

March 1999 Revised June 2002 Resistors in the Outputs

'4LVT162244 • 74LVTH162244 Low Voltage 16-Bit Buffer/Line Driver with 3-STATE Outputs and 25Ω Series

74LVT162244 • 74LVTH162244 Low Voltage 16-Bit Buffer/Line Driver with 3-STATE Outputs and 25Ω Series Resistors in the Outputs

General Description

The LVT162244 and LVTH162244 contain sixteen noninverting buffers with 3-STATE outputs designed to be employed as a memory and address driver, clock driver, or bus oriented transmitter/receiver. The device is nibble controlled. Individual 3-STATE control inputs can be shorted together for 8-bit or 16-bit operation.

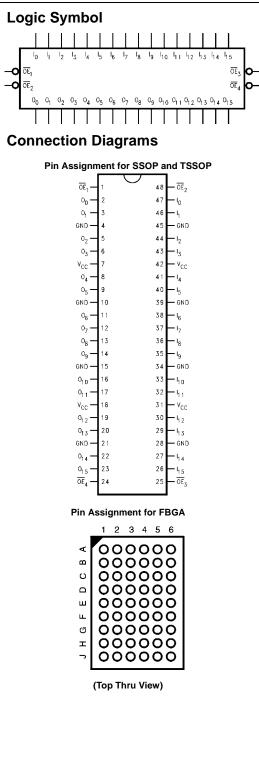
The LVT162244 and LVTH162244 are designed with equivalent 25Ω series resistance in both the HIGH and LOW states of the output. This design reduces line noise in applications such as memory address drivers, clock drivers, and bus transceivers/transmitters.

The LVTH162244 data inputs include bushold, eliminating the need for external pull-up resistors to hold unused inputs.

These buffers and line drivers are designed for low-voltage (3.3V) V_{CC} applications, but with the capability to provide a TTL interface to a 5V environment. The LVT162244 and LVTH162244 are fabricated with an advanced BiCMOS technology to achieve high speed operation similar to 5V ABT while maintaining a low power dissipation.

Features

- Input and output interface capability to systems at 5V V_{CC}
- Bushold data inputs eliminate the need for external pullup resistors to hold unused inputs (74LVTH162244), also available without bushold feature (74LVT162244).
- Live insertion/extraction permitted
- Power Up/Power Down high impedance provides glitchfree bus loading
- Outputs include equivalent series resistance of 25Ω to make external termination resistors unnecessary and reduce overshoot and undershoot
- Functionally compatible with the 74 series 162244
- Latch-up performance exceeds 500 mA
- ESD performance: Human-body model > 2000V
 Machine model > 200V
 Charged-device > 1000V
- Also packaged in plastic Fine-Pitch Ball Grid Array (FBGA)


Ordering Code:

Order Number	Package Number	Package Description
74LVT162244G (Note 1)(Note 2)	BGA54A	54-Ball Fine-Pitch Ball Grid Array (FBGA), JEDEC MO-205, 5.5mm Wide
74LVT162244MEA (Note 2)	MS48A	48-Lead Small Shrink Outline Package (SSOP), JEDEC MO-118, 0.300" Wide
74LVT162244MTD (Note 2)	MTD48	48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide
74LVTH162244G (Note 1)(Note 2)	BGA54A	54-Ball Fine-Pitch Ball Grid Array (FBGA), JEDEC MO-205, 5.5mm Wide
74LVTH162244MEA	MS48A	48-Lead Small Shrink Outline Package (SSOP), JEDEC MO-118, 0.300" Wide [Tube]
74LVTH162244MEX	MS48A	48-Lead Small Shrink Outline Package (SSOP), JEDEC MO-118, 0.300" Wide [Tape and Reel]
74LVTH162244MTD	MTD48	48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide [Tube]
74LVTH162244MTX	MTD48	48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide [Tape and Reel]

Note 1: Ordering code "G" indicates Trays.

