SONY CXK77910ATM/AYM -10/12

131,072-word by 9-bit High-Speed Synchronous Static RAM

Description

The CXK77910ATM/AYM are high-speed CMOS synchronous static RAMs with common I/O pins, 131,072-word-by-9-bit. organized These synchronous SRAMs integrate input registers, high speed SRAM and output registers onto a single monolithic IC. All input signals are latched at the positive edge of an external clock (CLK). The RAM data from the previous cycle is presented at the positive edge of the subsequent clock cycle. Write operation is initiated by the positive edge of CLK and is internally self-timed. This feature eliminates complex off-chip write pulse generation and provides increased flexibility for incoming signals. 100MHz operation is obtained from a single 5V power supply.

Function

There are three possible user transactions with the STRAM — read operation, write operation and deselect operation.

____The read operation requires WE = "HIGH" and OE = CE = "LOW" on the positive edge of CLK.

The memory location pointed to by the contents of the Address registers is read internally and the contents of the location are captured in the Data-out registers on the next positive edge of CLK. The state of Data-out will reflect the contents of the Data-out registers.

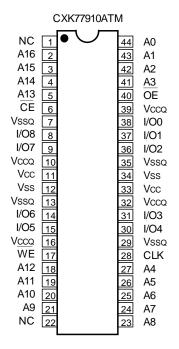
The write operation requires CE = WE = "LOW" on the positive edge of CLK. The memory location pointed to by the contents of the Address registers is written with the contents of the Data-in registers. The write operation is entirely self-timed, eliminating critical timing edges.

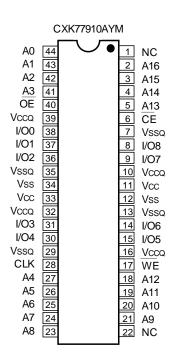
The deselect cycle requires CE = "HIGH" or OE = WE = "HIGH" on the positive edge of CLK. Write operation and internal read operation are disabled during the clock

cycle. The data outputs are forced to a high impedance state during the next clock cycle. During the deselect cycle by CE = "HIGH", STRAM turns to power down mode.

Structure

Silicon gate CMOS IC

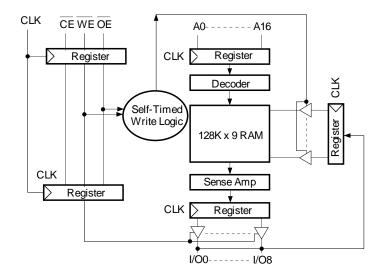

Features


Fast cycle time: (Cycle) (Frequency)
CXK77910ATM/AYM-10 10.0ns 100MHz
CXK77910ATM/AYM-12 12.5ns 80MHz

Fast clock to data valid
CXK77910ATM/AYM-10 5.5ns
CXK77910ATM/AYM-12 6.5ns

- High speed, low power consumption
- Single +5V power supply: 5V ± 5%
- Separate output power supply: 3.15V to 5.25V
- Inputs and outputs are TTL compatible (3.3V I/O compatible)
- Common data input and output
- All inputs and outputs are registered on a single clock edge
- · Self-timed write cycle
- Package line-up: 400mil 44 pin TSOP II with 0.8mm pitch

Pin Configurations (Top View)



Pin Description (1)

Symbol	Description			
A0 to A16	Address input			
I/O0 to I/O8	Data input/output			
CLK	Clock			
CE	Chip enable input			
WE	Write enable input			
ŌE	Output enable input			
Vccq	Output power supply			
Vcc	+5V power supply			
Vss/Vssq	Ground			

Block Diagram

Pin Description (2)

CLK (Clock, Positive Edge Triggered)

All timing is controlled by the rising or positive edge of CLK. All synchronous input and output signals are registered on the positive edge of CLK with set-up and hold times referenced to that edge. Since only one edge of CLK is referenced, the duty cycle of CLK is not critical.

A0 to A16 (Address)

The Address inputs are decoded on-chip to select one of 131,072 words. The state of the Address inputs is registered into the Address register on the positive edge of CLK. The Address inputs must be valid during every positive edge with all set-up and hold times referenced to that edge.

I/O0 to I/O8 (Data Input/Output)

I/O terminals are three-state and data input/output common. The state is defined by the Control block (refer to the truth table on page 4).

The data inputs for write operation must be valid during every positive edge of CLK with all set-up and hold times referenced to that edge. The data outputs are triggered by the positive edge of CLK and the contents of the Output-Registers are presented.

WE (Synchronous Write Enable, Active Low)

WE is used to indicate whether a read or write operation is to be performed. WE is "LOW" to perform a write operation. WE is registered on every positive edge of CLK with set-up and hold times referenced to that edge. The internal timing required to store data into the memory array is self-timed.

