

捷多邦,专业PCB打样工厂,24小时加急出货

Burr-Brown Products from Texas Instruments

ADS1625 ADS1626

SBAS280 - JUNE 2003

18-Bit, 1.25MSPS Analog-to-Digital Converter

FEATURES

- Data Rate: 1.25MSPS
- Signal-to-Noise Ratio: 93dB
- Total Harmonic Distortion: –101dB
- Spurious-Free Dynamic Range: 103dB
- Linear Phase with 615kHz Bandwidth
- Passband Ripple: ±0.0025dB
- Adjustable FIFO Output Buffer (ADS1626 only)
- Selectable On-Chip Reference
- Directly Connects to TMS320C6000 DSPs
- Adjustable Power Dissipation: 150 to 515mW
- Power Down Mode
 - Supplies: Analog +5V Digital +3V Digital I/O +2.7 to +5.25V

APPLICATIONS

- Scientific Instruments
- Automated Test Equipment
- Data Acquisition
- Medical Imaging
- Vibration Analysis

DESCRIPTION

The ADS1625 and ADS1626 are high-speed, high-precision, delta-sigma analog-to-digital converters (ADCs) with 18-bit resolution. The data rate is 1.25 mega samples per second (MSPS), the bandwidth (–3dB) is 615kHz, and passband ripple is less than ± 0.0025 dB (to 550kHz). Both devices offer the same outstanding performance at these speeds with a signal-to-noise ratio up to 93dB, total harmonic distortion down to –101dB, and a spurious-free dynamic range up to 103dB. The ADS1626 includes an adjustable first-in first-out buffer (FIFO) for the output data.

The input signal is measured against a voltage reference that can be generated on-chip or supplied externally. The digital output data is provided over a simple parallel interface that easily connects to DSPs. An out-of-range monitor reports when the input range has been exceeded. The ADS1625/6 operate from a +5V analog supply (AVDD) and +3V digital supply (DVDD). The digital I/O supply (IOVDD) operates from +2.7 to +5.25V, enabling the digital interface to support a range of logic families. The analog power dissipation is set by an external resistor and can be reduced when operating at slower speeds. A power down mode, activated by a digital I/O pin, shuts down all circuitry. The ADS1625/6 are offered in a TQFP–64 package using TI PowerPAD[™] technology.

The ADS1625 and ADS1626, with their outstanding high-speed performance, are well suited for the demanding measurement requirements of scientific instrumentation, automated test equipment, data acquisition, and medical imaging.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments

PowerPAD is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.

SBAS280 - JUNE 2003

ORDERING INFORMATION

PRODUCT	PACKAGE-LEAD	PACKAGE DESIGNATOR ⁽¹⁾	SPECIFIED TEMPERATURE RANGE	PACKAGE MARKING	ORDERING NUMBER	TRANSPORT MEDIA, QUANTITY	
1004005	TQFP-64 PowerPAD	PAP	4000 to 10500			Tape and Reel, 250	
ADS1625			PowerPAD PAP	–40°C to +85°C	-40°C 10 +85°C	ADS1625I	AD516251
1004000(2)	TQFP-64	QFP-64			ADS1626IPAPT	Tape and Reel, 250	
ADS1626(2)	PowerPAD	–40°C to +85°C	ADS1626I	ADS1626IPAPR	Tape and Reel, 1000		

(1) For the most current specification and package information, refer to our web site at www.ti.com.

(2) ADS1626 available Q4, 2003.

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range unless otherwise noted⁽¹⁾

		UNIT
AVDD to AGND	-0.3 to +6	V
DVDD to DGND	-0.3 to +3.6	V
IOVDD to DGND	-0.3 to +6	V
AGND to DGND	-0.3 to +0.3	V
Input Current	100mA, Momentary	
Input Current	10mA, Continuous	
Analog I/O to AGND	-0.3 to AVDD + 0.3	V
Digital I/O to DGND	-0.3 to IOVDD + 0.3	V
Maximum Junction Temperature	+150	°C
Operating Temperature Range	-40 to +105	°C
Storage Temperature Range	-60 to +150	°C
Lead Temperature (soldering, 10s)	+260	°C

(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ELECTRICAL CHARACTERISTICS

All specifications at -40°C to +85°C, AVDD = 5V, DVDD = IOVDD = 3V, f_{CLK} = 40MHz, External V_{REF} = +3V, V_{CM} = 2.0V, and R_{BIAS} = 37k Ω , unless otherwise noted.

PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT
Analog Input				
	0dBFS		±1.57V _{REF}	V
Differential input voltage (VIN)	-2dBFS		±1.25V _{REF}	V
Analog Input Differential input voltage (V _{IN}) AINP – AINN) Common-mode input voltage (V _{CM}) AINP + AINN) / 2 Absolute input voltage AINP or AINN with respect to AGND) Dynamic Specifications Data rate	–6dBFS		±0.79V _{REF}	V
	0dBFS ±1.57VREF -2dBFS ±1.25VREF	V		
Common-mode input voltage (V _{CM}) (AINP + AINN) / 2			2.0	V
Absolute input voltage	0dBFS	-0.1	4.7	V
(AINP or AINN with respect to AGND)	-2dBFS input and smaller	0.1 4.2		V
Dynamic Specifications		•		•
Data rate				MSPS
	f _{IN} = 10kHz, –2dBFS		93	dB
	f _{IN} = 10kHz, –6dBFS		90	dB
	f _{IN} = 10kHz, –20dBFS		76	dB
	f _{IN} = 100kHz, –2dBFS		93	dB
Signal-to-noise ratio (SNR)	f _{IN} = 100kHz, –6dBFS		90	dB
	f _{IN} = 100kHz, -20dBFS	70	76	dB
	f _{IN} = 500kHz, -2dBFS		93	dB
	f _{IN} = 500kHz, –6dBFS		90	dB
	f _{IN} = 500kHz, –20dBFS		76	dB
	f _{IN} = 10kHz, –2dBFS		-101	dB
	f _{IN} = 10kHz, –6dBFS		-103	dB
	f _{IN} = 10kHz, –20dBFS		-96	dB
	f _{IN} = 100kHz, –2dBFS		-95	dB
Total harmonic distortion (THD)	f _{IN} = 100kHz, –6dBFS		-101	dB
	f _{IN} = 100kHz, –20dBFS		-98 -90	dB
	f _{IN} = 500kHz, –2dBFS		-114	dB
	f _{IN} = 500kHz, –6dBFS		-110	dB
	f _{IN} = 500kHz, –20dBFS		-96	dB
	f _{IN} = 10kHz, –2dBFS		92	dB
			89	dB
			76	dB
			91	dB
Signal-to-noise and distortion (SINAD)	$f_{\rm IN} = 100 \rm kHz$, –6dBFS		89	dB
,	f _{IN} = 100kHz, –20dBFS	69	76	dB
	$f_{ N } = 500 \text{kHz}, -2 \text{dBFS}$		93	dB
	f _{IN} = 500kHz, –6dBFS		90	dB
	f _{IN} = 500kHz, –20dBFS		76	dB