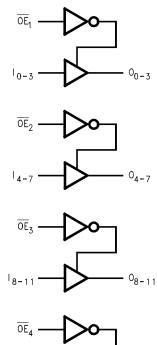
Note 2: Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

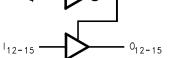
Pin Descriptions

Pin Names	Description
OEn	Output Enable Inputs (Active LOW)
I ₀ I ₁₅ O ₀ O ₁₅	Inputs
O ₀ -O ₁₅	Outputs
NC	No Connect

FBGA Pin Assignments

	1	2	3	4	5	6
Α	O ₀	NC	OE ₁	OE ₂	NC	I ₀
В	0 ₂	0 ₁	NC	NC	I ₁	l ₂
С	O ₄	O ₃	V _{CC}	V _{CC}	I ₃	I ₄
D	0 ₆	O ₅	GND	GND	I ₅	I ₆
Е	0 ₈	0 ₇	GND	GND	۱ ₇	I ₈
F	O ₁₀	O ₉	GND	GND	l ₉	I ₁₀
G	O ₁₂	O ₁₁	V _{CC}	V _{CC}	I ₁₁	I ₁₂
Н	0 ₁₄	0 ₁₃	NC	NC	I ₁₃	I ₁₄
J	O ₁₅	NC	OE ₄	OE ₃	NC	I ₁₅


Truth Table


Inpu	ts	Outputs
OE ₁	I ₀ –I ₃	0 ₀ –0 ₃
L	L	L
L	н	н
Н	Х	Z
OE ₂	I ₄ —I ₇	0 ₄ –0 ₇
L	L	L
L	н	н
Н	Х	Z
OE ₃	I ₈ –I ₁₁	0 ₈ –0 ₁₁
L	L	L
L	н	н
Н	х	Z
OE ₄	I ₁₂ –I ₁₅	O ₁₂ -O ₁₅
L	L	L
L	н	н
н	Х	Z
H = HIGH Voltage Level Z = High Impedance	L = LOW Voltage L X = Immaterial	evel

Functional Description

The LVT162244 and LVTH162244 contain sixteen non-inverting buffers with 3-STATE outputs. The device is nibble (4 bits) controlled with each nibble functioning identically, but independent of the other. The control pins can be shorted together to obtain full 16-bit operation.

Logic Diagram

Absolute Maximum Ratings(Note 3)

Symbol	Parameter	Value	Conditions	Units	
V _{CC}	Supply Voltage	-0.5 to +4.6		V	
VI	DC Input Voltage	-0.5 to +7.0		V	
Vo	Output Voltage	-0.5 to +7.0	Output in 3-STATE	V	
		-0.5 to +7.0	Output in HIGH or LOW State (Note 4)	v	
I _{IK}	DC Input Diode Current	-50	V _I < GND	mA	
I _{OK}	DC Output Diode Current	-50	V _O < GND	mA	
I _O	DC Output Current	64	V _O > V _{CC} Output at HIGH State	mA	
		128	V _O > V _{CC} Output at LOW State		
I _{CC}	DC Supply Current per Supply Pin	±64		mA	
I _{GND}	DC Ground Current per Ground Pin	±128		mA	
T _{STG}	Storage Temperature	-65 to +150		°C	

Recommended Operating Conditions

Symbol	Parameter	Min	Max	Units
/ _{cc}	Supply Voltage	2.7	3.6	V
Ì	Input Voltage	0	5.5	V
НС	HIGH-Level Output Current		-12	mA
CL	LOW-Level Output Current		12	mA
A	Free Air Operating Temperature	-40	+85	°C
Δt/ΔV	Input Edge Rate, V _{IN} = 0.8V–2.0V, V _{CC} = 3.0V	0	10	ns/V

Note 3: Absolute Maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute maximum rated conditions is not implied.

Note 4: I_{O} Absolute Maximum Rating must be observed.

