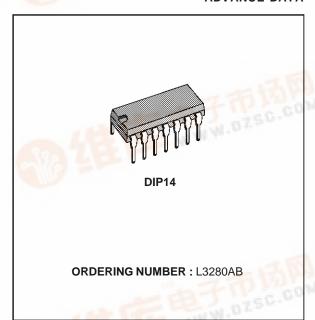
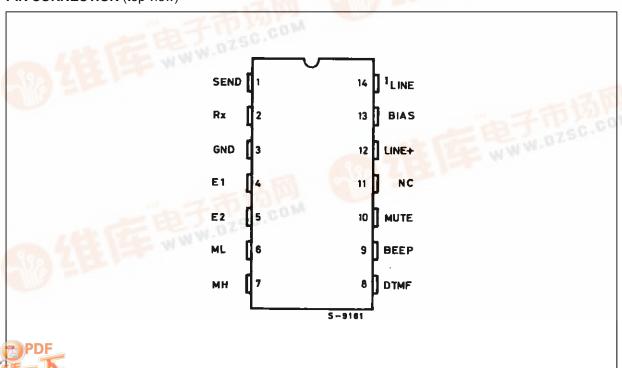


L3280

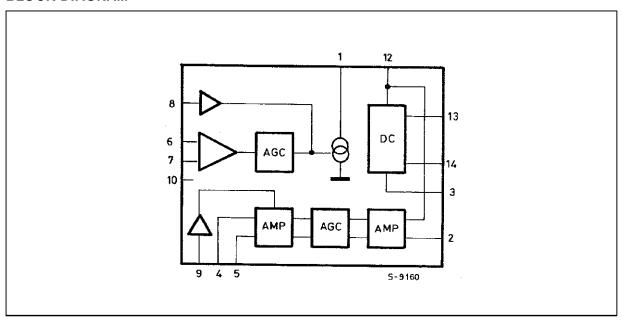
LOW VOLTAGE TELEPHONE SPEECH CIRCUIT


ADVANCE DATA

- OPERATION DOWN TO 1.3 V/5 mA
- DTMF & BEEP TONE INPUTS
- EXTERNAL MUTING FOR EARPHONE AND MICROPHONE
- MUTE TURNS ON BEEP TONE & DTMF IN-PUTS AND TURNS OFF EARPHONE & MI-CROPHONE
- SUITABLE FOR DYNAMIC OR PIEZO EAR-PHONES AND PIEZO, DYNAMIC OR ELEC-TRET MICROPHONES


DESCRIPTION

The L3280 is a brand new low voltage speech circuit designed to replace hybrid circuits in telephone sets. It is designed for sets that may be operated in parallel. It features both DTMF input and Beep tone input; ALC on send and receive and muting input.


Various DC - characteristics can be programmed at pin 14 replacing testing resistor (43 Ω) with proper network value.

PIN CONNECTION (top view)

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
VL	Line Voltage (3 ms pulse)	20	V
ΙL	Line Current	150	mA
P _{tot}	Total Power Dissipation, T _{amb} = 70 °C	1	W
T _{op}	Operating Temperature	- 20 to 55	°C
Tj	Junction Temperature	- 65 to 150	°C

THERMAL DATA

Symbol	Symbol Parameter		Value	Unit
R _{th j-amb}	Thermal Resistance Junction-ambient	Max	80	°C/W

Figure 1 : Test Circuits.

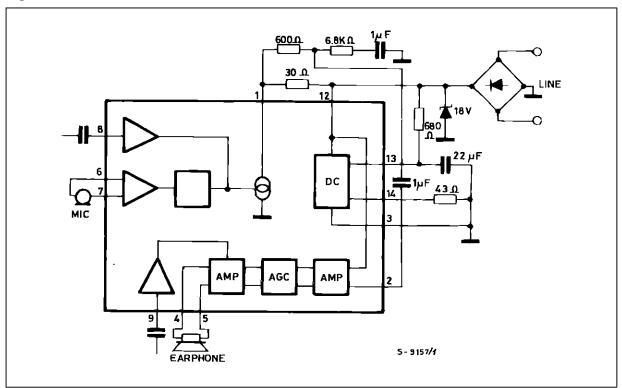


Figure 2.

