捷多邦,专业PCB打样工厂,24小町时\$6052,THS6053 查询THS6053供应商 175 mA, ±12 V ADSL CPE LINE DRIVERS SLOS293D - JUNE 2000 - REVISED DECEMBER 2001 Remote Terminal ADSL Line Driver **High Speed** – Ideal for Both Full Rate ADSL and G.Lite - 110 MHz (-3 dB, G=8, ±12 V) Compatible With 1:1 Transformer Ratio - 1500 V/µs Slew Rate (G = 8, ±12 V) Low 2.7 pA/\/Hz Noninverting Current Noise Low Distortion, Single-Ended, G = 8 Reduces Noise Feedback Through - -83 dBc (250 kHz, 2 Vpp, 100- Ω load) Hybrid Into Downstream Channel Low Power Shutdown (THS6053) Wide Supply Voltage Range ± 5 V to ± 15 V - 300-µA Total Standby Current Ideal for ±12-V Operation Thermal Shutdown and Short Circuit Wide Output Swing Protection 42 Vpp Differential Output Voltage. Standard SOIC, SOIC PowerPAD, and $R_I = 200 \Omega, \pm 12$ -V Supply **TSSOP PowerPAD™ Package High Output Current Evaluation Module Available** – 175 mA (typ) THS6052 THS6053 SOIC (D) AND SOIC (D) AND SOIC PowerPADTM (DDA) PACKAGE TSSOP PowerPAD[™] (PWP) PACKAGE (TOP VIEW) (TOP VIEW)

description

D1 OUT

D1 IN- [

D1 IN+

V_{CC}-

3

V_{CC+}

D2 IN-

D2 IN+

6

D2 OUT

The THS6052/3 is a high-speed line driver ideal for driving signals from the remote terminal to the central office in asymmetrical digital subscriber line (ADSL) applications. It can operate from ± 12 -V supply voltages while drawing only 5.2 mA of supply current per channel. It offers low -83 dBc total harmonic distortion driving a 100- Ω load (2 Vpp). The THS6052/3 offers a high 42-Vpp differential output swing across a 200- Ω load from a \pm 12-V supply. The THS6053 features a low-power shutdown mode, consuming only 300 µA quiescent current per channel. The THS6052/3 is packaged in a standard SOIC, SOIC PowerPAD™, and TSSOP PowerPAD™ packages.

D1 OUT

D1 IN-Π

D1 IN+ Π

V_{CC}_[

N/C

N/C

2

3

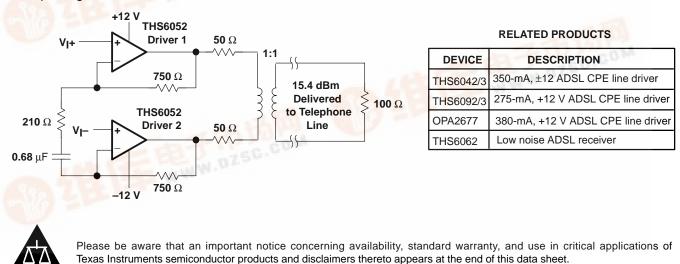
4

5 GND I 6 V_{CC+}

D2 IN-

D2 IN+

I SHUTDOWN


-13 🛛 D2 OUT

A₁₂

10 П N/С

9

8 ∏ N/C

owerPAD is a trademark of Texas Instruments

SLOS293D – JUNE 2000 – REVISED DECEMBER 2001

		PACKAGED DE	EVICE		EVALUATION
TA	SOIC-8 (D)	SOIC-8 PowerPAD (DDA)	SOIC-14 (D)	TSSOP-14 (PWP)	EVALUATION MODULES
0°C to 70°C	THS6052CD	THS6052CDDA	THS6053CD	THS6053CPWP	THS6052EVM THS6053EVM
-40°C to 85°C	THS6052ID	THS6052IDDA	THS6053ID	THS6053IPWP	_

absolute maximum ratings over operating free-air temperature (unless otherwise noted)[†]

Supply voltage, V _{CC+} to V _{CC-} Input voltage Output current (see Note 1) Differential input voltage Maximum junction temperature Total power dissipation at (or below) 25°C free-air temperature Operating free-air temperature, T _A : Commercial	
Maximum junction temperature	150°C
Operating free-air temperature, T _A : Commercial	0°C to 70°C
Industrial	–40°C to 85°C
Storage temperature, T _{stg} : Commercial	–65°C to 125°C
Industrial	
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	300°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The THS6052 and THS6053 may incorporate a PowerPAD[™] on the underside of the chip. This acts as a heatsink and must be connected to a thermally dissipating plane for proper power dissipation. Failure to do so may result in exceeding the maximum junction temperature which could permanently damage the device. See TI technical brief SLMA002 for more information about utilizing the PowerPAD[™] thermally enhanced package.