DC Electrical Characteristics

Symbol	Deveryoter	Parameter		$T_A = -40^{\circ}C$	to +85°C	Units	Conditions
Symbol	Parameter		(V)	Min	Max	Units	Conditions
V _{IK}	Input Clamp Diode Voltage		2.7		-1.2	V	I _I = -18 mA
VIH	Input HIGH Voltage		2.7-3.6	2.0		V	$V_0 \le 0.1V$ or
VIL	Input LOW Voltage		2.7-3.6		0.8	V	$V_{O} \ge V_{CC} - 0.1V$
V _{OH}	Output HIGH Voltage		2.7-3.6	V _{CC} -0.2		V	I _{OH} = -100 μA
			3.0	2.0		v	$I_{OH} = -12 \text{ mA}$
V _{OL}	Output LOW Voltage		2.7		0.2	V	$I_{OL} = 100 \ \mu A$
			3.0		0.8	v	$I_{OL} = 12 \text{ mA}$
I _{I(HOLD)}	Bushold Input Minimum Drive		3.0	75		μA	$V_{I} = 0.8V$
(Note 5)			5.0	-75		μΑ	$V_{I} = 2.0V$
I _{I(OD)}	Bushold Input Over-Drive		3.0	500		μA	(Note 6)
(Note 5)	Current to Change State	Current to Change State		-500		μΛ	(Note 7)
l _l	Input Current		3.6		10		$V_{I} = 5.5V$
		Control Pins	3.6		±1	μA	$V_I = 0V \text{ or } V_{CC}$
		Data Pins	3.6		-5	μΑ	$V_I = 0V$
		Data Fills	5.0		1		$V_I = V_{CC}$
OFF	Power Off Leakage Current		0		±100	μΑ	$0V \leq V_{I} \text{ or } V_{O} \leq 5.5V$
I _{PU/PD}	Power Up/Down	0–1.5V		±100	μA	$V_{O} = 0.5V$ to 3.0V	
	3-STATE Current		0-1.50		100	μΛ	$V_{I} = GND \text{ or } V_{CC}$
I _{OZL}	3-STATE Output Leakage Currer	t	3.6		-5	μA	$V_{0} = 0.5V$
I _{OZH}	3-STATE Output Leakage Currer	t	3.6		5	μA	V _O = 3.0V
I _{OZH} +	3-STATE Output Leakage Currer	t	3.6		10	μA	$V_{CC} < V_O \le 5.5 V$
I _{CCH}	Power Supply Current		3.6		0.19	mA	Outputs HIGH
I _{CCL}	Power Supply Current		3.6		5	mA	Outputs LOW
I _{CCZ}	Power Supply Current		3.6		0.19	mA	Outputs Disabled

DC Electrical Characteristics (Continued)

Symbol	Parameter	V_{CC} $T_A = -40^{\circ}C$ to $+85^{\circ}C$		Units	Conditions	
Symbol		(V)	Min	Max	Onits	Conditions
I _{CCZ} +	Power Supply Current	3.6		0.19	mA	$V_{CC} \le V_O \le 5.5V$,
						Outputs Disabled
ΔI_{CC}	Increase in Power Supply Current	3.6		0.2	mA	One Input at V _{CC} – 0.6V
	(Note 8)	3.0		0.2	IIIA	Other Inputs at V _{CC} or GNE

Note 5: Applies to bushold versions only (74LVTH162244).

Note 6: An external driver must source at least the specified current to switch from LOW-to-HIGH.

Note 7: An external driver must sink at least the specified current to switch from HIGH-to-LOW.

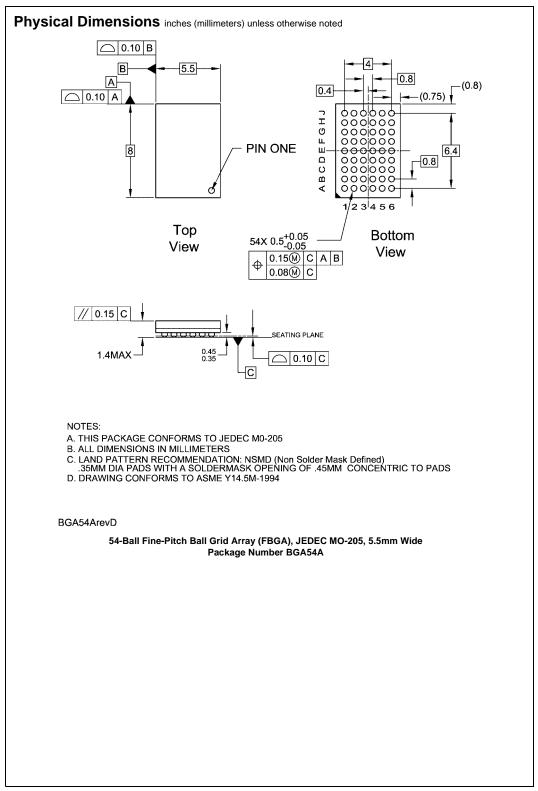
Note 8: This is the increase in supply current for each input that is at the specified voltage level rather than V_{CC} or GND.

