 duty ratio, Display pattern OFF, Normal power mode	-	180	-	µA	*11
		VDD = 3.0V, (VCI = VDD, 4 times boosting) VLCD – VSS = 8.40V, 1/65 duty ratio, Display pattern checker, Normal power mode	-	200	-	µA	*11

Current Consumption during Power Save Mode

(Ta = 25°C)

Item	Symbol	Condition	Min.	Typ.	Max.	Unit	Pin used
Sleep mode current	IDDS1	During sleep	-	-	2	µA	
Standby mode current	IDDS2	During standby	-	-	10	µA	

Table 21. The Relationship between Oscillation Frequency and Frame Frequency

Duty ratio	Item	f _{CL}	f _{FR}	Frame Frequency
1/65	On-chip oscillator circuit is used	$\frac{f_{OSC}}{8}$	$\frac{f_{OSC}}{2 \times 8 \times 65}$	f _{FR} × 2
1/55	On-chip oscillator circuit is used	$\frac{f_{OSC}}{9}$	$\frac{f_{OSC}}{2 \times 9 \times 55}$	f _{FR} × 2
1/49	On-chip oscillator circuit is used	$\frac{f_{OSC}}{10}$	$\frac{f_{OSC}}{2 \times 10 \times 49}$	f _{FR} × 2
1/33	On-chip oscillator circuit is used	$\frac{f_{OSC}}{15}$	$\frac{f_{OSC}}{2 \times 15 \times 33}$	f _{FR} × 2

(f_{OSC}: oscillation frequency, f_{CL}: display clock frequency, f_{FR}: LCD AC signal frequency)

[* Remark Solves]

- *1. Though the wide range of operating voltages is guaranteed, a spike voltage change may affect the voltage assurance during access from the MPU.
- *2. In case of external power supply is applied.
- *3. CS1B, CS2, RS, DB0 to DB7, E_RDB, RW_WRB, RESETB, C68, PS, INTRS, HPMB pins.
- *4. DB0 to DB7, FR, FRS, CL pins.
- *5. CS1B, CS2, RS, DB[7:0], E_RDB, RW_WRB, RESETB, C68, PS, INTRS, HPMB pins.
- *6. Applies when the DB[7:0], FR, FRS and CL pins are in high impedance.
- *7. Resistance value when ± 0.1 [mA] is applied during the ON status of the output pin SEG_n or COM_n.

$$R_{ON} = \Delta V / 0.1 \text{ [k}\Omega\text{]} \quad (\Delta V: \text{voltage change when } \pm 0.1 \text{[mA]} \text{ is applied in the ON status.})$$
- *8. See table 21 for the relationship between oscillation frequency and frame frequency.
- *9. On-chip reference voltage source of the voltage regulator circuit to adjust VLCD.
- *10,11. Applies to the case where the on-chip oscillation circuit is used and no access is made from the MPU.
 - The current consumption, when the built-in power supply circuit is ON or OFF.
 - The current flowing through voltage regulation resistors (R_a and R_b) is not included.
 - It does not include the current of the LCD panel capacity, wiring capacity, etc.

AC CHARACTERISTICS

Read / Write Characteristics (8080-series MPU)

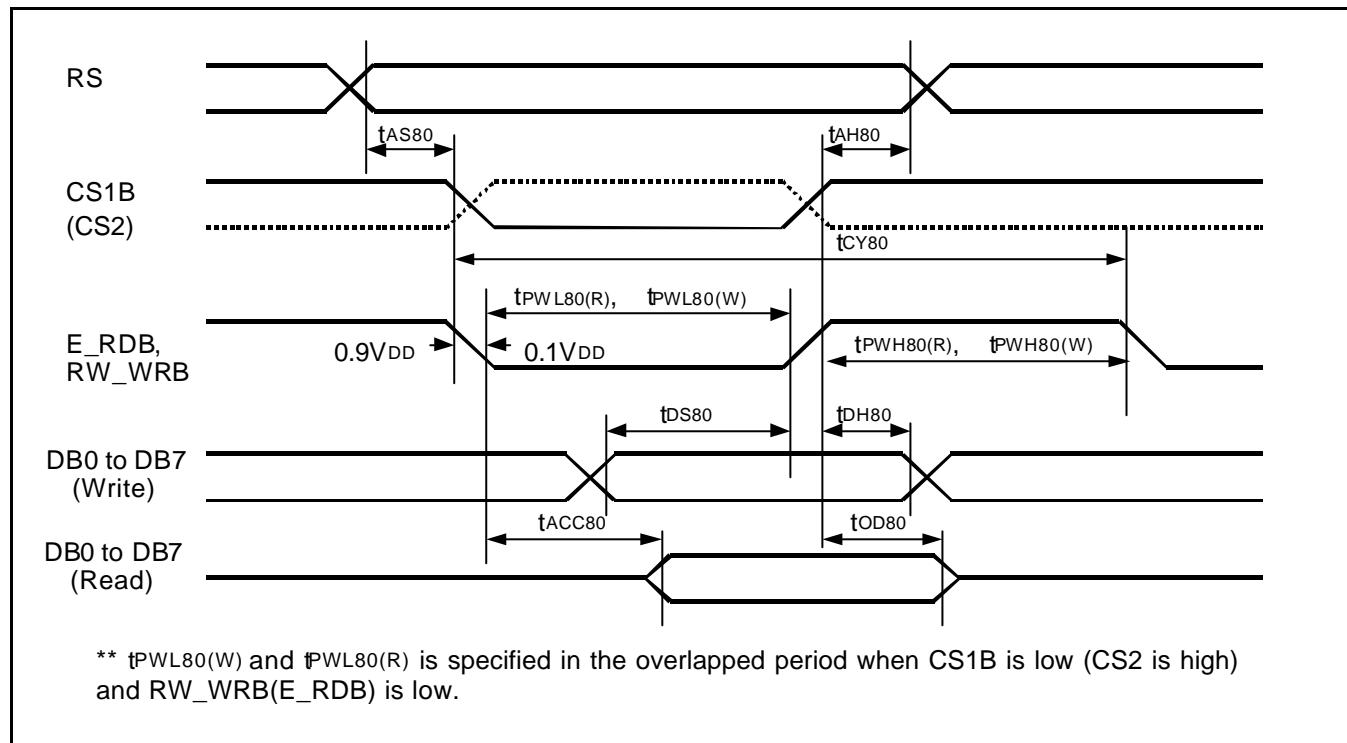


Figure 24. Read / Write Characteristics (8080-series MPU)

