

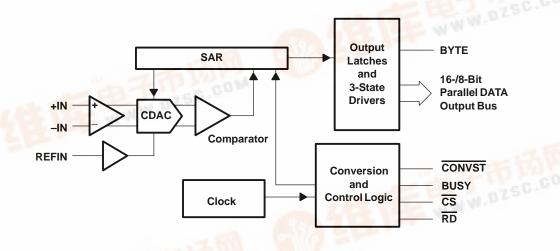
ADS8371

SLAS390 - JUNE 2003

16-BIT, 850-kHz, UNIPOLAR INPUT, MICRO POWER SAMPLING ANALOG-TO-DIGITAL CONVERTER WITH PARALLEL INTERFACE

FEATURES

- 850-kHz Sample Rate
- 16-Bit NMC Ensured Over Temperature
- Zero Latency
- Low Power: 110 mW at 850 kHz
- Unipolar Input Range
- Onboard Reference Buffer
- High-Speed Parallel Interface
- Wide Digital Supply, 2.7 V to 5.25 V
- 8-/16-Bit Bus Transfer
- 48-Pin TQFP Package


APPLICATIONS

- Medical Instruments
- Optical Networking
- Transducer Interface
- High Accuracy Data Acquisition Systems
- Magnetometers

DESCRIPTION

The ADS8371 is an 16-bit, 850 kHz A/D converter. The device includes a 16-bit capacitor-based SAR A/D converter with inherent sample and hold. The ADS8371 offers a full 16-bit interface, using two read cycles, or an 8-bit bus option using three read cycles.

The ADS8371 is available in a 48-lead TQFP package and is characterized over the industrial -40°C to 85°C temperature range.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

ORDERING INFORMATION

MODEL	MAXIMUM INTEGRAL LINEARITY (LSB)	MAXIMUM DIFFERENTIAL LINEARITY (LSB)	NO MISSING CODES RESOLU- TION (BIT)	PACKAGE TYPE	PACKAGE DESIGNATOR	TEMPER- ATURE RANGE	ORDERING INFORMATION	TRANS- PORT MEDIA QUANTITY		
A D 000741			45	48 Pin	DED	–40°C to	ADS8371IPFBT	Tape and reel 250		
ADS8371I	±4	-2~2	-2~2 15 TQFP PFB	PFB	85°C	85°C	ADS8371IPFBR	Tape and reel 1000		
ADC00741D	- 0	4.0	16		48 Pin	. 48 Pin	חבם	–40°C to	ADS8371IBPFBT	Tape and reel 250
ADS8371IB	±2	−1~2		TQFP	PFB	85°C	ADS8371IBPFBR	Tape and reel 1000		

NOTE: For the most current specifications and package information, refer to our website at www.ti.com.

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range unless otherwise noted(1)

			UNIT
	+IN to AGND		-0.4 V to +VA + 0.1 V
Voltage	-IN to AGND		−0.4 V to 0.5 V
	+VA to AGND		−0.3 V to 7 V
Voltage range	+VBD to BDGND		-0.3 V to 7 V
	+VA to +VBD		−0.3 V to 2.55 V
Digital input voltage to BDGND		-0.3 V to +VBD + 0.3 V	
Digital output voltage to BDGND			-0.3 V to +VBD + 0.3 V
Operating free-air temperature range, T _A			-40°C to 85°C
Storage temperate	ıre range, T _{stg}		−65°C to 150°C
Junction temperat	ure (Tკ max)		150°C
Powerdissipation			(ТЈМах – Тд)/θЈД
TQFP package	θ _{JA} thermal imped	ance	86°C/W
Lead temperature, soldering		Vapor phase (60 sec)	215°C
		Infrared (15 sec)	220°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

SPECIFICATIONS

 $T_A = -40^{\circ}\text{C}$ to 85°C, +VA = 5 V, +VBD = 3 V or 5 V, V_{ref} = 4.096 V, f_{SAMPLE} = 850 kHz (unless otherwise noted)