DISSIPATION RATING TABLE

ΑL ^θ	θJC	T _A = 25°C TJ = 150°C POWER RATING
95°C/W‡	38.3°C/W‡	1.32 W
45.8°C/W‡	9.2°C/W‡	2.73 W
66.6°C/W‡	26.9°C/W‡	1.88 W
37.5°C/W	1.4°C/W	3.3 W
	95°C/W‡ 45.8°C/W‡ 66.6°C/W‡	95°C/W‡ 38.3°C/W‡ 45.8°C/W‡ 9.2°C/W‡ 66.6°C/W‡ 26.9°C/W‡

[‡] This data was taken using the JEDEC proposed high-K test PCB. For the JEDEC low-K test PCB, the Θ_{JA} is168°C/W for the D–8 package and 122.3°C/W for the D–14 package.

recommended operating conditions

		MIN	NOM MAX	UNIT
	Dual supply	±5	±15	V
Supply voltage, V_{CC+} to V_{CC-}	Single supply	10	30	V
On and the state of the second s	C-suffix	0	70	
Operating free-air temperature, T _A	I-suffix	-40	85	°C

SLOS293D - JUNE 2000 - REVISED DECEMBER 2001

electrical characteristics over recommended operating free-air temperature range, T_A = 25°C, V_{CC} = ±12 V, R_{FEEDBACK} = 750 Ω , R_L = 100 Ω (unless otherwise noted)

dynamic performance

	PARAMETER		TEST CONDITION	NS	MIN	TYP	MAX	UNIT
			C = 1 P = -1 kO	$V_{CC} = \pm 5 V$		110		
$BW \qquad Small-signal bandwidth (-3 dB) \qquad \qquad$		D. 50.0	$G = 1, R_F = 1 R_{22}$	$V_{CC} = \pm 12 V$		120		
	Small signal bandwidth (2 dD)		G= 8, R _F = 330 Ω	$VCC = \pm 5 V, \pm 12 V$		90		MI 1-
BW	Small-signal bandwidth (– 3 dB)	R _L = 100 Ω		$V_{CC} = \pm 5 V$		150		MHz
			-	$V_{CC} = \pm 12 V$	170			
			G= 2, R_F = 680 Ω	V _{CC} = ±5 V, ±12 V		135		
			G= 8, R _F = 330 Ω			110		
			$V_{CC} = \pm 5 V$	$V_{CC} = \pm 5 V$		650		
		V _O = 4 V _{PP}	$V_{CC} = \pm 12 V$	$V_{CC} = \pm 12 V$		850		
SR	Slew rate (see Note 2), G=8		$V_{CC} = \pm 15 V$	$V_{CC} = \pm 15 V$		950		V/µs
		V = - 16 V = -	$V_{CC} = \pm 12 V$	$V_{CC} = \pm 12 V$		1500		
		V _O = 16 V _{PP}	$V_{CC} = \pm 15 V$	$V_{CC} = \pm 15 V$		1700		

NOTE 2: Slew rate is defined from the 25% to the 75% output levels.

noise/distortion performance

	PARAMETER		1	EST CONDITIO	NS	MIN	TYP	MAX	UNIT
			Gain = 8,	R _L = 100 Ω,	V _{O(pp)} = 2 V		-83		
THD	Total harmonic distortion (sin	gle-ended	$V_{CC} = \pm 12 V,$	f = 250 kHz	V _{O(pp)} = 16 V		-78		dDa
	configuration)		Gain = 8,		V _{O(pp)} = 2 V		-74		dBc
			$V_{CC} = \pm 5 V$,	f = 250 kHz	V _{O(pp)} = 6 V		-72		
v _n	Input voltage noise		V _{CC} = ±5 V, ±12 V	f = 10 kHz ,			2.1		nV/√Hz
		+Input	f = 10 kHz,	$V_{CC} = \pm 5 V$,			2.7		- 4/11-
In	Input current noise	–Input		$V_{CC} = \pm 12 V$, $V_{CC} = \pm 15 V$			10.7		pA/√Hz
v	Orace to the		f = 250 kHz, G = 2,	$V_{CC} = \pm 12 \text{ V},$ RL= 100 Ω	V _O = 2 Vp-p		-79		5
Х _Т	Crosstalk		f = 250 kHz, G = 2,	V_{CC} = ±5 V, RL= 50 Ω	V _O = 2 Vp-p		-71		dBc