(V_{DD} = 2.4 to 3.6V, Ta = -40 to +85°C)

Item	Signal	Symbol	Min.	Typ.	Max.	Unit	Remark
Address setup time	RS	tAS80	0	-	-	ns	
Address hold time		tAH80	0	-	-	ns	
System cycle time	RS	tCY80	300	-	-	ns	
Pulse width (WRB)	RW_WRB	tPWL80 (W) tPWH80 (W)	60 60	-	-	ns	
Pulse width (RDB)	E_RDB	tPWL80 (R) tPWH80 (R)	60 60	-	-	ns	
Data setup time	DB7 to DB0	tDS80	40	-	-	ns	
Data hold time		tDH80	15	-	-	ns	
Read access time	DB7 to DB0	tACC80	-	-	140	ns	CL = 100 pF
Output disable time		tOD80	10	-	100	ns	

Note: 1. The input signal rising time and falling time (tr, tf) is specified at 15ns or less.

(tr + tf) < (tCY80 - tPWL80 (W) - tPWH80 (W)) for write, (tr + tf) < (tCY80 - tPWL80 (R) - tPWH80 (R)) for read

Read / Write Characteristics (6800-series Microprocessor)

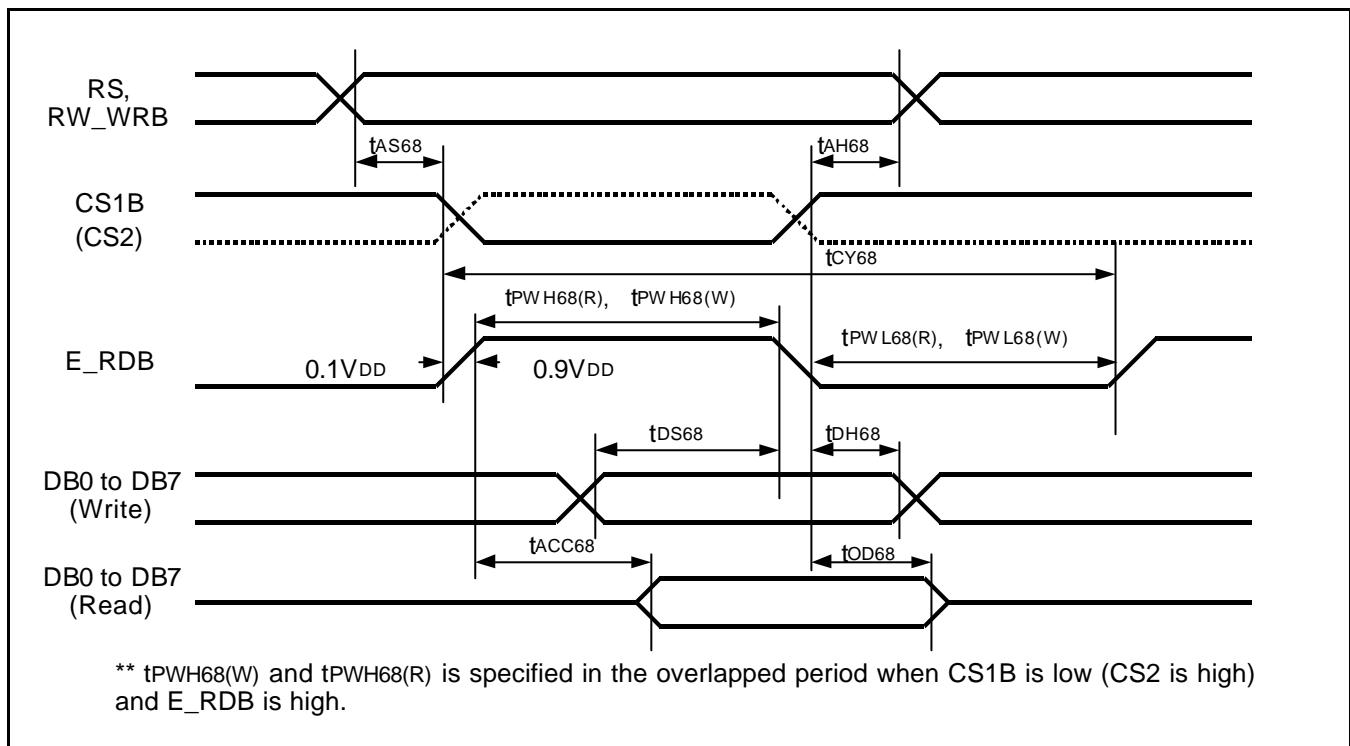


Figure 25. Read / Write Characteristics (6800-series Microprocessor)

(VDD = 2.4 to 3.6V, Ta = -40 to +85°C)

Item	Signal	Symbol	Min.	Typ.	Max.	Unit	Remark
Address setup time	RS	tAS68	0	-	-	ns	
Address hold time	RW_WRB	tAH68	0	-	-	ns	
System cycle time	RS	tCY68	300	-	-	ns	
Data setup time	DB7 to DB0	tDS68	40	-	-	ns	
Data hold time		tDH68	15	-	-	ns	
Access time	DB0 to DB7	tACC68	-	-	140	ns	CL = 100 pF
Output disable time		tOD68	10	-	100	ns	
Enable pulse width	Read	tPWH68(R)	120	-	-	ns	
	Write	tPWL68(R)	120	-	-	ns	
		tPWH68(W)	60	-	-	ns	
		tPWL68(W)	60	-	-	ns	

Note: 1. The input signal rising time and falling time (tr, tf) is specified at 15ns or less.