PARAMETE	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
Analog Input		•				
Full-scale input voltage (1)	+ININ	0		V_{ref}	V	
		+IN	-0.2		V _{ref} + 0.2	
Absolute input voltage		-IN	-0.2		0.2	V
Input capacitance				45		pF
Input leakage current				1		nA
System Performance			•			
Resolution				18		Bits
	ADS8371I		15			D:
No missing codes	ADS8371IB		16			Bits
(2) (3)	ADS8371I		-4	±1.5	4	LSB
Integral linearity (2) (3)	ADS8371IB		-2	±1.5	2	
Differentialline and .	ADS8371I		-2	±1	2	LSB
Differentiallinearity	ADS8371IB		-1	±1	2]
Offset error (4)	ADS8371I		-1	±0.5	1	mV
Offset error (+)	ADS8371IB		-0.75	±0.25	0.75	
Gain error (4)	ADS8371I	V _{ref} = 4.096 V	-0.1		0.1	%FS %FS
Gain error (+)	ADS8371IB	V _{ref} = 4.096 V	-0.06		0.06	
Noise				60		$\mu VRMS$
Power supply rejection ratio		At FFFFh output code		75		dB
SamplingDynamics						
Conversion time				0.9	μs	
Acquisition time		0.25			μs	
Throughputrate				850	kHz	
Aperture delay			4		ns	
Aperture jitter				15		ps
Step response				150		ns
Over voltage recovery				150		ns

⁽¹⁾ Ideal input span, does not include gain or offset error.

⁽²⁾ LSB means least significant bit

⁽³⁾ This is endpoint INL, not best fit.

⁽⁴⁾ Measured relative to an ideal full-scale input (+IN - -IN) of 4.096 V

SPECIFICATIONS (CONTINUED)

 $T_A = -40$ °C to 85°C, +VA = +5 V, +VBD = 3 V or 5 V, $V_{ref} = 4.096$ V, $f_{SAMPLE} = 850$ kHz (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
DynamicCharacteristics							
	ADS8371I	Very AV at TDD III-					
	ADS8371IB	$V_{IN} = 4 V_{pp}$ at TBD kHz					
	ADS8371I		-96				
T	ADS8371IB	$V_{IN} = 4 V_{pp}$ at 10 kHz		-100			
Total harmonic distortion (THD) (1)	ADS8371I	., ., ., ., ., ., ., ., ., ., ., ., ., .				dB	
	ADS8371IB	$V_{IN} = 4 V_{pp}$ at TBD0 kHz					
	ADS8371I						
	ADS8371IB	V _{IN} = 4 V _{pp} at TBD kHz					
	ADS8371I						
	ADS8371IB	V _{IN} = 4 V _{pp} at TBD kHz					
	ADS8371I			84			
	ADS8371IB	$V_{IN} = 4 V_{pp}$ at 10 kHz		86			
Signal to noise ratio (SNR) ⁽¹⁾	ADS8371I					dB	
	ADS8371IB	V _{IN} = 4 V _{pp} at TBD kHz					
	ADS8371I						
	ADS8371IB	V _{IN} = 4 V _{pp} at TBD kHz					
	ADS8371I						
	ADS8371IB	$V_{IN} = 4 V_{pp}$ at TBD kHz					
	ADS8371I			83			
(4)	ADS8371IB	$V_{IN} = 4 V_{pp}$ at 10 kHz		85			
Signal to noise + distortion (SINAD) (1)	ADS8371I					dB	
	ADS8371IB	$V_{IN} = 4 V_{pp}$ at TBD kHz					
	ADS8371I						
	ADS8371IB	V _{IN} = 4 V _{pp} at TBD kHz					
	ADS8371I						
	ADS8371IB	$V_{IN} = 4 V_{pp}$ at TBD kHz					
	ADS8371I			96			
(4)	ADS8371IB	V _{IN} = 4 V _{pp} at 10 kHz		100			
Spurious free dynamic range (SFDR) (1)	ADS8371I					dB	
	ADS8371IB	V _{IN} = 4 V _{pp} at TBD kHz					
	ADS8371I						
	ADS8371IB	V _{IN} = 4 V _{pp} at TBD kHz					
-3 dB Small signal bandwidth	1			3		MHz	
Voltage Reference Input							
Reference voltage at REFIN, V _{ref}			2.5	4.096	4.2	V	
Reference resistance (2)				500		kΩ	
		1					

⁽¹⁾ Calculated on the first nine harmonics of the input frequency (2) Can vary ±20%

SPECIFICATIONS (CONTINUED)