SBAS280 - JUNE 2003

ELECTRICAL CHARACTERISTICS (continued) All specifications at -40°C to +85°C, AVDD = 5V, DVDD = IOVDD = 3V, f_{CLK} = 40MHz, External V_{REF} = +3V, V_{CM} = 2.0V, and R_{BIAS} = 37kΩ, unless otherwise noted.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	f _{IN} = 10kHz, –2dBFS		104		dB
	f _{IN} = 10kHz, –6dBFS		106		dB
	f _{IN} = 10kHz, –20dBFS		99		dB
	f _{IN} = 100kHz, –2dBFS		97		dB
Spurious free dynamic range (SFDR)	f _{IN} = 100kHz, –6dBFS		103		dB
	f _{IN} = 100kHz, –20dBFS	92	102		dB
	f _{IN} = 500kHz, -2dBFS		120		dB
	f _{IN} = 500kHz, –6dBFS		113		dB
	f _{IN} = 500kHz, -20dBFS		99		dB
Intermodulation distortion (IMD)	f ₁ = 495kHz, -2dBFS f ₂ = 505kHz, -2dBFS		98		dB
Aperture delay			4		ns
Digital Filter Characteristics					
Pass band		0		$550\left(\frac{f_{CLK}}{40MHz}\right)$	kHz
Pass band ripple				± 0.0025	dB
Deep hand to as it on	-0.1dB attenuation	5	$75\left(\frac{f_{CLK}}{40MHz}\right)$		kHz
Pass band transition	-3.0dB attenuation	6	$15\left(\frac{f_{CLK}}{40MHz}\right)$		kHz
Stop band		$0.7\left(\frac{f_{CLK}}{40MHz}\right)$		$39.3\left(\frac{f_{CLK}}{40MHz}\right)$	MHz
Stop band attenuation		72			dB
Group delay		2	$0.6\left(\frac{40MHz}{f_{CLK}}\right)$)	μs
Settling time	To ±0.001%	з	$6.8\left(\frac{40MHz}{f_{CLK}}\right)$)	μs
Static Specifications					
Resolution			18		Bits
No missing codes		18			Bits
Input referred noise			1.5		LSB, rm
Integral nonlinearity	–2.0dBFS signal		3.5		LSB
Differential nonlinearity			±0.5		LSB
Offset error			0.05		%FSR
Offset error drift			1		ppmFSR/°
Gain error			2.5		%
Gain error drift	Excluding reference drift		10		ppm/°C
Common-mode rejection	at DC		75		dB

ELECTRICAL CHARACTERISTICS (continued)

All specifications at -40° C to $+85^{\circ}$ C, AVDD = 5V, DVDD = IOVDD = 3V, f_{CLK} = 40MHz, External V_{REF} = +3V, V_{CM} = 2.0V, and R_{BIAS} = 37k Ω , unless otherwise noted.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Voltage Reference(1)		•			
$V_{REF} = (VREFP - VREFN)$		2.5	3.0	3.2	V
VREFP		3.75	4.0	4.25	V
VREFN		0.75	1.0	1.25	V
VMID		2.3	2.5	2.8	V
V _{REF} drift	Internal reference (REFEN = low)		50		ppm/⁰C
Startup time	Internal reference (REFEN = low)		15		ms
Clock Input		•			
Frequency (f _{CLK})		1	40	50	MHz
Duty Cycle	f _{CLK} = 40MHz	45		55	%
Digital Input/Output					
VIH		0.7 IOVDD		IOVDD	V
VIL		DGND		0.3 IOVDD	V
VOH	I _{OH} = 50μA	0.8 IOVDD			V
VOL	I _{OL} = 50μA			0.2 IOVDD	V
Input leakage	DGND < V _{DIGIN} < IOVDD			±10	μΑ
Power-Supply Requirements		•			
AVDD		4.75		5.25	V
DVDD		2.7		3.3	V
IOVDD		2.7		5.25	V
	REFEN = low		110	135	mA
AVDD current (I _{AVDD})	REFEN = high		85	105	mA
DVDD current (IDVDD)			27	35	mA
IOVDD current (I _{IOVDD})	IOVDD = 3V		3	5	mA
Power dissipation	$\frac{\text{AVDD} = 5\text{V}, \text{DVDD} = 3\text{V}, \text{IOVDD} = 3\text{V},}{\text{REFEN} = \text{high}}$		515	645	mW
	PD = low, CLK disabled		5		mW
Temperature Range					
Specified		-40		+85	°C
Operating		-40		+105	°C
Storage		-60		+150	°C
Thermal Resistance, θJA	PowerPAD [™] soldered to PCB with 2oz.		25		°C/W
θJC	trace and copper pad.		0.5		°C/W

(1) The specification limits for VREF, VREFP, VREFN, and VMID apply when using the internal or an external reference. The internal reference voltages are bounded by the limits shown. When using an external reference, the limits indicate the allowable voltages that can be applied to the reference pins.