CE (Synchronous Chip Enable, Active Low)

CE is used to select the Synchronous SRAM when low (or deselect when high). When selected, the Synchronous SRAM will perform a read or write operation (refer to the truth table on page 4). The state of CE is registered on every positive edge of CLK with set-up and hold times referenced to that edge.

OE (Synchronous Output Enable, Active Low)

OE is used to indicate that a read operation is to be performed. If the Synchronous SRAM is selected, the OE is low to perform a read operation (refer to the truth table on page 4). The state of OE is registered on every positive edge of CLK with set-up and hold times referenced to that edge.

Absolute Maximum Ratings

Item	Symbol	Rating	Unit
Supply voltage	Vcc	-0.5 to +7.0	V
Input voltage	Vin	-0.5 to Vcc +0.5	V
Output voltage	Vo	-0.5 to Vcc +0.5	V
Allowable power dissipation	PD	1	W
Operating temperature	Topr	0 to 70	°C
Storage temperature	Tstg	-55 to +150	°C
Soldering temperature • time	Tsolder	235 • 10	°C • sec

Truth Table

CLK	CE (tn)	WE (tn)	OE (tn)	Mode	I/O to 8	Vcc Current
	Н	X	X	Deselect	Hi-Z	Isa
	L	Н	Η	Read	Hi-Z	Icc
	L	Н	L	Read	Data out*	Icc
	L	L	X	Write	Data in	Icc

DC Recommended Operating Conditions

1	(Ta	=	$+25^{\circ}$	$^{\circ}$ C	GN	D	=	O١	/	١
	ııа	_	TZJ	U .	UIV	\mathbf{L}	_	\mathbf{v}	,	,

Item	Symbol	Min.	Тур.	Max.	Unit
Supply voltage	Vcc	4.75	5.0	5.25	V
Output supply voltage	Vccq	3.15	_	5.25	V
Input high voltage	ViH	2.2	_	Vcc +0.3	V
Input low voltage	VIL	-0.3*	_	0.8	V

^{*}VIL = -3.0V min. for pulse width less than 20ns.

X: "H" or "L" $$^*\mbox{Data}$ come out on the next positive edge of CLK.

Electrical Characteristics

DC and Operating Characteristics

 $(Vcc = 5V \pm 5\%, GND = 0V, Ta = 0 to +70°C)$

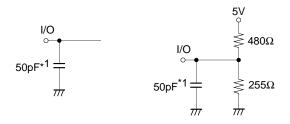
Item	Symbol	Test conditions	Min.	Max.	Unit
Input leakage current	ILI	Vin = Gnd to Vcc	-1	1	
Output leakage current	ILO	Vo = GND to Vcc OE = ViH	-1	1	μA
Average operating current	Icc	Duty = 100% Iout = 0mA	_	150	mA
Standby current ISB CE ≥ VIH Cycle = Min. Duty =		CE ≥ VIH Cycle = Min. Duty = 100%	_	130	IIIA
Output high voltage	Vон	Iон = −2.0mA	2.4	_	V
Output low voltage	Vol	IoL = 4.0mA	1	0.4	V

I/O Capacitance

 $(Ta = +25^{\circ}C, f = 1MHz)$

Item	Symbol	Test Conditions	Min.	Max.	Unit
Input capacitance	CIN	VIN = 0V		5	рF
I/O capacitance	Cı/o	V1/0 = 0V	_	7	рF

Note) These parameters are sampled and are not 100% tested.


AC Characteristics

• AC Test Conditions (Vcc = 5V \pm 5%, Ta = 0 to \pm 70°C)

Item	Conditions
Input pulse high level	VIH = 3.0V
Input pulse low level	VIL = 0V
Input rise time	tr = 3ns
Input fall time	tf = 3ns
Input/output reference level	1.5V
Output load conditions	Fig. 1

Output Load (1) Out

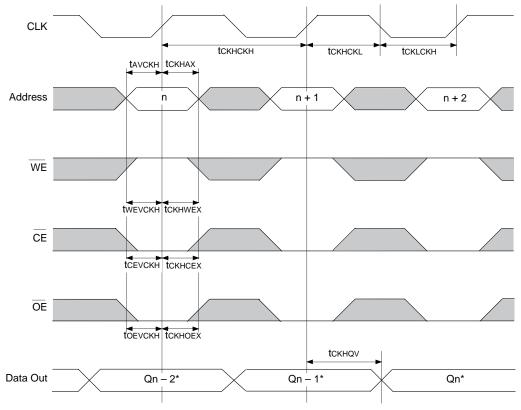
Output Load (2) *2

- *1. Including scope and jig capacitance.
- *2. For tckhqz, tckhqx.