 $T_A = -40$ °C to 85°C, +VA = +5 V, +VBD = 3 V or 5 V, $V_{ref} = 4.096$ V, $f_{SAMPLE} = 850$ kHz (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
			CMOS		
VIH	I _{IH} = 5 μA	+VBD-1		+V _{BD} + 0.3	
V _{IL}	I _{IL} = 5 μA	-0.3		0.8	.,
VOH	I _{OH} = 2 TTL loads	+V _{BD} - 0.6			V
V _{OL}	I _{OL} = 2 TTL loads			0.4	
Data format			Straight Binary		
ements					
+VBD		2.7	3.3	5.25	V
+VA		4.75	5	5.25	V
Supply current, 500-kHz sample rate (1)			22	26	mA
Power dissipation, 500-kHz sample rate (1)			110	130	mW
	<u>.</u>				
		-40		85	°C
	VIL VOH VOL ements +VBD +VA z sample rate (1) kHz sample rate (1)	V _{IL}	V _{IL}		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

⁽¹⁾ This includes only +VA current. +VBD current is typical 1 mA with 5 pF load capacitance on all output pins.

TIMING CHARACTERISTICS

All specifications typical at -40° C to 85° C, $+VA = +VBD = 5 \lor (1)$ (2) (3)

	PARAMETER	MIN	TYP	MAX	UNIT
tCONV	Conversion time			0.92	μs
^t ACQ	Acquisition time	0.25			μs
tHOLD	Sampling capacitor hold time			25	ns
tpd1	CONVST low to conversion started (BUSY high)			45	ns
tpd2	Propagation delay time, End of conversion to BUSY low			20	ns
tpd3	Propagation delay time, from start of conversion (internal state) to rising edge of BUSY			20	ns
t _{w1}	Pulse duration, CONVST low	40			ns
t _{su1}	Setup time, CS low to CONVST low	20			ns
t _{w2}	Pulse duration, CONVST high	20			ns
	CONVST falling edge jitter			10	ps
t _{w3}	Pulse duration, BUSY signal low	Min(t _{ACQ})		1	μs
t _{w4}	Pulse duration, BUSY signal high			0.92	μs
t _{h1}	Hold time, First data bus data transition (RD low, or CS low for read cycle, or BYTE or BUS18/16 input changes) after CONVST low	40			ns
t _{d1}	Delay time, CS low to RD low	0			ns
t _{su2}	Setup time, RD high to CS high	0			ns
t _{w5}	Pulse duration, RD low time	50			ns
t _{en}	Enable time, RD low (or CS low for read cycle) to data valid			20	ns
t _{d2}	Delay time, data hold from RD high	5			ns
t _{d3}	Delay time, BUS18/16 or BYTE rising edge or falling edge to data valid	10		20	ns
t _{w6}	Pulse duration, RD high	20			ns
t _{w7}	Pulse duration, CS high time	20			ns
t _{h2}	Hold time, last RD (or CS for read cycle) rising edge to CONVST falling edge	125			ns
t _{pd4}	Propagation delay time, BUSY falling edge to next \overline{RD} (or \overline{CS} for read cycle) falling edge	Max(t _{d5})			ns
t _{d4}	Delay time, BYTE edge to BUS18/16 edge skew	0			ns
t _{su3}	Setup time, BYTE or BUS18/16 transition to RD falling edge	10			ns
t _{h3}	Hold time, BYTE or BUS18/16 transition to RD falling edge	10			ns
t _{dis}	Disable time, RD High (CS high for read cycle) to 3-stated data bus			20	ns
t _{d5}	Delay time, BUSY low to MSB data valid			30	ns
t _{su4}	Setup time, BYTE or BUS18/16 change before BUSY falling edge	10		20	ns
t _{su5}	Setup time, BYTE transition to next BYTE transition, or BUS18/16 transition to next BUS18/16 transition	50			ns
t _{su(AB)}	Setup time, from the falling edge of CONVST (used to start the valid conversion) to the next falling edge of CONVST (when CS = 0 and CONVST used to abort) or to the next falling edge of CS (when CS is used to abort).	65		700	ns

⁽¹⁾ All input signals are specified with t_r = t_f = 5 ns (10% to 90% of +VBD) and timed from a voltage level of (V_{IL} + V_{IH})/2. (2) See timing diagrams. (3) All timing are measured with 20 pF equivalent loads on all data bits and BUSY pins.