SBAS280 - JUNE 2003

DEFINITIONS

Absolute Input Voltage

Absolute input voltage, given in volts, is the voltage of each analog input (AINN or AINP) with respect to AGND.

Aperture Delay

Aperture delay is the delay between the rising edge of CLK and the sampling of the input signal.

Common-Mode Input Voltage

Common-mode input voltage (V_CM) is the average voltage of the analog inputs:

 $\frac{(\mathsf{AINP} + \mathsf{AINN})}{2}$

Differential Input Voltage

Differential input voltage (V_{IN}) is the voltage difference between the analog inputs: (AINP–AINN).

Differential Nonlinearity (DNL)

DNL, given in least-significant bits of the output code (LSB), is the maximum deviation of the output code step sizes from the ideal value of 1LSB.

Full-Scale Range (FSR)

FSR is the difference between the maximum and minimum measurable input signals. For the ADS1625, FSR = $2 \times 1.57V_{\text{RFF}}$.

Gain Error

Gain error, given in %, is the error of the full-scale input signal with respect to the ideal value.

Gain Error Drift

Gain error drift, given in ppm/°C, is the drift over temperature of the gain error. The gain error is specified as the larger of the drift from ambient (T = 25°C) to the minimum or maximum operating temperatures.

Integral Nonlinearity (INL)

INL, given in least-significant bits of the output code (LSB), is the maximum deviation of the output codes from a best fit line.

Intermodulation Distortion (IMD)

IMD, given in dB, is measured while applying two input signals of the same magnitude, but with slightly different frequencies. It is calculated as the difference between the rms amplitude of the input signal to the rms amplitude of the peak spurious signal.

Offset Error

Offset Error, given in % of FSR, is the output reading when the differential input is zero.

Offset Error Drift

Offset error drift, given in ppm of FSR/°C, is the drift over temperature of the offset error. The offset error is specified as the larger of the drift from ambient (T = 25°C) to the minimum or maximum operating temperatures.

Signal-to-Noise Ratio (SNR)

SNR, given in dB, is the ratio of the rms value of the input signal to the sum of all the frequency components below $f_{CLK}/2$ (the Nyquist frequency) excluding the first six harmonics of the input signal and the dc component.

Signal-to-Noise and Distortion (SINAD)

SINAD, given in dB, is the ratio of the rms value of the input signal to the sum of all the frequency components below $f_{CLK}/2$ (the Nyquist frequency) including the harmonics of the input signal but excluding the dc component.

Spurious Free Dynamic Range (SFDR)

SFDR, given in dB, is the difference between the rms amplitude of the input signal to the rms amplitude of the peak spurious signal.

Total Harmonic Distortion (THD)

THD, given in dB, is the ratio of the sum of the rms value of the first six harmonics of the input signal to the rms value of the input signal.

TEXAS INSTRUMENTS www.ti.com

SBAS280 - JUNE 2003

Terminal Functions

TERMINAL			
NAME	NO.	TYPE	DESCRIPTION
AGND	1, 3, 6, 9, 11, 55, 57	Analog	Analog ground
AVDD	2, 7, 10, 12, 58	Analog	Analog supply
AINN	4	Analog input	Negative analog input
AINP	5	Analog input	Positive analog input
RBIAS	8	Analog	Terminal for external analog bias setting resistor
REFEN	13	Digital input: active low	Internal reference enable. Internal pull-down resistor of 170 $k\Omega$ to DGND.
NC	16, 27, 28, 45, 50		Must be left unconnected
PD	17	Digital input: active low	Power down all circuitry. Internal pull-up resistor of $170k\Omega$ to DGND.
DVDD	18, 26, 52	Digital	Digital supply
DGND	15, 19, 25, 51, 54	Digital	Digital ground
RESET	20	Digital input: active low	Reset digital filter
CS	21	Digital input: active low	Chip select
RD	22	Digital input: active low	Read enable
OTR	23	Digital output	Active when analog inputs are out of range
DRDY	24	Digital output: active low	Data ready on falling edge
DOUT [17:0]	27–44	Digital output	Data output. DOUT[17] is the MSB and DOUT[0] is the LSB.
FIFO_LEV[2:0]	46–48	Digital input	FIFO level (for the ADS1626 only). FIFO_LEV[2] is MSB. NOTE: These terminals must be left disconnected on the ADS1625.
IOVDD	14, 53	Digital	Digital I/O supply
CLK	56	Digital input	Clock input
VCAP	59	Analog	Terminal for external bypass capacitor connection to internal bias voltage
VREFN	60, 61	Analog	Negative reference voltage
VMID	62	Analog	Midpoint voltage
VREFP	63, 64	Analog	Positive reference voltage

SBAS280 - JUNE 2003

PARAMETER MEASUREMENT INFORMATION

NOTE: CS and RD tied low.

Figure 1. Data Retrieval Timing (ADS1625, ADS1626 with FIFO Disabled)

Figure 2. DOUT Inactive/Active Timing (ADS1625, ADS1626 with FIFO Disabled)

TIMING REQUIREMENTS FOR FIGURE 1 AND FIGURE 2

SYMBOL	DESCRIPTION	MIN	TYP	MAX	UNIT
t ₁	CLK period (1/f _{CLK})	20	25		ns
1/t ₁	fclk	1	40	50	MHz
t2	CLK pulse width, high or low	11.25			ns
t3	Rising edge of CLK to DRDY low		10		ns
t4	DRDY pulse width high or low		16 t ₁		ns
t5	Falling edge of DRDY to data invalid			10	ns
^t 6	Falling edge of DRDY to data valid			15	ns
t7	Rising edge of RD and/or CS inactive (high) to DOUT high impedance			15	ns
t8	Falling edge of RD and/or CS active (low) to DOUT active.			15	ns

NOTE: DOUT[17:0] and \overline{DRDY} load = 10pF.

SBAS280 - JUNE 2003

NOTE: $\overline{\text{CS}}$ and $\overline{\text{RD}}$ tied low.