SLOS293D - JUNE 2000 - REVISED DECEMBER 2001

electrical characteristics over recommended operating free-air temperature range, T_A = 25°C, V_{CC} = ±12 V, R_{FEEDBACK} = 750 Ω , R_L = 100 Ω (unless otherwise noted) (continued)

dc performance

	PARAMETER	TEST CON	DITIONS	MIN	TYP	MAX	UNIT
			$T_A = 25^{\circ}C$		5	10	
	Input offset voltage		$T_A = full range$			15	
Vos	Differential effect values	$V_{CC} = \pm 12 V,$ $V_{CC} = \pm 6 V$	$T_A = 25^{\circ}C$		3	6	mV
	Differential offset voltage		$T_A = full range$			8	
	Offset drift		$T_A = full range$			30	μV/°C
	land biog surrent		$T_A = 25^{\circ}C$		5	10	
	- Input bias current		$T_A = full range$			12	
I		$V_{CC} = \pm 12 V,$	$T_A = 25^{\circ}C$		2	5	•
Iв	+ Input bias current	$V_{CC} = \pm 6 V$	$T_A = full range$			6	μA
	Differential insut him surrent		$T_A = 25^{\circ}C$		5	10	
	Differential input bias current		$T_A = full range$			12	
Z _{OL}	Open loop transimpedance	$\begin{array}{l} V_{CC}=\pm 12 \text{ V},\\ V_{CC}=\pm 6 \text{ V} \end{array}$	R _L = 1 kΩ,		1		MΩ

input characteristics

	PARAMETER TEST CONDITIONS		MIN	TYP	MAX	UNIT	
		$V_{CC} = \pm 12 V$		±9.7	±10.1		
VICR	Input common-mode voltage range	$V_{CC} = \pm 6 V$		±3.8	±4.2		V
CMRR	Common-mode rejection ratio	$V_{CC} = \pm 12 V,$ $V_{CC} = \pm 6 V$	$T_A = 25^{\circ}C$	59	66		dB
CIVILLE	Common-mode rejection ratio	$V_{CC} = \pm 6 V$	$T_A = full range$	57			uв
		+ Input			1.5		MΩ
RI	Input resistance	– Input			15		Ω
Cl	Input capacitance				2		pF

output characteristics

PARAMETER			TEST C	TEST CONDITIONS			MAX	UNIT
				$V_{CC} = \pm 6 V$	±4.2	±4.6		
٧o	Output voltage swing	Single ended	Single ended	$V_{CC} = \pm 12 V$	±10.1	±10.5		V
-			R _L = 100 Ω	$V_{CC} = \pm 6 V$	±4.4	±4.8		
1	Output current		R _L = 25 Ω,	$V_{CC} = \pm 12 V$	150	175		mA
10	Output current		RL = 10 Ω,	$V_{CC} = \pm 6 V$	150	175		ША
ISC	Short-circuit current		$R_L = 0 \Omega$,	$V_{CC} = \pm 12 V$		250		mA
	Output resistance		Open loop			14		Ω

SLOS293D - JUNE 2000 - REVISED DECEMBER 2001

electrical characteristics over recommended operating free-air temperature range, T_A = 25°C, V_{CC} = ±12 V, R_{FEEDBACK} = 750 Ω , R_L = 100 Ω (unless otherwise noted) (continued)