6

TIMING CHARACTERISTICS

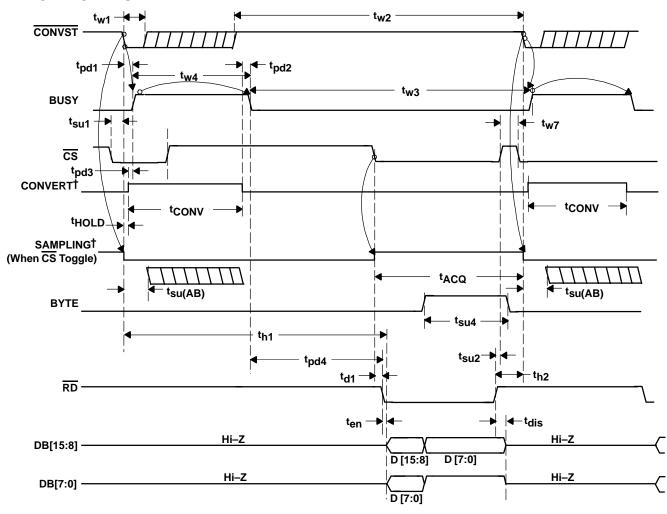
All specifications typical at -40° C to 85° C, +VA = 5 V, +VBD = 3 V (1)(2) (3)

	PARAMETER	MIN	TYP MAX	UNIT
tCONV	Conversion time		0.92	μs
^t ACQ	Acquisition time	0.25		μs
tHOLD	Sampling capacitor hold time		25	ns
^t pd1	CONVST low to conversion started (BUSY high)	10	50	ns
t _{pd2}	Propagation delay time, end of conversion to BUSY low	10	25	ns
tpd3	Propagation delay time, from start of conversion (internal state) to rising edge of BUSY		25	ns
t _{w1}	Pulse duration, CONVST low	40		ns
^t su1	Setup time, CS low to CONVST low	20		ns
t _{w2}	Pulse duration, CONVST high	20		ns
	CONVST falling edge jitter		10	ps
t _{w3}	Pulse duration, BUSY signal low	Min(t _{ACQ})	1	μs
t _{w4}	Pulse duration, BUSY signal high		0.92	μs
^t h1	Hold time, first data bus transition (RD low, or CS low for read cycle, or BYTE or BUS 18/16 input changes) after CONVST low	40		ns
^t d1	Delay time, CS low to RD low	0		ns
t _{su2}	Setup time, RD high to CS high	0		ns
t _{w5}	Pulse duration, RD low	50		ns
t _{en}	Enable time, RD low (or CS low for read cycle) to data valid		30	ns
t _{d2}	Delay time, data hold from RD high	10		ns
t _{d3}	Delay time, BUS18/16 or BYTE rising edge or falling edge to data valid	10	30	ns
t _{w6}	Pulse duration, RD high time	20		ns
t _{w7}	Pulse duration, CS high time	20		ns
t _{h2}	Hold time, last RD (or CS for read cycle) rising edge to CONVST falling edge	125		ns
tpd4	Propagation delay time, BUSY falling edge to next \overline{RD} (or \overline{CS} for read cycle) falling edge	Max(td5)		ns
t _{d4}	Delay time, BYTE edge to BUS18/16 edge skew	0		ns
t _{su3}	Setup time, BYTE or BUS18/16 transition to RD falling edge	10		ns
t _h 3	Hold time, BYTE or BUS18/16 transition to RD falling edge	10		ns
^t dis	Disable time, RD High (CS high for read cycle) to 3-stated data bus		30	ns
t _{d5}	Delay time, BUSY low to MSB data valid delay time		40	ns
t _{su4}	Setup time, BYTE or BUS18/16 change before BUSY falling edge	10	30	ns
t _{su5}	Setup time, BYTE transition to next BYTE transition, or BUS18/16 transition to next BUS18/16 transition	50		ns
t _{su(AB)}	Setup time, from the falling edge of CONVST (used to start the valid conversion) to the next falling edge of CONVST (when CS = 0 and CONVST used to abort) or to the next falling edge of CS (when CS is used to abort).	70	700	ns

⁽¹⁾ All input signals are specified with $t_{\Gamma} = t_{f} = 5$ ns (10% to 90% of +VBD) and timed from a voltage level of ($V_{IL} + V_{IH}$)/2. (2) See timing diagrams.

⁽³⁾ All timing are measured with 10 pF equivalent loads on all data bits and BUSY pins.