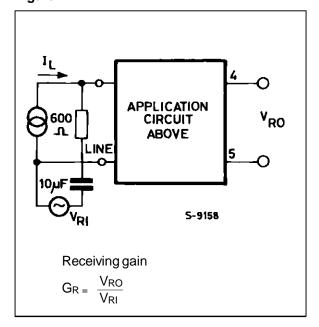
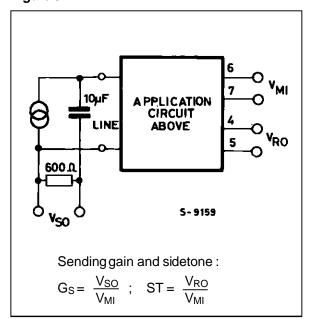



Figure 3.

ELECTRICAL CHARACTERISTICS

 $(T_{amb} = 25^{\circ}C ; f = 1 \text{kHz}; I_L = 20 \text{mA} : \text{mute low}; R1 (pin 14) = 43\Omega, unless otherwise specified)$

Symbol	Parameter Test Conditions		Min.	Тур.	Max.	Unit
V_L	Line Voltage	I _L = 20 mA		3.05	3.35	V
V_L	Line Voltage	I _L = 50 mA		5.8	6.2	V
VL	Line Voltage	I _L = 80 mA		8.5	10	V
C _{MRR}	Common Mode Rej. Ratio		50			dB
Gs	Sending Gain	V _{MI} = 2 mV, I _L = 20 mA	47.8	49.3	50.8	dB
D _{GS}	Delta Sending Gain	I _L = 70 mA, V _{MI} = 2 mV	- 7	- 5.5	- 4	dB
T _{HDS}	Sending Distortion	V _{SO} = 700 mV			5	%
N _{TX}	Sending Noise	I _L = 50 mA, V _{MI} = 0 V		- 71		dBm
Z _{MI}	Mic. Input Impedance	V _{MI} = 2 mV	40			ΚΩ
GR	Receiving Gain	I _L = 20 mA, V _{RI} = 0.2 V	7.7	9.2	10.7	dB
D_GR	Delta Receiving Gain	I _L = 70 mA, V _{RI} = 0.2 V	- 7	- 5.5	- 4	dB
T _{HDR}	Receiving Distortion	V _{RO} = 615 mV			5	%
N _{RX}	Receiving Noise	V _{RI} = 0 V		300		μV
Z _{RO}	Receiving Output Imped.	$R_1 = 200 \ \Omega, \ V_{RO} = 50 \ mV$		10		Ω
	Sidetone	V _{MI} = 2 mV		40		dB
Z _{ML}	Line Match. Impedance	V _{RI} = 0.2 V	500	600	700	Ω
VL	Line Voltage	I _L = 5.5 mA		1.5	1.8	V
V _{SO}	Sending Output Voltage	I _L = 5.5 mA, T _{HD} = 5 %	100			mV
I _{RO}	Rec. Output Current	I _L = 5.5 mA, T _{HD} = 5 %	0.7			mA
	OPERATION @ I _L = 16 mA					
MULO	Mute Input Low	(speaking mode)			1	V
MUHI	Mute Input High	(dialling mode)	2			V
GMF	DTMF Gain	V _{in} = 2 mV ; Mute = 2 V	25	26.5	28	dB
RMF	DTMF Input Impedance	Mute = 2 V	6	8.5		ΚΩ
THDMF	DTMF Distorsion	Mute = 2 V ; V _{in} = 25 mV			5	%
G _{beep}	Beeptone Gain	Mute = 2 V ; V _{in} = 25 mV		8.5		dB
R _{beep}	Beeptone Input Imped.	Mute = 2 V	12			ΚΩ
THD	Beeptone Distorsion	Mute = 2 V ; V _{Bt} = 100 mV			5	%
DV _L	DELTA V _{LINE}	Mute = 2 V ; I _L = 20 mA	0.5		1.2	V
G _{BACK}	Back Tone Gain		_	_	-3.0	dB

CHARACTERISTIC AT 1 KHZ

Figure 4: Receive Characteristic and Max Output at 2 % THD.

