

Functional Description

For A-to-B data flow, the device operates in the transparent mode when LEAB is HIGH. When LEAB is LOW, the A data is latched if CLKAB is held at a HIGH or LOW logic level. If LEAB is LOW, the A bus data is stored in the latch/flip-flop on the HIGH-to-LOW transition of CLKAB. Output-enable OEAB is active-HIGH. When OEAB is

HIGH, the outputs are active. When OEAB is LOW, the outputs are in the high-impedance state.
Data flow for B-to-A is similar to that of A-to-B but uses OEBA, LEBA, and CLKBA. The output enables are complementary (OEAB is active-HIGH and $\overline{\text { OEBA }}$ is active-LOW).

Logic Diagram

Recommended Operating Conditions

Symbol	Parameter	Min	Max	Units
V_{CC}	Supply Voltage	2.7	3.6	V
$\mathrm{~V}_{\mathrm{I}}$	Input Voltage	0	5.5	V
I_{OH}	HIGH-Level Output Current		-32	mA
I_{OL}	LOW-Level Output Current		64	mA
$\mathrm{~T}_{\mathrm{A}}$	Free-Air Operating Temperature	-40	85	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{t} / \Delta \mathrm{V}$	Input Edge Rate, $\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}-2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	0	10	$\mathrm{~ns} / \mathrm{V}$

Note 6: Absolute Maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute maximum rated conditions is not implied. Note 7: I_{O} Absolute Maximum Rating must be observed.

Symbol	Parameter		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$				Units
			$\mathrm{V}_{\text {cc }}=3.3 \pm 0.3 \mathrm{~V}$		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		
			Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	$\overline{\mathrm{CLKAB}}$ or $\overline{\mathrm{CLKBA}}$ to B or A		150		150		MHz
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Data to Outputs		$\begin{aligned} & 1.3 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 5.2 \\ & 4.7 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 1.3 \end{aligned}$	$\begin{aligned} & \hline 5.8 \\ & 5.3 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay LEBA or LEAB to B or A		$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.1 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.3 \\ & 5.7 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	$\begin{aligned} & \text { Propagation Delay } \\ & \overline{\text { CLKBA }} \text { or } \overline{C L K A B} \text { to } B \text { or } A \end{aligned}$		$\begin{aligned} & 1.3 \\ & 1.2 \end{aligned}$	$\begin{aligned} & \hline 5.8 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 1.3 \end{aligned}$	$\begin{aligned} & \hline 6.9 \\ & 5.9 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time		$\begin{aligned} & 1.2 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 1.3 \end{aligned}$	$\begin{aligned} & \hline 5.7 \\ & 6.5 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time		$\begin{aligned} & 1.7 \\ & 1.6 \end{aligned}$	$\begin{aligned} & \hline 6.0 \\ & 5.8 \end{aligned}$	$\begin{aligned} & 1.7 \\ & 1.7 \end{aligned}$	$\begin{aligned} & \hline 6.7 \\ & 6.3 \end{aligned}$	ns
$\mathrm{t}_{\text {SU }}$	Setup Time	A before $\overline{C L K A B}$	2.9		2.9		ns
		B before $\overline{C L K B A}$	2.9		2.9		
		A or B before LE, $\overline{\text { CLK }} \mathrm{HIGH}$	1.8		0.9		
		A or B before LE, $\overline{C L K}$ LOW	2.9		2.3		
t_{H}	Hold Time	A or B after $\overline{\mathrm{CLK}}$	0.5		0.9		ns
		A or B after LE	1.6		1.6		
t_{w}	Pulse Duration	LE HIGH	3.3		3.3		ns
		$\overline{\text { CLK }}$ HIGH or LOW	3.3		3.3		
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{OSLH}} \\ & \mathrm{t}_{\mathrm{OSHL}} \end{aligned}$	Output to Output Skew (Note 13)			$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	ns

Note 13: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW ($\mathrm{t}_{\mathrm{OSHL}}$) or LOW-to-HIGH ($\mathrm{t}_{\mathrm{OSLH}}$).

Capacitance (Note 14)

Symbol	Parameter	Conditions	Typical	Units
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	4	pF
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	Input/Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}$ or V_{CC}	8	pF

Note 14: Capacitance is measured at frequency $\mathrm{f}=1 \mathrm{MHz}$, per MIL-STD-883, Method 3012

Physical Dimensions inches (millimeters) unless otherwise noted

NOTES:
A. THIS PACKAGE CONFORMS TO JEDEC M0-205
B. ALL DIMENSIONS IN MILLIMETERS
C. LAND PATTERN RECOMMENDATION: NSMD (Non Solder Mask Defined)
.35MM DIA PADS WITH A SOLDERMASK OPENING OF .45MM CONCENTRIC TO PADS
D. DRAWING CONFORMS TO ASME Y14.5M-1994

BGA54ArevD
54-Ball Fine-Pitch Ball Grid Array (FBGA), JEDEC MO-205, 5.5mm Wide
Package Number BGA54A
Preliminary

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide Package Number MTD56

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