PIN ASSIGNMENTS



TERMINAL FUNCTIONS

NAME	NO.	I/O		DESCRIPTION				
AGND	5, 8, 11, 12, 14, 15, 44, 45	_	Analogground	nalogground				
BDGND	25, 38	_	Digital ground for bus interface of	ligital supply				
BUSY	36	0	Status output. High when a conv	rersion is in progress.				
BYTE	39	I	0: No fold back	te select input. Used for 8-bit bus reading. No fold back Low byte D[7:0] of the 16 most significant bits is folded back to high byte of the 16 most significant				
CONVST	40	I	Convert start. The falling edge o	f this input ends the acquisition perio	d and starts the hold period.			
CS	42	I	Chip select. The falling edge of t	his input starts the acquisition period				
			8-1	Bit Bus	16-Bit Bus			
Data Bus			BYTE = 0	BYTE = 1	BYTE = 0			
DB15	16	0	D15 (MSB)	D7	D15 (MSB)			
DB14	17	0	D14	D6	D14			
DB13	18	0	D13	D5	D13			
DB12	19	0	D12	D4	D12			
DB11	20	0	D11	D3	D11			
DB10	21	0	D10	D2	D10			
DB9	22	0	D9	D1	D9			
DB8	23	0	D8	D0 (LSB)	D8			
DB7	26	0	D7	Allones	D7			
DB6	27	0	D6	Allones	D6			
DB5	28	0	D5	Allones	D5			
DB4	29	0	D4	Allones	D4			
DB3	30	0	D3	Allones	D3			
DB2	31	0	D2	Allones	D2			
DB1	32	0	D1	Allones	D1			
DB0	33	0	D0 (LSB)	Allones	D0 (LSB)			
-IN	7	I	Inverting input channel					
+IN	6	I	Non inverting input channel					
NC	2, 3, 34, 35	_	No connection					
REFIN	1	ı	Reference input					
REFM	47, 48	ı	Reference ground	'				
RD	41	I	Synchronization pulse for the parallel output. When $\overline{\text{CS}}$ is low, this serves as the output enable and puts the previous conversion result on the bus.					
+VA	4, 9, 10, 13, 43, 46	-	Analog power supplies, 5-V dc	•				
+VBD	24, 37	_	Digital power supply for bus					

TIMING DIAGRAMS

†Signal internal to device

Figure 1. Timing for Conversion and Acquisition Cycles With $\overline{\text{CS}}$ and $\overline{\text{RD}}$ Toggling

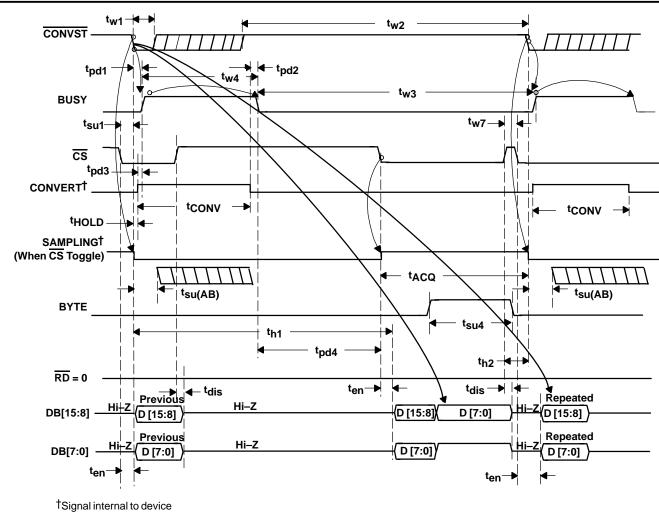


Figure 2. Timing for Conversion and Acquisition Cycles With $\overline{\text{CS}}$ Toggling, $\overline{\text{RD}}$ Tied to BDGND