TIMING REQUIREMENTS FOR FIGURE 3

SYMBOL	DESCRIPTION	MIN	TYP	MAX	UNIT
t3	Rising edge of CLK to DRDY low		10		ns
tg	RESET pulse width	50			ns
^t 10	Delay from RESET active (low) to DRDY forced high and DOUT forced low		9		ns
^t 11	RESET rising edge to falling edge of CLK	-5		10	ns
t12	Delay from DOUT active to valid DOUT (settling to 0.001%)		46		DRDY Cycles

NOTE: DOUT[17:0] and \overline{DRDY} load = 10pF.

SBAS280 - JUNE 2003

⁽¹⁾ CS may be tied low.

(2) The number of data readings (DL) is set by the FIFO level.

Figure 4. Data Retrieval Timing (ADS1626 with FIFO Enabled)

Figure 5. DOUT Inactive/Active Timing (ADS1626 with FIFO Enabled)

TIMING REQUIREMENTS FOR FIGURE 4 AND FIGURE 5

SYMBOL	DESCRIPTION	MIN	TYP	MAX	UNIT	
t ₁	CLK period (1/f _{CLK})	20	25		ns	
t ₂	CLK pulse width, high or low	11.25			ns	
t7	Rising edge of RD and/or CS inactive (high) to DOUT high impedance		7	15	ns	
t ₈	Falling edge of RD and/or CS active (low) to DOUT active.		7	15	ns	
t ₁₃	Rising edge of CLK to DRDY high		12		ns	
t ₁₄	DRDY period	32 × FIFO Level(1)		$32 \times FIFO Level(1)$		CLK Cycles
t ₁₅	DRDY positive pulse width	1			CLK Cycles	
^t 16	RD high hold time after DRDY goes low	D high hold time after DRDY goes low 0			ns	
^t 17	CS low before RD goes low	0			ns	
t ₁₈	RD negative pulse width	10		10		ns
t ₁₉	RD positive pulse width	10			ns	
t20	RD high before DRDY toggles	2			CLK Cycles	
^t 21	RD high before CS goes high	0			ns	

NOTE: DOUT[17:0] and \overline{DRDY} load = 10pF.

(1) See FIFO section for more details.

SBAS280 - JUNE 2003

Figure 6. Reset Timing (ADS1626 with FIFO Enabled)

TIMING REQUIREMENTS FOR FIGURE 6

SYMBOL	DESCRIPTION	MIN	TYP	MAX	UNIT
tg	RESET pulse width	50			ns
^t 11	RESET rising edge to falling edge of CLK	-5		10	ns
t23	RD pulse low after RESET goes high	32			CLK Cycles
t24	RD pulse high before first DRDY pulse after RESET goes high	32			CLK Cycles
t25	DRDY low after RESET goes low	32 imes (FI	FO level	+ 1)	CLK Cycles
^t 26	Delay from RESET high to valid DOUT (settling to 0.001%)	See	e Table 4		DRDY Cycles

SBAS280 - JUNE 2003

TYPICAL CHARACTERISTICS

All specifications at $T_A = 25^{\circ}C$, AVDD = 5V, DVDD = IOVDD = 3V, $f_{CLK} = 40MHz$, External $V_{REF} = +3V$, $V_{CM} = 2.0V$, and $R_{BIAS} = 37k\Omega$, unless otherwise noted.

TYPICAL CHARACTERISTICS (continued)

All specifications at $T_A = 25^{\circ}C$, AVDD = 5V, DVDD = IOVDD = 3V, $f_{CLK} = 40$ MHz, External $V_{REF} = +3V$, $V_{CM} = 2.0V$, and $R_{BIAS} = 37k\Omega$, unless otherwise noted.

SPURIOUS FREE DYNAMIC RANGE vs INPUT FREQUENCY

SBAS280 - JUNE 2003

TYPICAL CHARACTERISTICS (continued)

All specifications at T_A = 25°C, AVDD = 5V, DVDD = IOVDD = 3V, f_{CLK} = 40MHz, External V_{REF} = +3V, V_{CM} = 2.0V, and R_{BIAS} = 37kΩ, unless otherwise noted.

TYPICAL CHARACTERISTICS (continued)

All specifications at T_A = 25°C, AVDD = 5V, DVDD = IOVDD = 3V, f_{CLK} = 40MHz, External V_{REF} = +3V, V_{CM} = 2.0V, and R_{BIAS} = 37k Ω , unless otherwise noted.

SBAS280 - JUNE 2003

OVERVIEW

The ADS1625 and ADS1626 are high-performance delta-sigma ADCs with a default oversampling ratio of 32. The modulator uses an inherently stable 2-1-1 MASH architecture incorporating proprietary circuitry that allows for very linear high-speed operation. The modulator samples the input signal at 40MSPS (when $f_{CLK} = 40$ MHz). A low-ripple linear phase digital filter decimates the modulator output to provide data output word rates of 1.25MSPS with a signal passband out to 615kHz.

Conceptually, the modulator and digital filter measure the differential input signal, $V_{IN} = (AINP - AINN)$, against the scaled differential reference, $V_{REF} = (VREFP - VREFN)$, as shown in Figure 7. The voltage reference can either be generated internally or supplied externally. An 18-bit parallel data bus, designed for direct connection to DSPs, outputs the data. A separate power supply for the I/O allows flexibility for interfacing to different logic families. Out-of-range conditions are indicated with a dedicated digital output pin. Analog power dissipation is controlled using an external resistor. This allows reduced dissipation when operating at slower speeds. When not in use, power consumption can be dramatically reduced using the \overline{PD} pin.

The ADS1626 incorporates an adjustable FIFO buffer for the output data. The level of the FIFO is set by the FIFO_LEV[2:0] pins. Other than the FIFO buffer, the ADS1625 and ADS1626 are identical, and together are referred as the ADS1625/6.

ANALOG INPUTS (AINP, AINN)

The ADS1625/6 measures the differential signal, $V_{IN} = (AINP - AINN)$, against the differential reference, $V_{REF} = (VREFP - VREFN)$. The reference is scaled internally so that the full-scale differential input voltage is $1.57V_{REF}$. That is, the most positive measurable differential input is $1.57V_{REF}$, which produces the most

positive digital output code of 7FFFh. Likewise, the most negative measurable differential input is $-1.57V_{REF}$, which produces the most negative digital output code of 8000h.