(tr + tf) < (tCY68 - tPWH68 (W) - tPWH68 (W)) for write, (tr + tf) < (tCY80 - tPWH68 (R) - tPWL68 (R)) for read

Serial Interface Characteristics

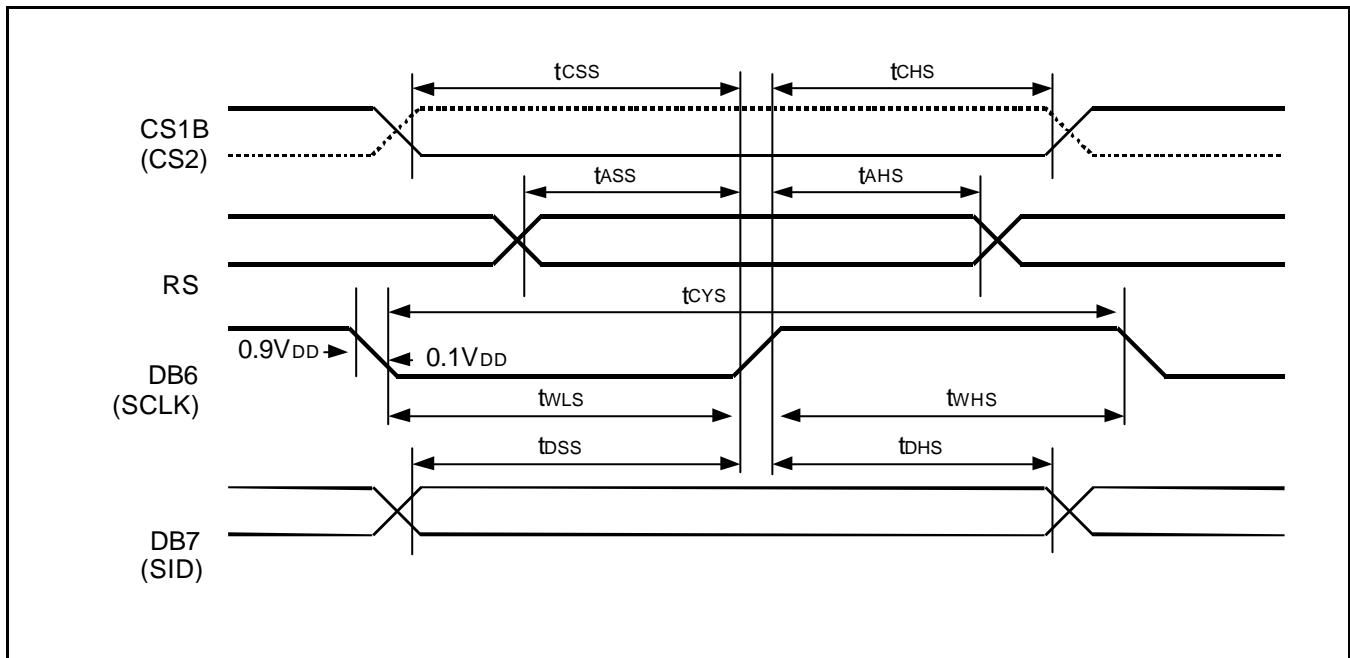
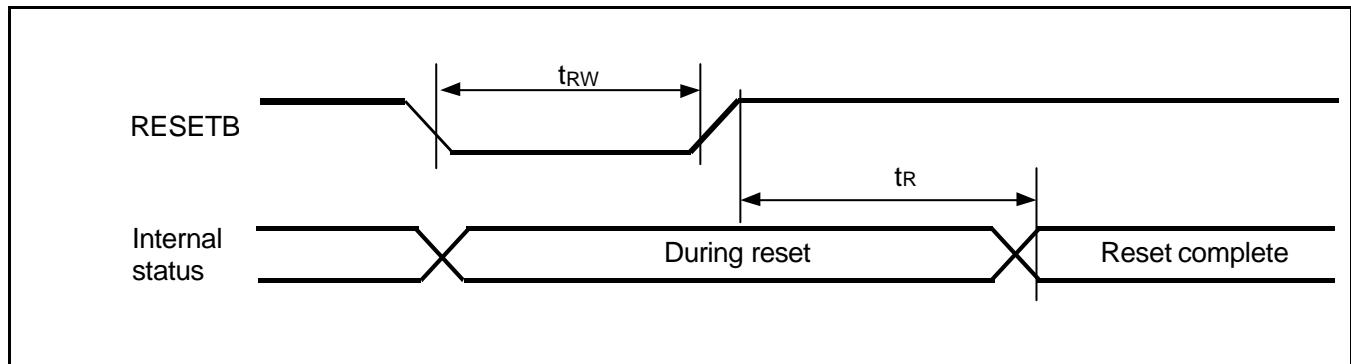



Figure 26. Serial Interface Characteristics

(VDD = 2.4 to 3.6V, Ta = -40 to +85°C)

Item	Signal	Symbol	Min.	Typ.	Max.	Unit	Remark
Serial clock cycle SCLK high pulse width SCLK low pulse width	DB6 (SCLK)	tCYS tWHS tWLS	250 100 100	- - -	- - -	ns	
Address setup time Address hold time	RS	tASS tAHSS	150 150	- -	- -	ns	
Data setup time Data hold time	DB7 (SID)	tDSS tDHS	100 100	- -	- -	ns	
CS1B setup time CS1B hold time	CS1B	tCSS tCHS	150 150	- -	- -	ns	

Note: 1. The input signal rising time and falling time (tr, tf) is specified at 15ns or less.

Reset Input Timing**Figure 27. Reset Input Timing**

(VDD = 2.4 to 3.6V, Ta = -40 to +85°C)

Item	Signal	Symbol	Min.	Typ.	Max.	Unit	Remark
Reset low pulse width	RESETB	t_{RW}	1.0	-	-	μs	
Reset time	-	t_R	-	-	1.0	μs	

REFERENCE APPLICATIONS

MICROPROCESSOR INTERFACE

In Case of Interfacing with 6800-series (PS = "H", C68 = "H")

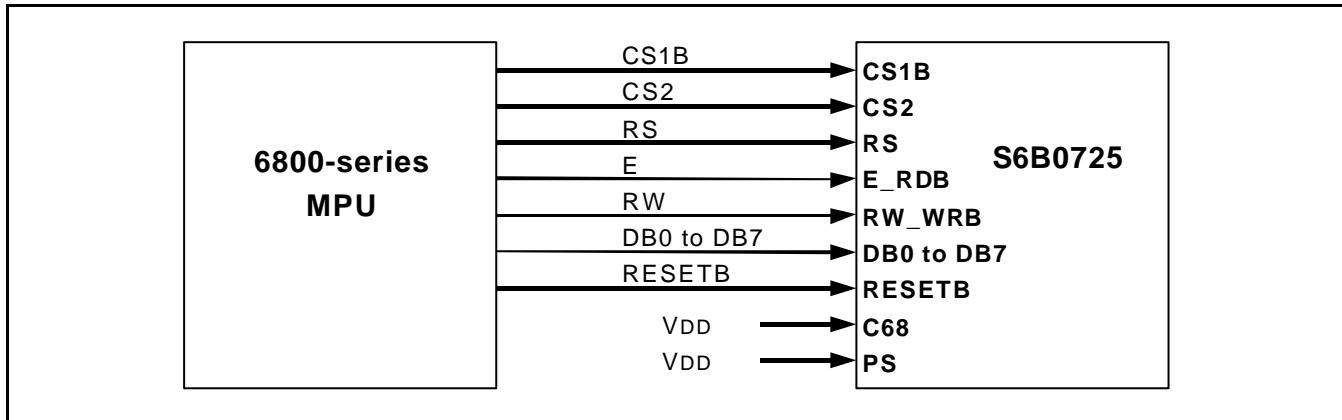


Figure 29. Interfacing with 6800-series

In Case of Interfacing with 8080-series (PS = "H", C68 = "L")