Fig. 1

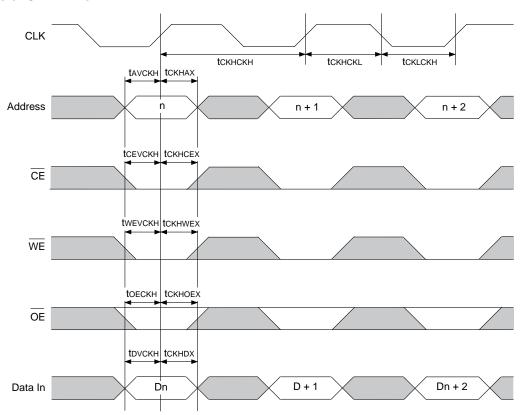
• Read Cycle (WE = "H")

		-10		-12		
Item	Symbol	Min.	Max.	Min.	Max.	Unit
Read cycle time	tскнскн	10	_	12.5	_	
Clock high pulse width	tckhckl	3.5	_	4	_	
Clock low pulse width	tcklckh	3.5	_	4	_	
Clock to data valid	tckhqv		5.5	_	6.5	
Address setup to clock high	tavckh	2.5	_	2.5	_	
Address hold from clock high	tCKHAX	0.5	_	0.5	_	ns
Chip enable setup to clock high	tcevckh	2.5	_	2.5	_	113
Chip enable hold from clock high	tckhcex	0.5	_	0.5	_	
Output enable setup to clock high	toevckh	2.5	_	2.5		
Output enable hold from clock high	tckhoex	0.5	_	0.5	_	
Clock high to output low-Z	tckhqx*	1.5	_	1.5	_	
Clock high to output high-Z	tckhqz*	_	4.5		5	

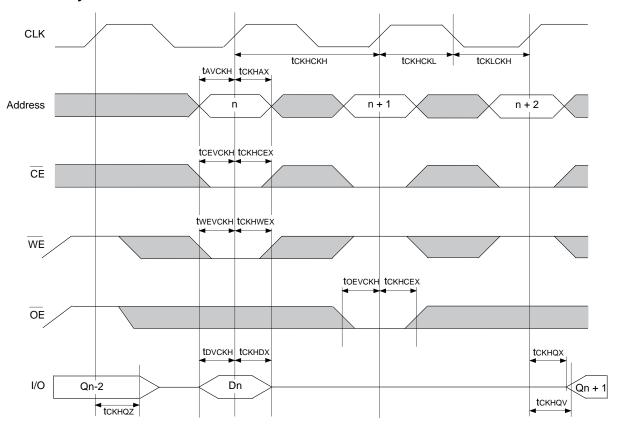

^{*}Transition is measured ±200mV from steady voltage with specfified loading in Fig. 1-(2). This parameter is sampled and is not 100% tested.

• Write Cycle

		-1	0	-1	2	
Item	Symbol	Min.	Max.	Min.	Max.	Unit
Write cycle time	tскнскн	10	_	12.5	_	
Clock high pulse width	tCKHCKL	3.5	_	4	_	
Clock low pulse width	tCKLCKH	3.5	_	4	_	
Address setup to clock high	tavckh	2.5	_	2.5	_	
Address hold from clock high	tCKHAX	0.5	_	0.5	_	
Chip enable setup to clock high	tCEVCKH	2.5	_	2.5	_	ns
Chip enable hold from clock high	tCKHCEX	0.5	_	0.5	_	
Write enable setup to clock high	tWEVCKH	2.5	_	2.5	_	
Write enable hold from clock high	tCKHWEX	0.5	_	0.5	_	
Input data setup to clock high	tDVCKH	2.5	_	2.5	_	
Input data hold from clock high	tCKHDX	0.5	_	0.5	_	