The ADS1625/6 supports a very wide range of input signals. For $V_{REF} = 3V$, the full scale input voltages are $\pm 4.7V$. Having such a wide input range makes out-of-range signals unlikely. However, should an out-of-range signal occur, the digital output OTR will go high.

To achieve the highest analog performance, it is recommended that the inputs be limited to $\pm 1.25V_{REF}$ (-2dBFS). For $V_{REF} = 3V$, the corresponding recommended input range is $\pm 3.75V$.

The analog inputs must be driven with a differential signal to achieve optimum performance. The recommended common-mode voltage of the input signal, $V_{CM} = \frac{AINP + AINN}{2}$, is 2.0V. For signals larger than -2dBFS, the input common-mode needs to be raised in order to meet the absolute input voltage specifications. The typical characteristics show how performance varies with input common-mode voltage.

In addition to the differential and common-mode input voltages, the absolute input voltage is also important. This is the voltage on either input (AINP or AINN) with respect to AGND. The range for this voltage is:

-0.1V < (AINN or AINP) < 4.7V.

If either input is taken below –0.1V, ESD protection diodes on the inputs will turn on. Exceeding 4.7V on either input will result in degradation in the linearity performance. ESD protection diodes will also turn on if the inputs are taken above AVDD (+5V).

For signals below –2dBFS, the recommended absolute input voltage is:

0.1V < (AINN or AINP) < 4.2V

Keeping the inputs within this range provides for optimum performance.

Figure 7. Conceptual Block Diagram

SBAS280 - JUNE 2003

INPUT CIRCUITRY

The ADS1625/6 uses switched-capacitor circuitry to measure the input voltage. Internal capacitors are charged by the inputs and then discharged internally with this cycle repeating at the frequency of CLK. Figure 8 shows a conceptual diagram of these circuits. Switches S2 represent the net effect of the modulator circuitry in discharging the sampling capacitors, the actual implementation is different. The timing for switches S1 and S2 is shown in Figure 9.

Figure 9. Timing for the Switches in Figure 2

DRIVING THE INPUTS

The external circuits driving the ADS1625/6 inputs must be able to handle the load presented by the switching capacitors within the ADS1625/6. The input switches S1 in Figure 5 are closed approximately $\frac{1}{2}$ of the sampling period, t_{sample}, giving only \approx 12ns for the internal capacitors to be charged by the inputs, when f_{CLK} = 40MHz.

Figure 10 and Figure 11 show the recommended circuits when using single-ended or differential op amps, respectively. *The analog inputs must be driven differentially to achieve optimum performance.* The

external capacitors, between the inputs and from each input to AGND, improve linearity and should be placed as close to the pins as possible. Place the drivers close to the inputs and use good capacitor bypass techniques on their supplies; usually a smaller high-quality ceramic capacitor in parallel with a larger capacitor. Keep the resistances used in the driver circuits low—thermal noise in the driver circuits will degrade the overall noise performance. When the signal can be ac-coupled to the ADS1625/6 inputs, a simple RC filter can set the input common mode voltage. The ADS1625/6 is a high-speed, high-performance ADC. Special care must be taken when selecting the test equipment and setup used with this device. Pay particular attention to the signal sources to ensure they do not limit performance when measuring the ADS1625/6.

Figure 10. Recommended Driver Circuit Using the OPA2822

Figure 11. Recommended Driver Circuits Using the THS4503 Differential Amplifier

SBAS280 - JUNE 2003

REFERENCE INPUTS (VREFN, VREFP, VMID)

The ADS1625 can operate from an internal or external voltage reference. In either case, the reference voltage V_{REF} is set by the differential voltage between VREFN and VREFP: $V_{REF} = (VREFP - VREFN)$. VREFP and VREFN each use two pins, which should be shorted together. VMID is a voltage equal to approximately 2.5V and is used by the modulator. VCAP connects to an internal node and also must be bypassed with an external capacitor. For the best analog performance, it is recommended that an external reference voltage, V_{REF} , of 3.0V be used.

INTERNAL REFERENCE (REFEN = LOW)

To use the internal reference, set the REFEN pin low. This activates the internal circuitry that generates the reference voltages. The internal reference voltages are applied to the pins. Good bypassing of the reference pins is critical to achieve optimum performance and is done by placing the bypass capacitors as close to the pins as possible. Figure 12 shows the recommended bypass capacitor values. Use high quality ceramic capacitors for the smaller values. Avoid loading the internal reference with external circuitry. If the ADS1625/6 internal reference is to be used by other circuitry, buffer the reference voltages to prevent directly loading the reference pins.

Figure 12. Reference Bypassing When Using the Internal Reference

EXTERNAL REFERENCE (REFEN = HIGH)

To use an external reference, set the REFEN pin high. This deactivates the internal generators for VREFP, VREFN and VMID, and saves approximately 25mA of current on the analog supply (AVDD). The voltages applied to these pins must be within the values specified in the Electrical

INSTRUMENTS www.ti.com

Figure 13. Conceptual Internal Circuitry for the Reference When REFEN = High

Figure 14 shows the recommended circuitry for driving these reference inputs. Keep the resistances used in the buffer circuits low to prevent excessive thermal noise from degrading performance. Layout of these circuits is critical, make sure to follow good high-speed layout practices. Place the buffers and especially the bypass capacitors as close to the pins as possible. VCAP is unaffected by the setting on REFEN and must be bypassed when using the internal or an external reference.

Figure 14. Recommended Buffer Circuit When Using an External Reference

CLOCK INPUT (CLK)

The ADS1625/6 requires an external clock signal to be applied to the CLK input pin. The sampling of the modulator is controlled by this clock signal. As with any high-speed data converter, a high quality clock is essential for optimum performance. Crystal clock oscillators are the recommended CLK source; other sources, such as frequency synthesizers, are usually not adequate. Make sure to avoid excess ringing on the CLK input; keeping the trace as short as possible will help.