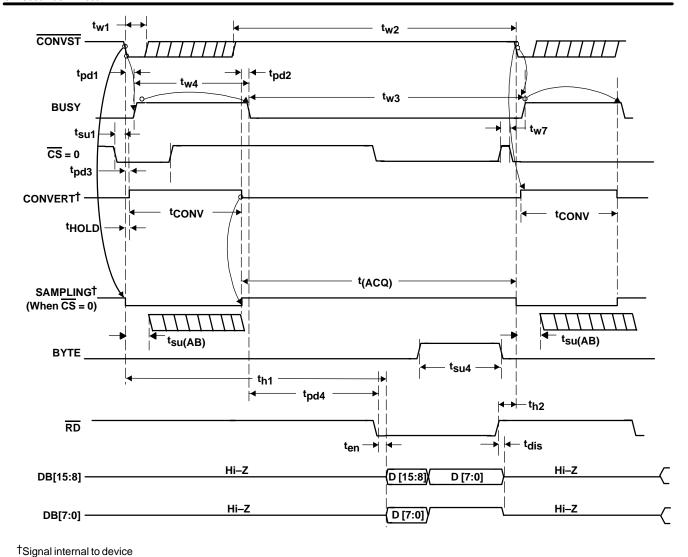
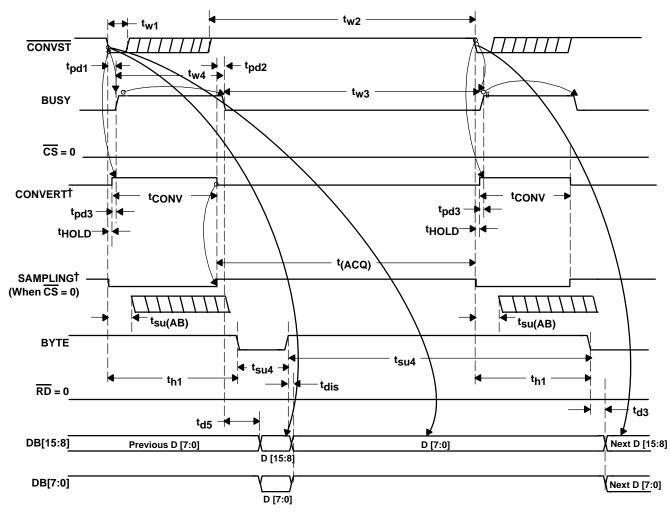



Figure 3. Timing for Conversion and Acquisition Cycles With $\overline{\text{CS}}$ Tied to BDGND, $\overline{\text{RD}}$ Toggling

†Signal internal to device

Figure 4. Timing for Conversion and Acquisition Cycles With $\overline{\text{CS}}$ and $\overline{\text{RD}}$ Tied to BDGND—Auto Read

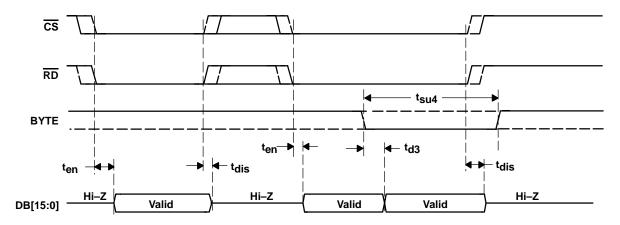


Figure 5. Detailed Timing for Read Cycles

APPLICATION INFORMATION

MICROCONTROLLER INTERFACING

ADS8371 to 8-Bit Microcontroller Interface

Figure 6 shows a parallel interface between the ADS8371 and a typical microcontroller using the 8-bit data bus.

The BUSY signal is used as a falling-edge interrupt to the microcontroller.

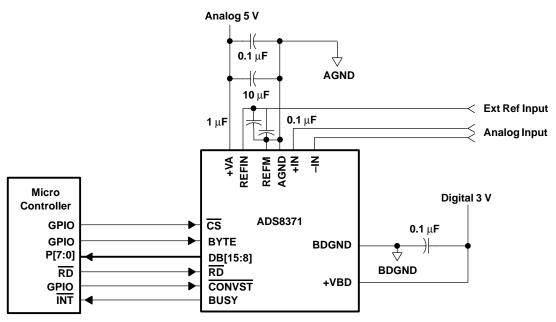


Figure 6. ADS8371 Application Circuitry

PRINCIPLES OF OPERATION

The ADS8371 is a high-speed successive approximation register (SAR) analog-to-digital converter (ADC). The architecture is based on charge redistribution which inherently includes a sample/hold function. See Figure 6 for the application circuit for the ADS8371.

The conversion clock is generated internally. The conversion time of 0.92 μs is capable of sustaining a 850-kHz throughput.

The analog input is provided to two input pins: +IN and -IN. When a conversion is initiated, the differential input on these pins is sampled on the internal capacitor array. While a conversion is in progress, both inputs are disconnected from any internal function.

REFERENCE

The ADS8371 can operate with an external reference with a range from 2.5 V to 4.2 V.

ANALOG INPUT

When the converter enters the hold mode, the voltage difference between the +IN and -IN inputs is captured on the internal capacitor array. The voltage on the -IN input is limited between -0.2 V and 0.2 V, allowing the input to reject small signals which are common to both the +IN and -IN inputs. The +IN input has a range of -0.2 V to V_{ref} + 0.2 V. The input span (+IN - (-IN)) is limited to 0 V to V_{ref} .