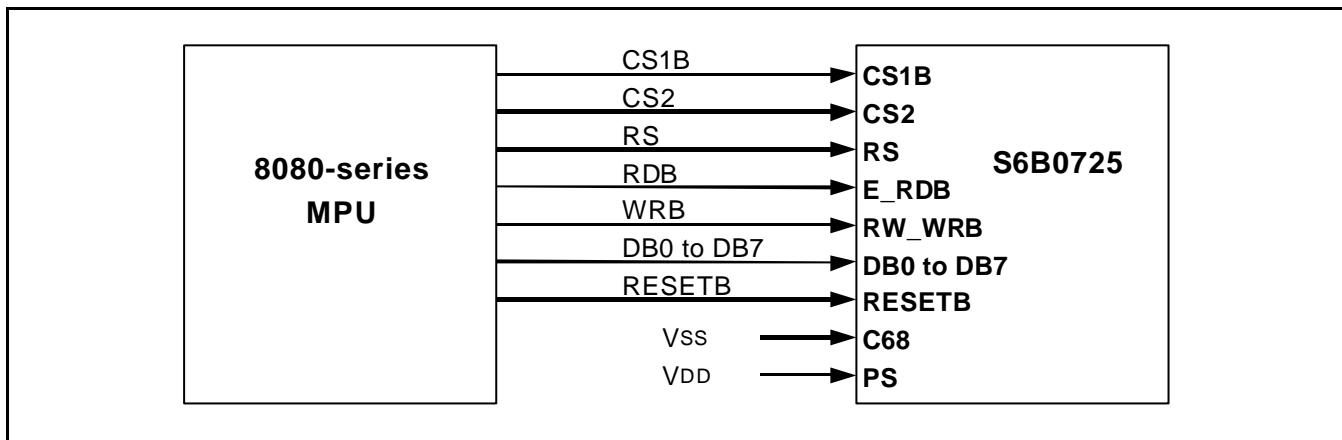


Figure 30. Interfacing with 8080-series

In Case of Serial Interface with RS Pin (PS = "L", C68 = "H")

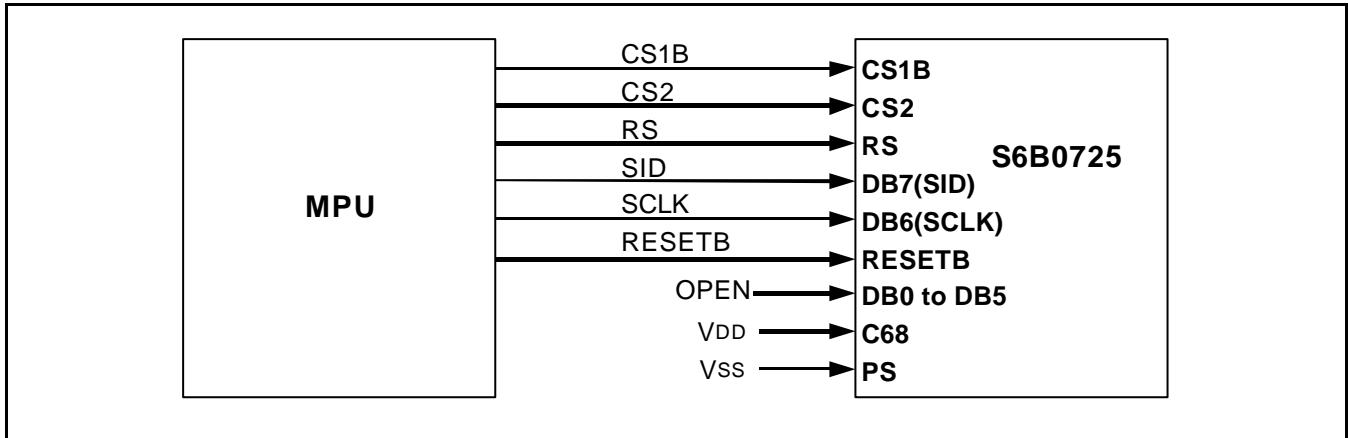


Figure 31. 4 Pin Serial Interface

In Case of Serial Interface with Software Command (PS = "L", C68 = "L")

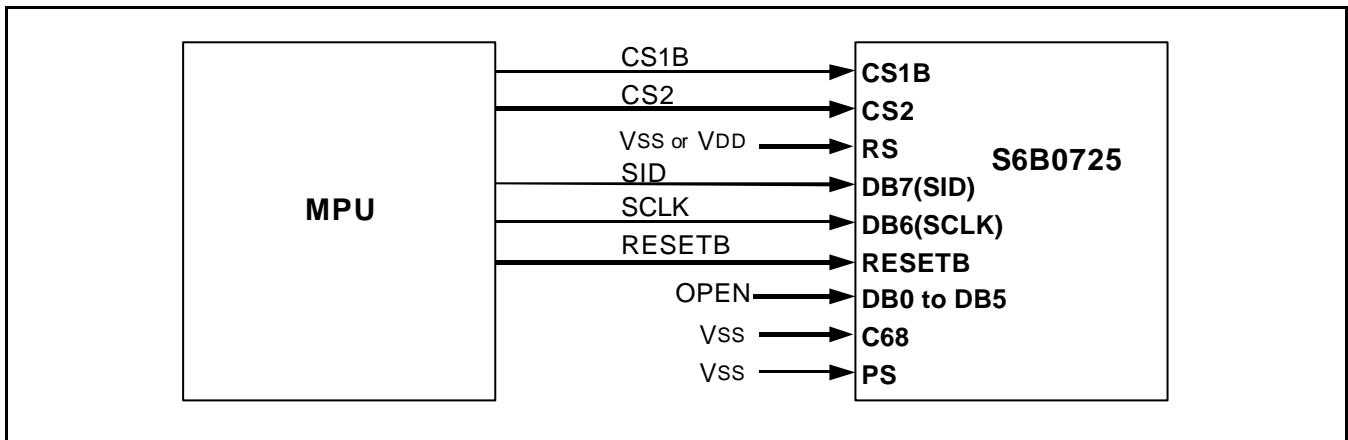


Figure 32. 3 Pin SPI Serial Interface

CONNECTIONS BETWEEN S6B1400X AND LCD PANEL

Single Chip Structure (1/65 Duty Configurations)