Measuring high frequency, large amplitude signals requires tight control of clock jitter. The uncertainty during sampling of the input from clock jitter limits the maximum achievable SNR. This effect becomes more pronounced with higher frequency and larger magnitude inputs. Fortunately, the ADS1625/6 oversampling topology reduces clock jitter sensitivity over that of Nyquist rate converters like pipeline and successive approximation converters by a factor of $\sqrt{32}$.

In order to not limit the ADS1625/6 SNR performance, keep the jitter on the clock source below the values shown in Table 1. When measuring lower frequency and lower amplitude inputs, more CLK jitter can be tolerated. In determining the allowable clock source jitter, select the worst-case input (highest frequency, largest amplitude) that will be seen in the application.

Table 1. Maximum Allowable Clock Source Jitter for Different Input Signal Frequencies and Amplitude

INPUT SI	MAXIMUM	
MAXIMUM FREQUENCY	MAXIMUM AMPLITUDE	ALLOWABLE CLOCK SOURCE JITTER (RMS)
500kHz	–2dB	7ps
500kHz	-20dB	50ps
100kHz	–2dB	35ps
100kHz	-20dB	285ps

DATA FORMAT

The 18-bit output data is in binary two's complement format, as shown in Table 2. Under normal operation, the output codes range between 200A8h to 1FF57h. Signals less than $-1.57V_{REF}$ will clip at 200A8h and likewise, signals greater than $1.57V_{REF}$ will clip at 1FF57h. For large step changes on the inputs, the output clips at the

ADS1625 ADS1626

positive full-scale value of 1FFFFh (positive transients) or the negative full-scale value of 20000h (negative transients).

Table 2.	Output	Code	Versus	Input	Signal
----------	--------	------	--------	-------	--------

INPUT SIGNAL (INP – INN)	IDEAL OUTPUT CODE ⁽¹⁾	OTR
≥+1.57V _{REF} (> 0dB) ⁽²⁾	1FFFFh	1
≥ +1.57V _{REF} (0dB)	1FF57h	0
+1.25V _{REF} (-2dB)	142E8h	0
$\frac{+1.57V_{REF}}{2^{17}-1}$	00001h	0
0	00000h	0
$\frac{+1.57V_{REF}}{2^{17}-1}$	3FFFFh	0
$\leq -1.57 V_{REF} \left(\frac{2^{17}}{2^{17} - 1} \right)^{(2)}$	200A8h	0
$\leq -1.57 V_{REF} \left(\frac{2^{17}}{2^{17} - 1} \right)$	20000h	1

(1) Excludes effects of noise, INL, offset and gain errors.

(2) Large step inputs.

OUT-OF-RANGE INDICATION (OTR)

If the output code on DOUT[17:0] exceeds the positive or negative full-scale, the out-of-range digital output OTR will go high on the falling edge of \overline{DRDY} . When the output code returns within the full-scale range, OTR returns low on the falling edge of \overline{DRDY} .

DATA RETRIEVAL

Data retrieval is controlled through a simple parallel interface. The falling edge of the DRDY output indicates new data is available. To activate the output bus, both \overline{CS} and \overline{RD} must be low, as shown in Table 3. On the ADS1625, both of these signals can be tied low. On the ADS1626 with FIFO enabled, only \overline{CS} can be tied low because \overline{RD} must toggle to operate the FIFO. See the FIFO section for more details. Make sure the DOUT bus does not drive heavy loads (> 20pF), as this will degrade performance. Use an external buffer when driving an edge connector or cables.

Table 3. Truth Table for \overline{CS} and \overline{RD}

CS	RD	DOUT[17:0]
0	0	Active
0	1	High impedance
1	0	High impedance
1	1	High impedance

SBAS280 - JUNE 2003

The ADS1625 and ADS1626 with FIFO disabled are asynchronously reset when the RESET pin is taken low. During reset, all of the digital circuits are cleared, DOUT[17:0] are forced low, and DRDY forced high. It is recommended that the RESET pin be released on the falling edge of CLK. Afterwards, DRDY goes low on the second rising edge of CLK. Allow 46 DRDY cycles for the digital filter to settle before retrieving data. See Figure 3 for the timing specifications.

Reset can be used to synchronize multiple ADS1625s. All devices to be synchronized must use a common CLK input. With the CLK inputs running, pulse RESET on the falling edge of CLK, as shown in Figure 15. Afterwards, the converters will be converting synchronously with the DRDY outputs updating simultaneously. After synchronization, allow 46 DRDY cycles (t_{12}) for output data to fully settle.

Figure 15. Synchronizing Multiple Converters

RESETTING THE ADS1626

The ADS1626 with the FIFO enabled requires a different reset sequence than the ADS1625, as shown in Figure 16. Ignore any \overline{DRDY} toggles that occur while \overline{RESET} is low. Release \overline{RESET} on the rising edge of CLK, then afterwards toggle \overline{RD} to complete the reset sequence.

TEXAS INSTRUMENTS www.ti.com

Figure 16. Resetting the ADS1626 with the FIFO Enabled

After resetting, the settling time for the ADS1626 is 46 CLK cycles, regardless of the FIFO level. Therefore, for higher FIFO levels, it takes fewer DRDY cycles to settle because the DRDY period is longer. Table 4 shows the number of DRDY cycles required to settle for each FIFO level.

Table 4. ADS1626 Reset Settling

FIFO LEVEL	FILTER SETTLING TIME AFTER RESET (t ₂₆ in units of DRDY cycles)
2	23
4	12
6	8
8	6
10	5
12	4
14	4

SBAS280 – JUNE 2003

SETTLING TIME

The settling time is an important consideration when measuring signals with large steps or when using a multiplexer in front of the analog inputs. The ADS1625/6 digital filter requires time for an instantaneous change in signal level to propagate to the output.