The input current on the analog inputs depends upon a number of factors: sample rate, input voltage, and source impedance. Essentially, the current into the ADS8371 charges the internal capacitor array during the sample period. After this capacitance has been fully charged, there is no further input current. The source of the analog input voltage must be able to charge the input capacitance (45 pF) to an 18-bit settling level within the acquisition time (400 ns) of the device. When the converter goes into the hold mode, the input impedance is greater than 1 $G\Omega$.

Care must be taken regarding the absolute analog input voltage. To maintain the linearity of the converter, the +IN and -IN inputs and the span (+IN - (-IN)) should be within the limits specified. Outside of these ranges, the converter's linearity may not meet specifications. To minimize noise, low bandwidth input signals with low-pass filters should be used.

Care should be taken to ensure that the output impedance of the sources driving the +IN and –IN inputs are matched. If this is not observed, the two inputs could have different setting times. This may result in offset error, gain error, and linearity error which changes with temperature and input voltage.

DIGITAL INTERFACE

Timing And Control

See the timing diagrams in the specifications section for detailed information on timing signals and their requirements.

The ADS8371 uses an internal oscillator generated clock which controls the conversion rate and in turn the throughput of the converter. No external clock input is required.

Conversions are initiated by bringing the CONVST pin low for a minimum of 20 ns (after the 20 ns minimum requirement has been met, the CONVST pin can be brought high), while CS is low. The ADS8371 switches from the sample to the hold mode on the falling edge of the CONVST command. A clean and low jitter falling edge of this signal is important to the performance of the converter. The BUSY output is brought high immediately following CONVST going low. BUSY stays high throughout the conversion process and returns low when the conversion has ended.

Sampling starts with the falling edge of the BUSY signal when \overline{CS} is tied low or starts with the falling edge of \overline{CS} when BUSY is low.

Both \overline{RD} and \overline{CS} can be high during and before a conversion with one exception (\overline{CS} must be low when \overline{CONVST} goes low to initiate a conversion). Both the \overline{RD} and \overline{CS} pins are brought low in order to enable the parallel output bus with the conversion.

Reading Data

The ADS8371 outputs full parallel data in straight binary format as shown in Table 1. The parallel output is active when $\overline{\text{CS}}$ and $\overline{\text{RD}}$ are both low. There is a minimal quiet zone requirement around the falling edge of $\overline{\text{CONVST}}$. This is 125 ns prior to the falling edge of $\overline{\text{CONVST}}$ and 40 ns after the falling edge. No data read should attempted within this zone. Any other combination of $\overline{\text{CS}}$ and $\overline{\text{RD}}$ sets the parallel output to 3-state. BYTE is used for multiword read operations. BYTE is used whenever lower bits on the bus are output on the higher byte of the bus. Refer to Table 1 for ideal output codes.

Table 1. Ideal Input Voltages and Output Codes

DESCRIPTION	ANALOG VALUE	DIGITAL OUTPUT STRAIGHT BINARY		
FULL SCALE RANGE	V _{ref}			
Least significant bit (LSB)	V _{ref} /65536	BINARY CODE	HEX CODE	
Full scale	V _{ref} – 1 LSB	1111 1111 1111 1111	FFFF	
Midscale	V _{ref} /2	1000 0000 0000 0000	8000	
Midscale – 1 LSB	V _{ref} /2 – 1 LSB	0111 1111 1111 1111	7FFF	
Zero	0 V	0000 0000 0000 0000	0000	

The output data is a full 16-bit word (D15-D0) on DB15-DB0 pins (MSB-LSB) if BYTE is low.

The result may also be read on an 8-bit bus for convenience. This is done by using only pins DB15–DB8. In this case two reads are necessary: the first as before, leaving BYTE low and reading the 8 most significant bits on pins DB15–DB8, then bringing BYTE high. When BYTE is high, the low bits (D7–D0) appear on pins DB15–D8.

These multiword read operations can be done with multiple active \overline{RD} (toggling) or with \overline{RD} tied low for simplicity.

Table 2. Conversion Data Readout

DVTE	DATA READ OUT			
BYTE	DB15-DB8 PINS	DB7-DB0 PINS		
High	D7-D0	All one's		
Low	D15-D8	D7-D0		

RESET

The device can be reset through the use of the combination fo $\overline{\text{CS}}$ and $\overline{\text{CONVST}}$. Since the BUSY signal is held at high during the conversion, either one of these conditions triggers an internal self-clear reset to the converter.