Timing Waveform

• Read Cycle



*Valid data from CLK high is the data from the previous cycle

• Write Cycle: OE = VIH or VIL

• Read/Write Cycle

4.5

4.75

5.0

5.25

5.5

0

20

40

lcc

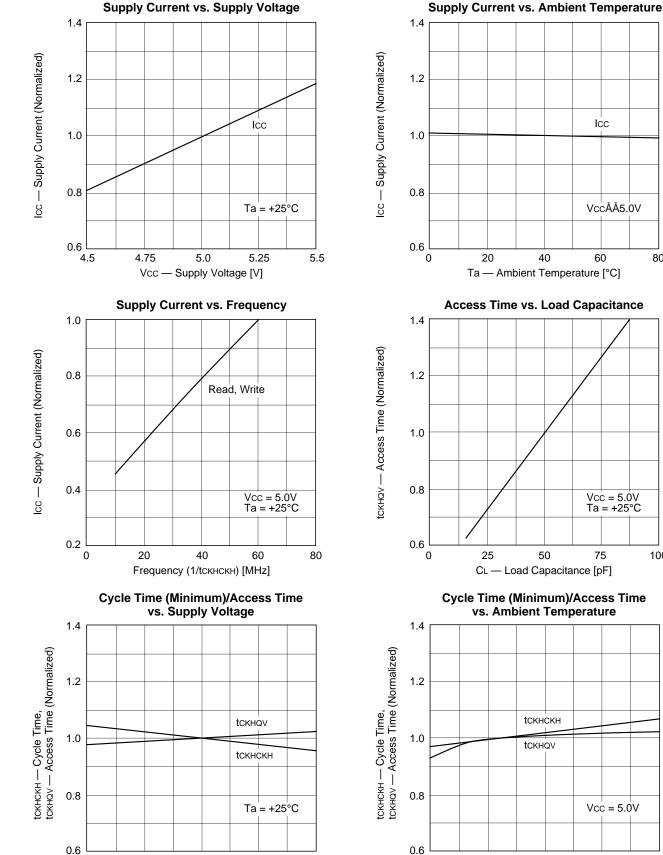
VccÅÅ5.0V

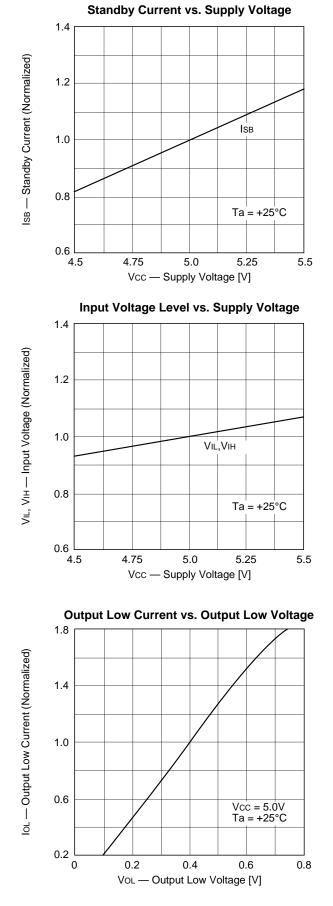
Vcc = 5.0V

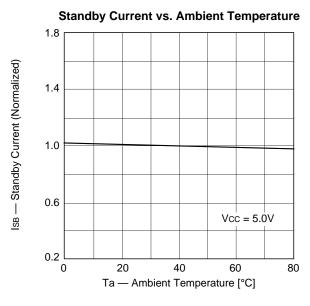
Ta = +25°C

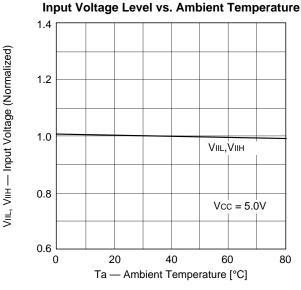
Vcc = 5.0V

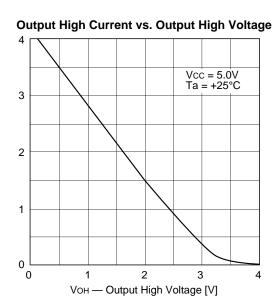
80


60


100


75


80


Example of Representative Characteristics

loн — Output High Current (Normalized)

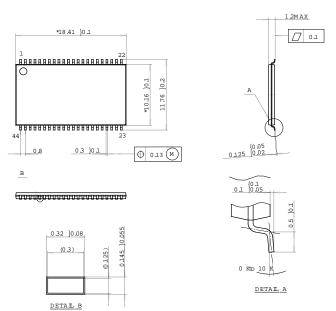
SONY CXK77910ATM/AYM

Package Outline

Unit: mm

CXK77910ATM

44 PIN TSOP (II) (PLASTIC) 400 m il



PACKAGE STRUCTURE

		PACKAGE MATERIAL	EPOXY RESIN
SONY CODE	TSOP(II)-44P-L01	LEAD TREATMENT	SOLDER PLATING
EMJCODE	TSOP (II)044-P-0400-A	LEAD MATERIAL	42 ALLO Y
JEDEC CODE		PACKAGE W EIGHT	0.5g

CXK77910AYM

44PIN TSOP(II) (PLASTIC) 400m il

NOTE Dimension g bridges not include mobil protrusion.

PACKAGE STRUCTURE

		PACK
SONY CODE	TSOP(II)-44P-L01R	LEAD
EMJCODE	TSOP(II)044-P-0400-B	LEAD
JEDEC CODE		PACK

PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	SOLDER PLATING
LEAD MATERIAL	42 ALLOY
PACKAGE W EIGHT	0.5g