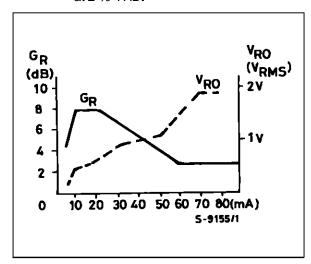
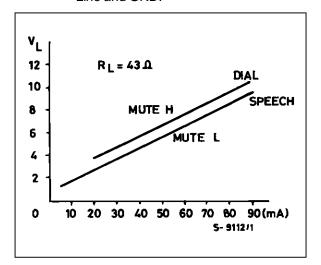
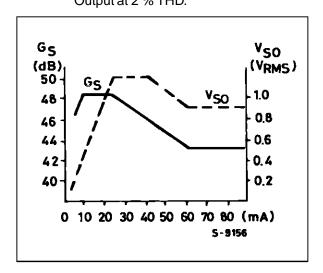
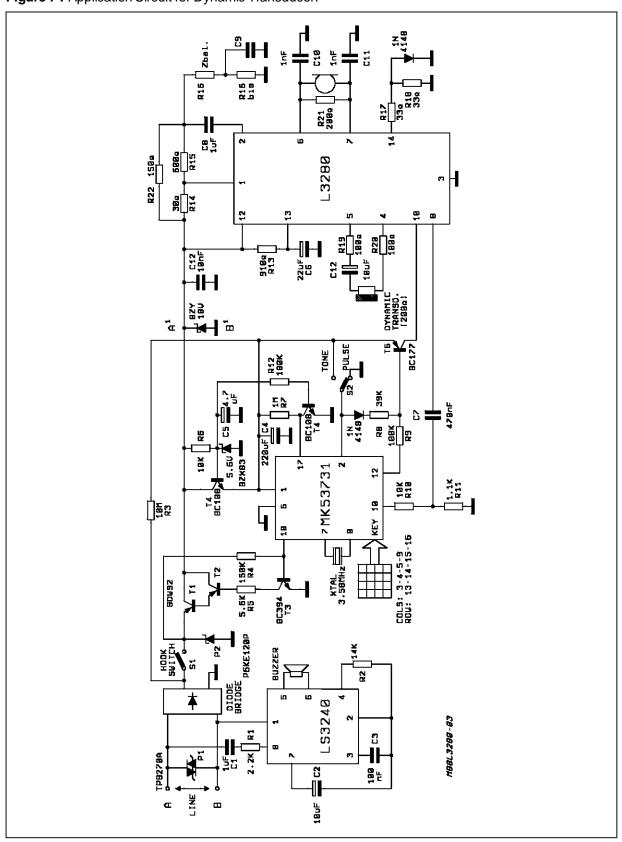




Figure 6 : DC Characteristic Measured between Line and GND.


Figure 5: Sending ALC Characteristic and Max Output at 2 % THD.

LOGIC OF MUTE SWITCHING

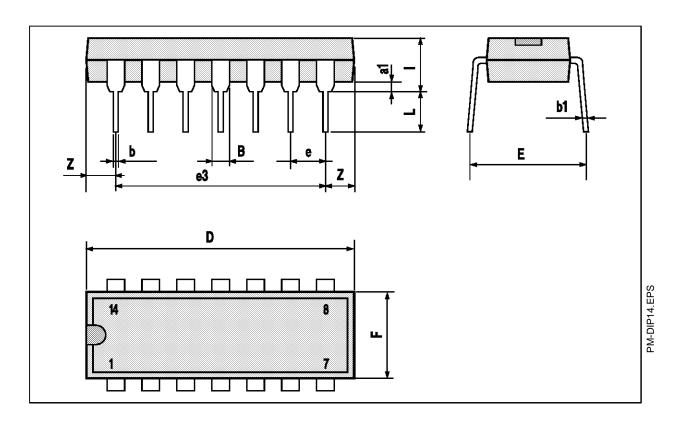

	DTMF	BEEP	MIC INPUT	RECEIVE INPUT
MUTE H	ACTIVE TO LINE OUTPUT	ACTIVE TO EARPHONE OUTPUT	MUTED	MUTED
MUTE L	MUTED	MUTED	ACTIVE	ACTIVE

Figure 7: Application Circuit for Dynamic Transducer.

DIP14 PACKAGE MECHANICAL DATA

DIM	mm			inch		
	Min.	Тур.	Max.	Min.	Тур.	Max.
a1	0.51			0.020		
В	1.39		1.65	0.055		0.065
b		0.5			0.020	
b1		0.25			0.010	
D			20			0.787
Е		8.5			0.335	
е		2.54			0.100	
еЗ		15.24			0.600	
F			7.1			0.280
i			5.1			0.201
L		3.3			0.130	
Z	1.27		2.54	0.050		0.100

IP14.TBL

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

 $\ensuremath{\text{@}}$ 1994 SGS-THOMSON Microelectronics - All Rights Reserved