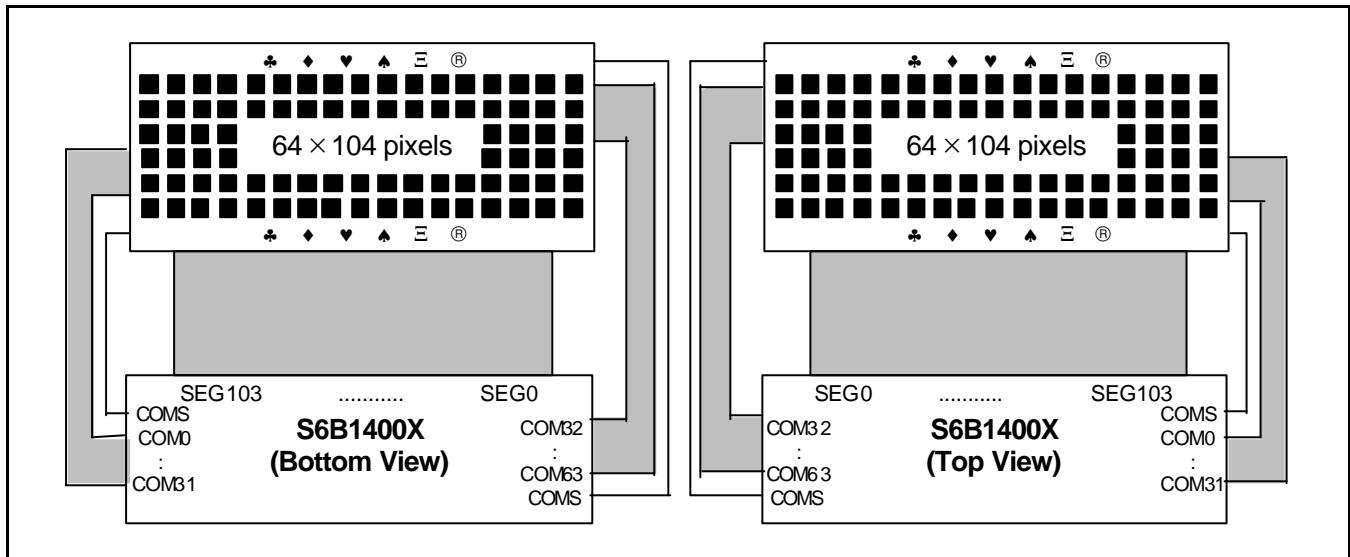


Figure 33. SHL = 1, ADC = 1

Figure 34. SHL = 1, ADC = 0

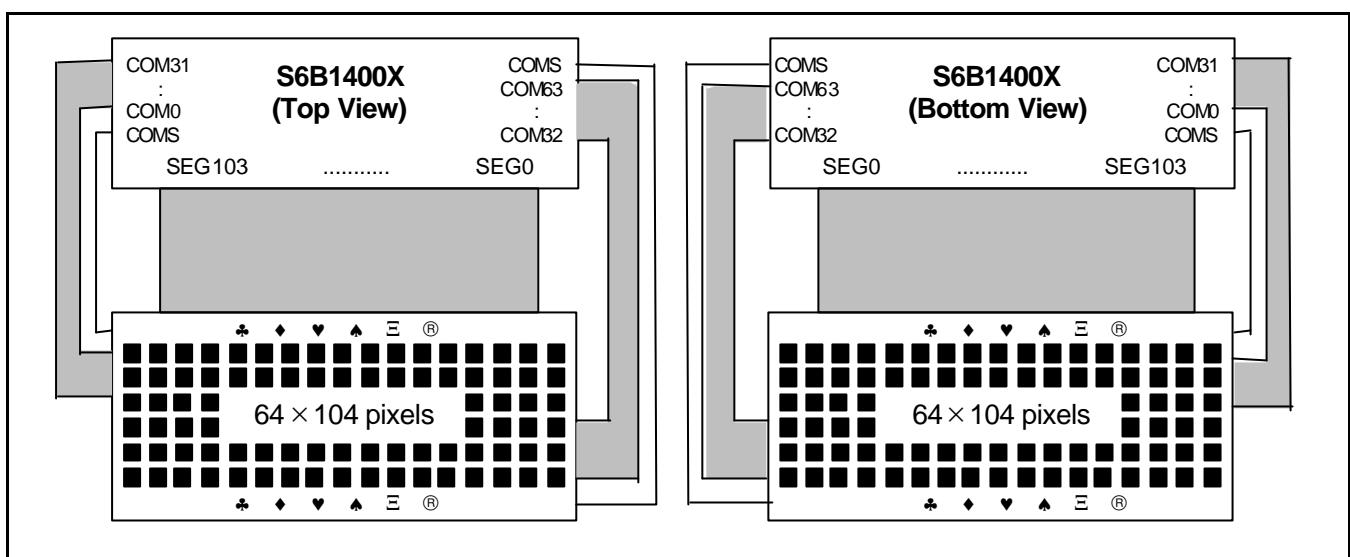


Figure 35. SHL = 0, ADC = 1

Figure 36. SHL = 0, ADC = 0

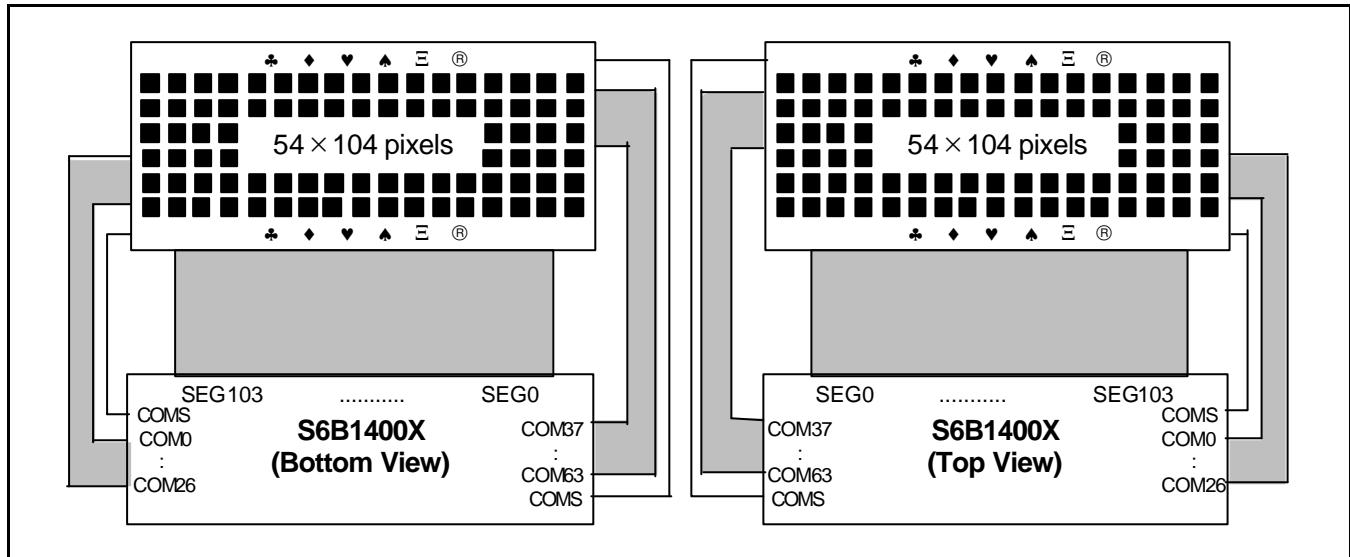