Be sure to allow the filter time to settle after applying a large step in the input signal, switching the channel on a multiplexer placed in front of the inputs, resetting the ADS1625/6, or exiting the power-down mode,

Figure 17 shows the settling error as a function of time for a full-scale signal step applied at t = 0. This figure uses \overline{DRDY} cycles for the time scale (X-axis). After 46 \overline{DRDY} cycles, the settling error drops below 0.001%. For f_{CLK} = 40MHz, this corresponds to a settling time of 36.8µs.

Figure 17. Settling Time

IMPULSE RESPONSE

Figure 18 plots the normalized response for an input applied at t = 0. The X-axis units of time are DRDY cycles. As shown in Figure 18, the peak of the impulse takes 26 DRDY cycles to propagate to the output. For f_{CLK} = 40MHz, a DRDY cycle is 0.8µs in duration and the propagation time (or group delay) is 26 × 0.8µs = 20.6µs.

Figure 18. Impulse Response

SBAS280 - JUNE 2003

FREQUENCY RESPONSE

The linear phase FIR digital filter sets the overall frequency response. Figure 19 shows the frequency response from DC to 20MHz for f_{CLK} = 40MHz. The frequency response of the ADS1625/6 filter scales directly with CLK frequency. For example, if the CLK frequency is decreased by half (to 20MHz), the values on the X-axis in Figure 19 would need to be scaled by half, with the span becoming DC to 10MHz.

Figure 20 shows the passband ripple from DC to 550kHz ($f_{CLK} = 40$ MHz). Figure 21 shows a closer view of the passband transition by plotting the response from 500kHz to 640kHz ($f_{CLK} = 40$ MHz).

The overall frequency response repeats at multiples of the CLK frequency. To help illustrate this, Figure 22 shows the response out to 120MHz ($f_{CLK} = 40$ MHz). Notice how the passband response repeats at 40MHz, 80MHz and 120MHz; it is important to consider this when there is high-frequency noise present with the signal. The modulator bandwidth extends to 100MHz. High-frequency noise around 40MHz and 80MHz will not be attenuated by either the modulator or the digital filter. This noise will alias back in-band and reduce the overall SNR performance unless it is filtered out prior to the ADS1625/6. To prevent this, place an anti-alias filter in front of the ADS1625/6 that rolls off before 39MHz.

Figure 19. Frequency Response.

INSTRUMENTS www.ti.com

Figure 20. Passband Ripple

Figure 21. Passband Transition

Figure 22. Frequency Response Out to 120MHz

FIFO (ADS1626 ONLY)

The ADS1626 includes an adjustable level first-in first-out buffer (FIFO) for the output data. The FIFO allows data to be temporarily stored within the ADS1626 to provide more flexibility for the host controller when retrieving data. Pins FIFO_LEV[2:0] set the level or depth of the FIFO. *Note that these pins must be left disconnected on the ADS1625.* The FIFO is enabled by setting at least one of the FIFO_LEV inputs high. Table 5 shows the corresponding FIFO level and DRDY period for the different combinations of FIFO_LEV[2:0] settings.

FIFO_LEV[2:0]	FIFO BUFFER LEVEL	DRDY PERIOD
000	0: disabled, operates like ADS1625	32/fCLK
001	2	64/fCLK
010	4	128/fCLK
011	6	192/fCLK
100	8	256/fCLK
101	10	320/fCLK
110	12	384/fCLK
111	14	448/fCLK

Table 5. FIFO Buffer Level Settings for the ADS1626

FIFO Operation

The ADS1626 FIFO collects the number of output readings set by the level corresponding to the FIFO_LEV[2:0] setting. When the specified level is reached, \overline{DRDY} is pulsed high, indicating the data in the FIFO is ready to be read. The \overline{DRDY} period is a function of the FIFO level, as shown in Table 5. To read the data, make sure \overline{CS} is low (it is acceptable to tie it low) and then take \overline{RD} low. The first, or oldest, data will be presented on the data reading by toggling \overline{RD} . On the next falling edge

of \overline{RD} , the second data is present on the data output pins. Continue this way until all the data have been read from the FIFO, making sure to take \overline{RD} high when complete. Afterwards, wait until \overline{DRDY} toggles and repeat the readback cycle. Figure 23 shows an example readback when FIFO_LEV[2:0] = 010 (level = 4).

Readback considerations

The exact number of data readings set by the FIFO level must be read back each time DRDY toggles. The one exception is that readback can be skipped entirely. In this case, the DRDY period increases to 512 CLK period. Figure 24 shows an example when readback is skipped with the FIFO level = 4. Do not read back more or less readings from the FIFO than set by the level. This interrupts the FIFO operation and can cause DRDY to stay low indefinitely. If this occurs, the RESET pin must be toggled followed by a RD pulse. This resets the ADS1626 FIFO and also the digital filter, which then must settle afterwards before valid data is ready. See the Reset section for more details.

Setting the FIFO Level

The FIFO level setting is usually a static selection that is set when power is first applied to the ADS1626. If the FIFO level needs to be changed after powerup, there are two options. One is to asynchronously set the new value on pin FIFO LEV[2:0] then toggle RESET. Remember that the ADS1626 will need to settle after resetting. See the Reset section for more details. The other option avoids requiring a reset, but needs synchronization of the FIFO level change with the readback. The FIFO_LEV[2:0] pins have to be changed after RD goes high after reading the first data, but before RD goes low to read the last data from the FIFO. The new FIFO level becomes active immediately and the **DRDY** period adjusts accordingly. When decreasing the FIFO level this way, make sure to give adequate time for readback of the data before setting the new, smaller level. Figure 25 shows an example of a synchronized FIFO level change from 4 to 8.

Figure 23. Example of FIFO Readback when FIFO Level = 4

SBAS280 - JUNE 2003

Figure 24. Example of Skipping Readback when FIFO Level = 4

Figure 25. Example of Synchronized Change of FIFO Level from 4 to 8

ANALOG POWER DISSIPATION

An external resistor connected between the RBIAS pin and the analog ground sets the analog current level, as shown in Figure 26. The current is inversely proportional to the resistor value. Table 6 shows the recommended values of R_{BIAS} for different CLK frequencies. Notice that the analog current can be reduced when using a slower frequency CLK input, as the modulator has more time to settle. Avoid adding any capacitance in parallel to R_{BIAS} , as this will interfere with the internal circuitry used to set the biasing.