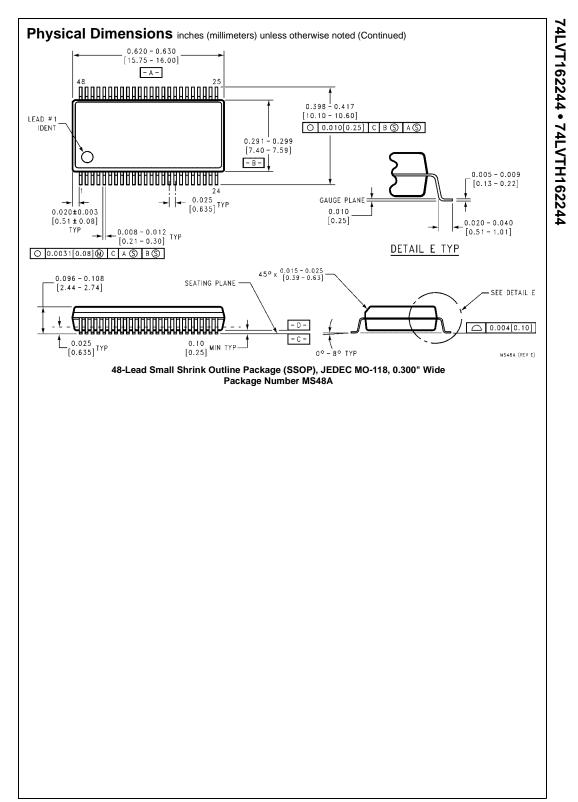
Dynamic Switching Characteristics (Note 9)

Symbol	Parameter	v _{cc}	V_{CC} $T_A = 25^{\circ}C$		$T_A = 25^{\circ}C$		Conditions
Gymbol	i arameter	(V)	Min	Тур	Max	Units	$\textbf{C}_{\textbf{L}}=\textbf{50}~\textbf{pF},~\textbf{R}_{\textbf{L}}=\textbf{500}\Omega$
V _{OLP}	Quiet Output Maximum Dynamic V_{OL}	3.3		0.8		V	(Note 10)
V _{OLV}	Quiet Output Minimum Dynamic V_{OL}	3.3		-0.8		V	(Note 10)
Note 9: Cha	racterized in SSOP package. Guaranteed	parameter, but	not tested.				

Note 10: Max number of outputs defined as (n). n-1 data inputs are driven 0V to 3V. Output under test held LOW.

AC Electrical Characteristics


		T _A = -	40°C to +85°C,	$\textbf{C}_{L}=\textbf{50 pF, R}_{L}$	= 500 Ω		
Symbol	Parameter	V _{CC} = 3.	$3V \pm 0.3V$	V _{cc}	$V_{CC} = 2.7V$		
		Min	Max	Min	Max	Units	
t _{PLH}	Propagation Delay Data to Output	1.4	4.0	1.4	4.8		
t _{PHL}		1.2	3.7	1.2	4.1	ns	
t _{PZH}	Output Enable Time	1.2	5.1	1.2	6.5	ns	
t _{PZL}		1.4	5.4	1.4	6.9	115	
t _{PHZ}	Output Disable Time	2.0	5.0	2.0	5.4	ns	
t _{PLZ}		1.5	5.0	1.5	5.4	115	
t _{OSHL}	Output to Output Skew		1.0		1.0	ns	
t _{OSLH}	(Note 11)						


Note 11: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}).

Capacitance (Note 12)

Symbol	Parameter	Conditions	Typical	Units
C _{IN}	Input Capacitance	$V_{CC} = 0V, V_I = 0V \text{ or } V_{CC}$	4	pF
C _{OUT}	Output Capacitance	$V_{CC} = 3.0V$, $V_{O} = 0V$ or V_{CC}	8	pF

Note 12: Capacitance is measured at frequency f = 1 MHz, per MIL-STD-883, Method 3012.