Single Chip Structure (1/55 Duty Configurations)

Figure 37. SHL = 1, ADC = 1

Figure 38. SHL = 1, ADC = 0

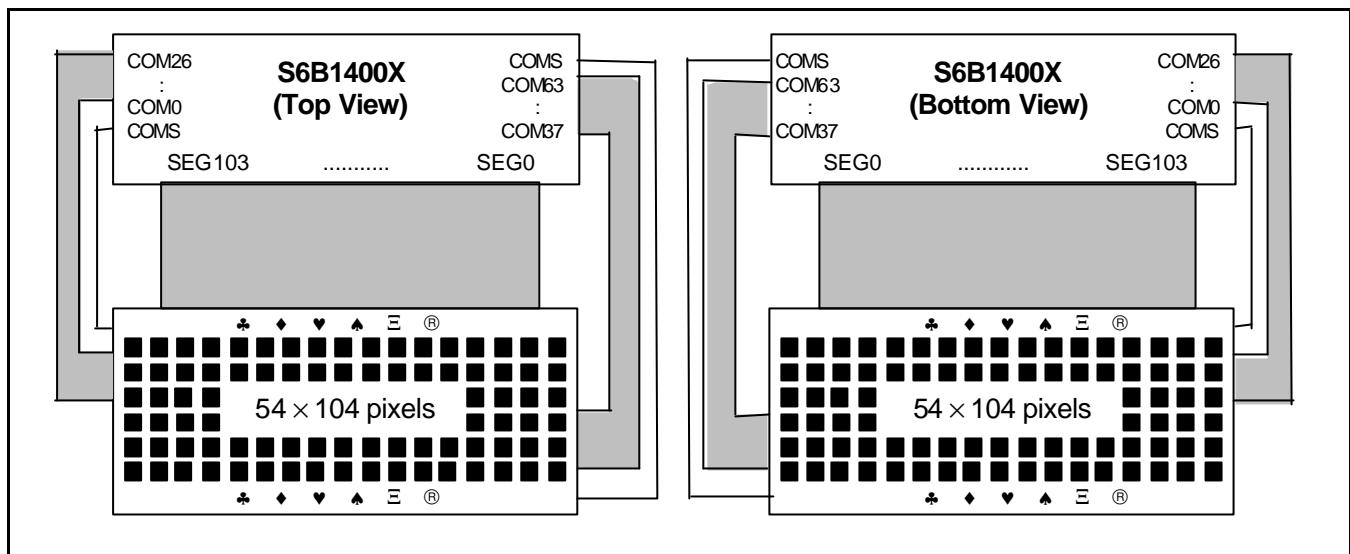


Figure 39. SHL = 0, ADC = 1

Figure 40. SHL = 0, ADC = 0

Single Chip Structure (1/49 Duty Configurations)