Figure 26. External Resistor Used to Set Analog Power Dissipation

fCLK	DATA RATE	RBIAS	TYPICAL POWER DISSIPATION WITH REFEN HIGH
10MHz	312.5kHz	$65k\Omega$	150mW
20MHz	625kHz	60kΩ	305mW
30MHz	937.5kHz	$50k\Omega$	390mW
40MHz	1.25MHz	37kΩ	515mW

Table 6. Recommended R_{BIAS} Resistor Values for Different CLK Frequencies

POWER DOWN (PD)

When not in use, the ADS1625/6 can be powered down by taking the \overline{PD} pin low. All circuitry will be shutdown, including the voltage reference. To minimize the digital current during power down, stop the clock signal supplied to the CLK input. There is an internal pull-up resistor of 170k Ω on the \overline{PD} pin, but it is recommended that this pin be connected to IOVDD if not used. If using the ADS1626 with the FIFO enabled, issue a reset after exiting power–down. Make sure to allow time for the reference to start up after exiting power-down mode. The internal reference typically requires 15ms. After the reference has stabilized, allow at least 100 \overline{DRDY} cycles for the modulator and digital filter to settle before retrieving data.

POWER SUPPLIES

Three supplies are used on the ADS1625/6: analog (AVDD), digital (DVDD) and digital I/O (IOVDD). Each supply must be suitably bypassed to achieve the best performance. It is recommended that a 1μ F and 0.1μ F ceramic capacitor be placed as close to each supply pin as possible. Connect each supply-pin bypass capacitor to the

associated ground, as shown in Figure 27. Each main supply bus should also be bypassed with a bank of capacitors from 47μ F to 0.1μ F, as shown.

The IO and digital supplies (IOVDD and DVDD) can be connected together when using the same voltage. In this case, only one bank of 47μ F to 0.1μ F capacitors is needed on the main supply bus, though each supply pin must still be bypassed with a 1μ F and 0.1μ F ceramic capacitor.

Figure 27. Recommended Power-Supply Bypassing

SBAS280 - JUNE 2003

LAYOUT ISSUES

The ADS1625/6 is a very high-speed, high-resolution data converter. In order to achieve the maximum performance, careful attention must be given to the printed circuit board (PCB) layout. Use good high-speed techniques for all circuitry. Critical capacitors should be placed close to pins as possible. These include capacitors directly connected to the analog and reference inputs and the power supplies. Make sure to also properly bypass all circuitry driving the inputs and references.

There are two possible approaches for the ground plane on the PCB: a single common plane or two separate planes, one for the analog grounds and one for the digital grounds. When using only one common plane, isolate the flow of current on pin 58 from pin 1; use breaks on the ground plane to accomplish this. Pin 58 carries the switching current from the analog clocking for the modulator and can corrupt the quiet analog ground on pin 1. When using two planes, it is recommended that they be tied together right at the PCB. Do not try to connect the ground planes together after running separately through edge connectors or cables as this reduces performance and increases the likelihood of latchup.

In general, keep the resistances used in the driving circuits for the inputs and reference low to prevent excess thermal noise from degrading overall performance. Avoid having the ADS1625/6 digital outputs drive heavy loads. Buffers on the outputs are recommended unless the ADS1625/6 is connected directly to a DSP or controller situated nearby. Additionally, make sure the digital inputs are driven with clean signals as ringing on the inputs can introduce noise.

The ADS1625/6 uses TI PowerPAD technology. The PowerPAD is physically connected to the substrate of the silicon inside the package and must be soldered to the analog ground plane on the PCB using the exposed metal pad underneath the package for proper heat dissipation. Please refer to application report SLMA002, located at www.ti.com, for more details on the PowerPAD package.

APPLICATIONS

INTERFACING THE ADS1625/6 TO THE TMS320C6000

Figure 28 illustrates how to directly connect the ADS1625/6 to the TMS320C6000 digital signal processor. The processor controls reading using output ARE. The ADS1625/6 is selected using the DSP control output, CE2. The ADS1625/6 18-bit data output bus is directly

connected to the TMS320C6000 data bus. The data ready output from the ADS1625/6, DRDY, drives interrupt EXT_INT7 on the TMS320C6000.

TEXAS

INSTRUMENTS www.ti.com

INTERFACING THE ADS1625/6 TO THE TMS320VC5510

Figure 29 illustrates how to connect the ADS1625/6 to the TMS320VC5510 digital signal processor (DSP). The DSP controls reading using output ARE. The ADS1625/6 are selected using the DSP control output CE2. The ADS1625/6 18-bit data output bus is directly connected to the TMS320VC5510 data bus. The data ready output from the ADS1625/6, DRDY, drives the INT3 interrupt line on the TMS320VC5510.

Figure 29. ADS1625/TMS320VC5510 Interface Connection

Code Composer Studio, available from TI, provides support for interfacing TI DSPs through a collection of data converter plugins. Check the TI web site, located at www.ti.com/sc/dcplug–in, for the latest information on ADS1625/6 support.

TEXAS INSTRUMENTS www.ti.com

ADS1625 ADS1626

SBAS280 - JUNE 2003

PAP (S-PQFP-G64)

PowerPAD[™] PLASTIC QUAD FLATPACK

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion.
- D. The package thermal performance may be enhanced by bonding the thermal pad to an external thermal plane. This pad is electrically and thermally connected to the backside of the die and possibly selected leads.
- E. Falls within JEDEC MS-026

PAP (S-PQFP-G64)

PowerPAD[™] PLASTIC QUAD FLATPACK

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 for information regarding recommended board layout. This document is available at www.ti.com http://www.ti.com.
- E. Falls within JEDEC MS-026

PowerPAD is a trademark of Texas Instruments.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address:

Post Office Box 655303 Dallas, Texas 75265

Texas Instruments

Copyright © 2003, Texas Instruments Incorporated