- Issue a CONVST when CS is low and internal CONVERT state is high. The falling edge of CONVST starts a
 reset.
- Issue a $\overline{\text{CS}}$ (select the device) while internal CONVERT state is high. The falling edge of $\overline{\text{CS}}$ causes a reset.

Once the device is reset, all output latches are cleared (set to zeroes) and the BUSY signal is brought low. A new sampling period is started at the falling edge of the BUSY signal immediately after the instant of the internal reset.

LAYOUT

For optimum performance, care should be taken with the physical layout of the ADS8371 circuitry.

As the ADS8371 offers single-supply operation, it will often be used in close proximity with digital logic, microcontrollers, microprocessors, and digital signal processors. The more digital logic present in the design and the higher the switching speed, the more difficult it is to achieve good performance from the converter.

The basic SAR architecture is sensitive to glitches or sudden changes on the power supply, reference, ground connections and digital inputs that occur just prior to latching the output of the analog comparator. Thus, driving any single conversion for an n-bit SAR converter, there are at least n *windows* in which large external transient voltages can affect the conversion result. Such glitches might originate from switching power supplies, nearby digital logic, or high power devices.

The degree of error in the digital output depends on the reference voltage, layout, and the exact timing of the external event.

On average, the ADS8371 draws very little current from an external reference as the reference voltage is internally buffered. If the reference voltage is external and originates from an op amp, make sure that it can drive the bypass capacitor or capacitors without oscillation. A 0.1-µF bypass capacitor is recommended from pin 1 (REFIN) directly to pin 48 (REFM). REFM and AGND should be shorted on the same ground plane under the device.

The AGND and BDGND pins should be connected to a clean ground point. In all cases, this should be the analog ground. Avoid connections which are too close to the grounding point of a microcontroller or digital signal processor. If required, run a ground trace directly from the converter to the power supply entry point. The ideal layout consists of an analog ground plane dedicated to the converter and associated analog circuitry.

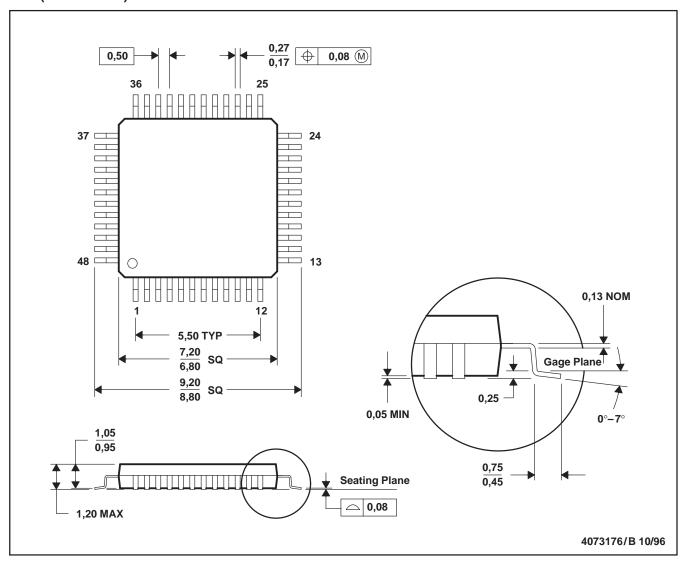

As with the AGND connections, +VA should be connected to a 5-V power supply plane or trace that is separate from the connection for digital logic until they are connected at the power entry point. Power to the ADS8371 should be clean and well bypassed. A 0.1- μ F ceramic bypass capacitor should be placed as close to the device as possible. See Table 3 for the placement of the capacitor. In addition, a 1- μ F to 10- μ F capacitor is recommended. In some situations, additional bypassing may be required, such as a 100- μ F electrolytic capacitor or even a Pi filter made up of inductors and capacitors—all designed to essentially low-pass filter the 5-V supply, removing the high frequency noise.

Table 3. Power Supply Decoupling Capacitor Placement

POWER SUPPLY PLANE SUPPLY PINS	CONVERTER ANALOG SIDE	CONVERTER DIGITAL SIDE
Pin pairs that require shortest path to decoupling capacitors	(4,5), (8,9), (10,11), (13,15), (43,44), (45,46)	(24,25)
Pins that require no decoupling	12, 14	37, 38

PFB (S-PQFP-G48)

PLASTIC QUAD FLATPACK

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Falls within JEDEC MS-026

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265