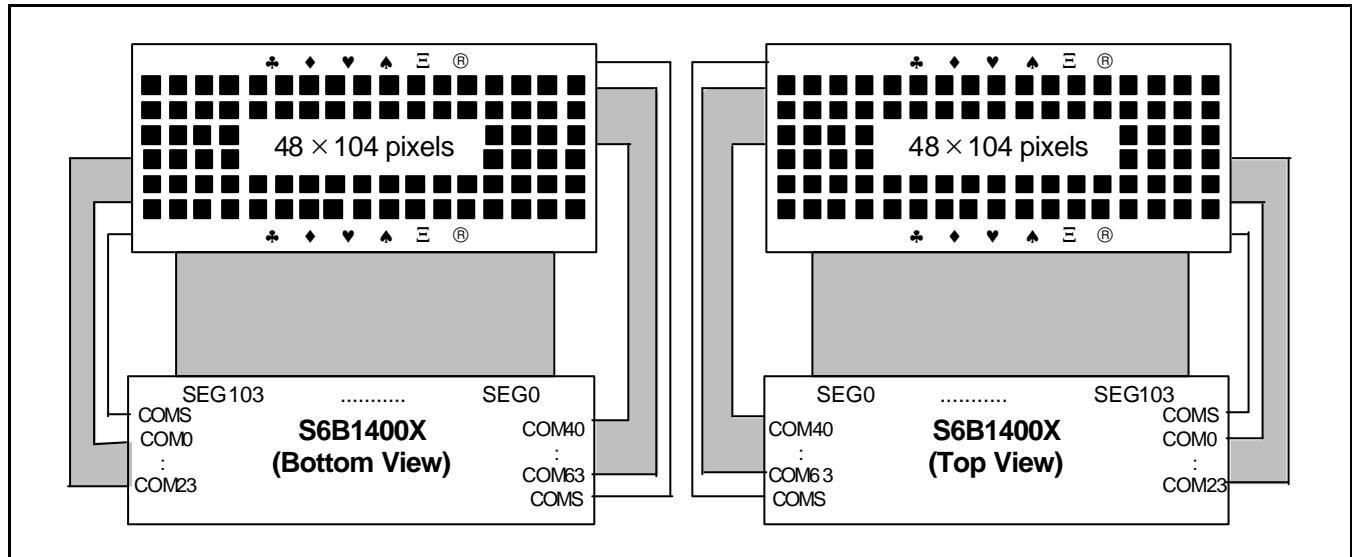


Figure 41. SHL = 1, ADC = 1

Figure 42. SHL = 1, ADC = 0

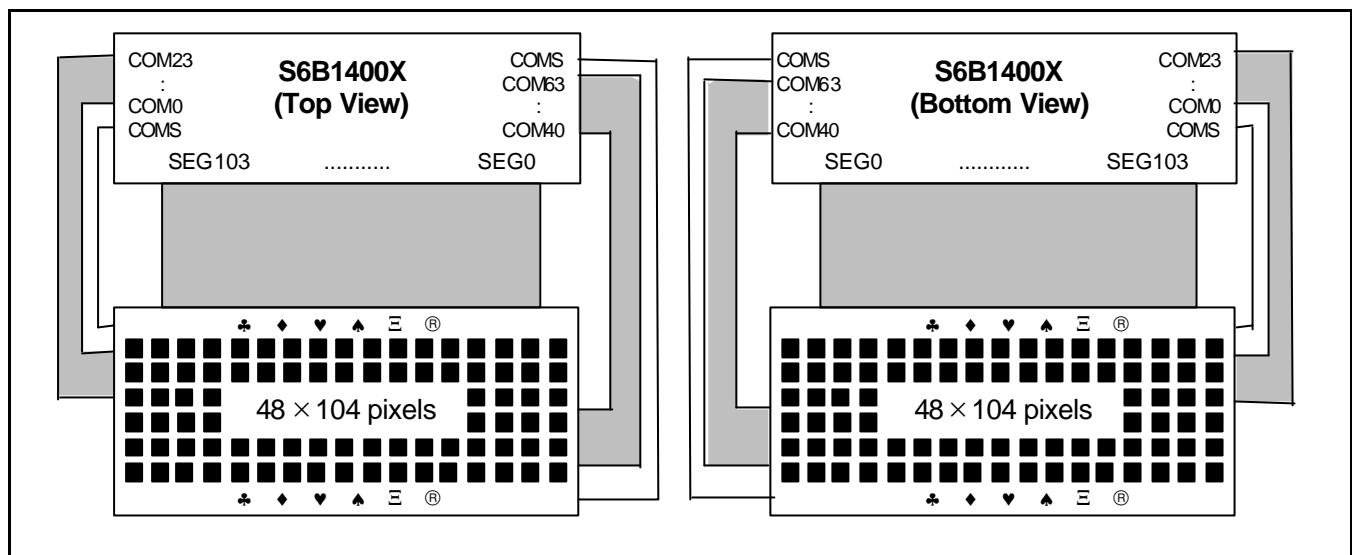
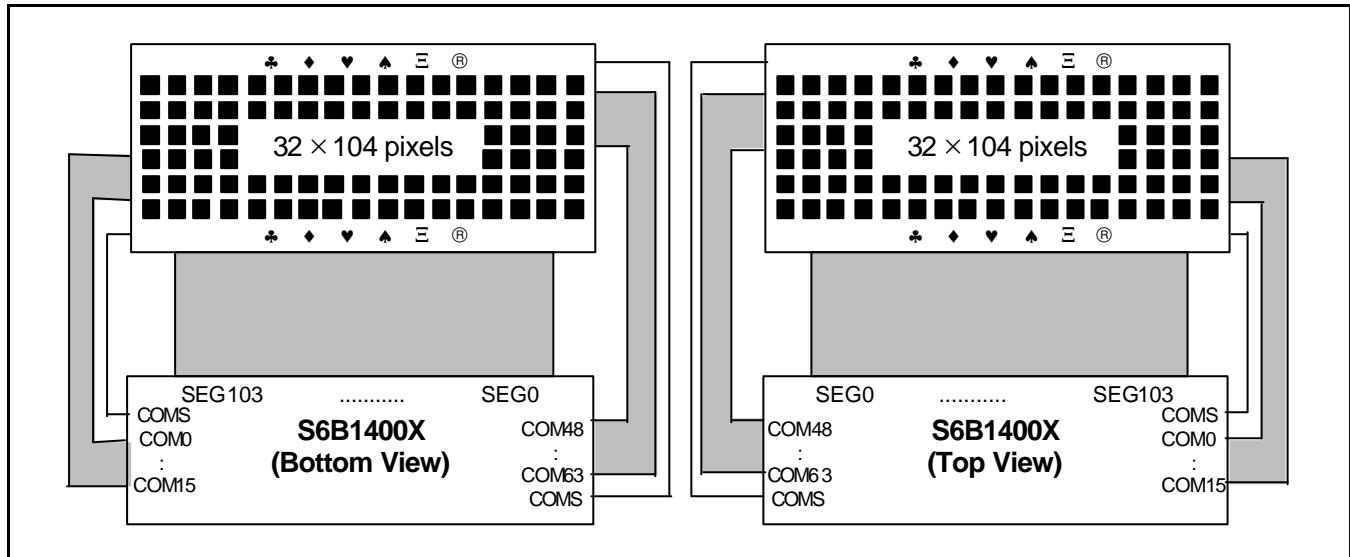
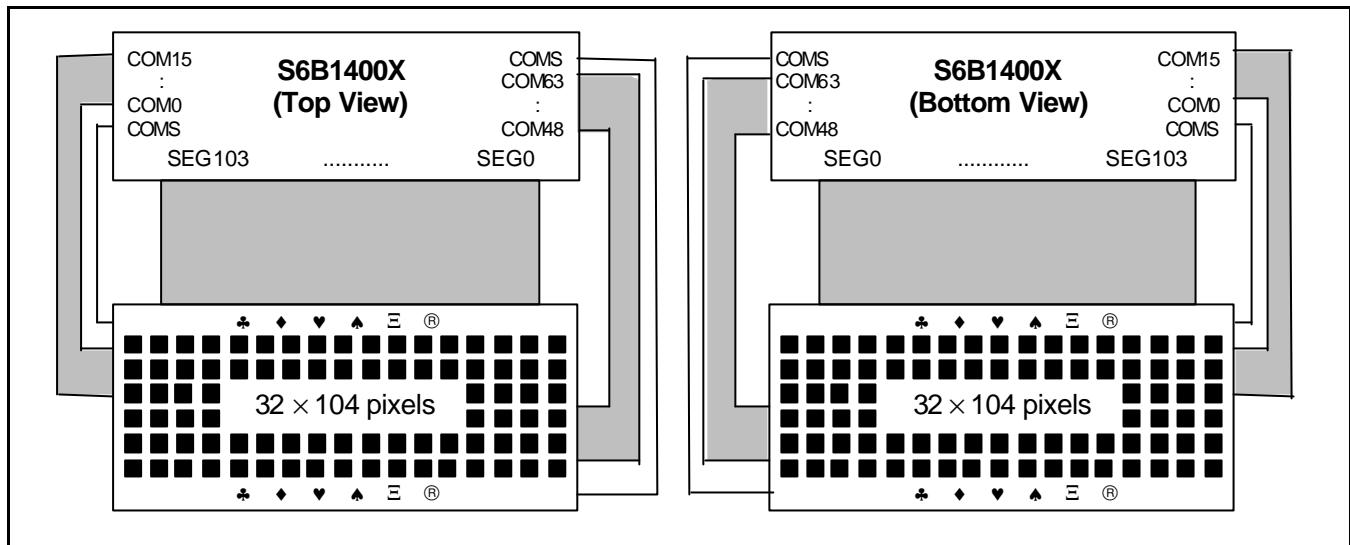
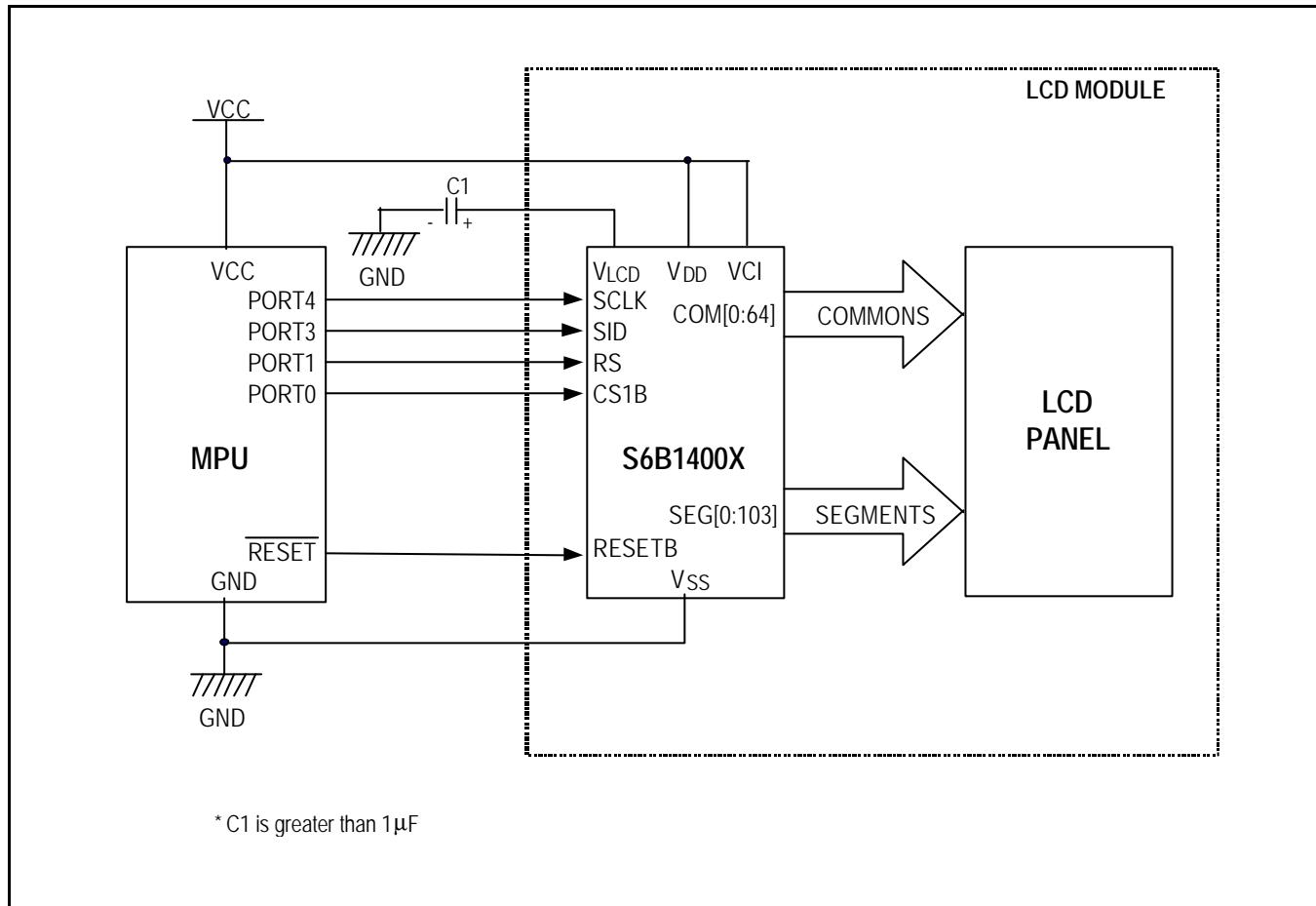





Figure 43. SHL = 0, ADC = 1

Figure 44. SHL = 0, ADC = 0

Single Chip Structure (1/33 Duty Configurations)**Figure 45. SHL = 1, ADC = 1****Figure 46. SHL = 1, ADC = 0****Figure 47. SHL = 0, ADC = 1****Figure 48. SHL = 0, ADC = 0**

S6B1400X Application Circuit for Serial Mode**■ 4 Pin SPI Serial Interface****Figure 49. S6B1400X Application Circuit for 4 Pin SPI Serial Interface**