power supply

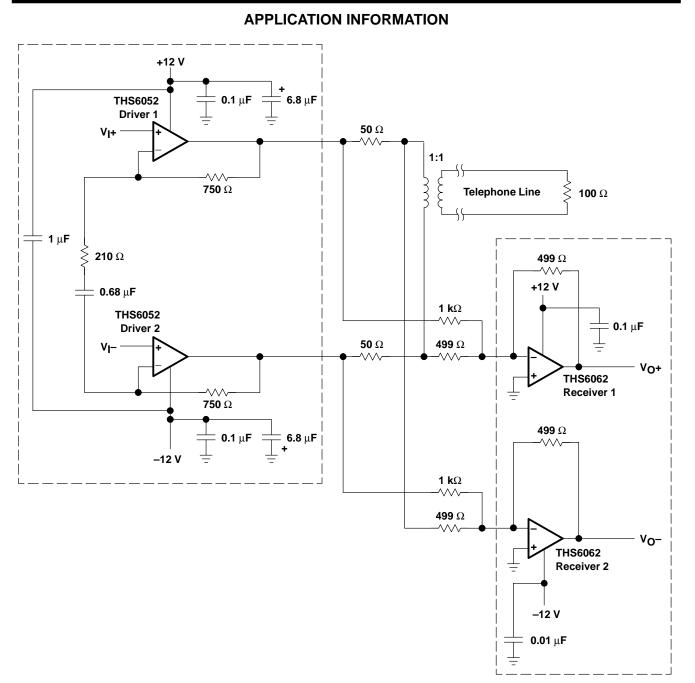
	PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
		Dual supply			±4.5		±16.5	
VCC	Operating range	Single supply			9		33	V
			V 140 V	$T_A = 25^{\circ}C$		5.2	7	
	Quieseest surrest (seeb driver)	V _{CC} = ±		$T_A = full range$			8	
lcc	Quiescent current (each driver)			T _A = 25°C		4.5	6.5	mA
			$V_{CC} = \pm 6 V$	$T_A = full range$			7.5	
			V 140 V	$T_A = 25^{\circ}C$	-64	-62		
0000			$V_{CC} = \pm 12 V$	$T_A = full range$	-61	-		40
PSRR	PSRR Power supply rejection ratio			$T_A = 25^{\circ}C$	-60	-70		dB
			$V_{CC} = \pm 6 V$	$T_A = full range$	-58			

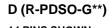
shutdown characteristics (THS6053 only)

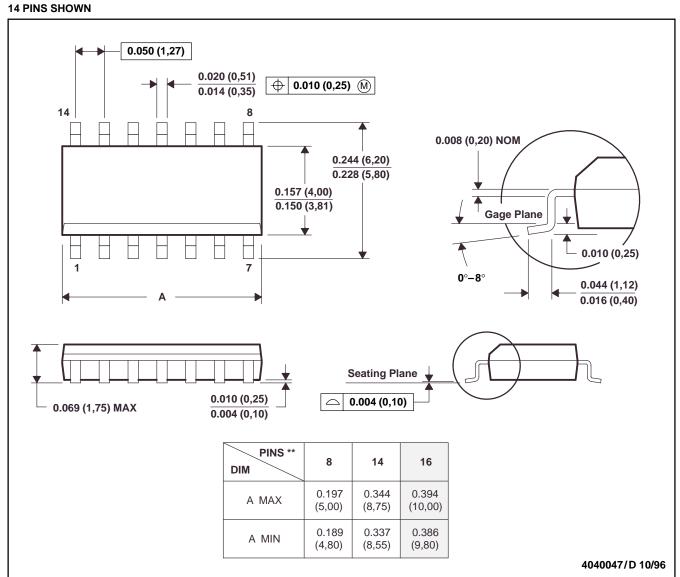
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
VIL(SHDN)	Shutdown pin voltage for power up	$V_{CC} = \pm 6 \text{ V}, \pm 12 \text{ V} \text{ GND} = 0 \text{ V},$ (GND Pin as Reference)			0.8	V
VIH(SHDN)	Shutdown pin voltage for power down	$V_{CC} = \pm 6 \text{ V}, \pm 12 \text{ V}, \text{ GND} = 0 \text{ V},$ (GND Pin as Reference)	2			V
ICC(SHDN)	Total quiescent current when in shutdown state	V_{GND} = 0 V, V_{CC} = ±6 V, ±12 V		0.3	0.7	mA
t _{DIS}	Disable time (see Note 3)	$V_{CC} = \pm 12 V$		0.1		μs
^t EN	Enable time (see Note 3)	$V_{CC} = \pm 12 V$		0.4		μs
IIL(SHDN)	Shutdown pin input bias current for power up	$V_{CC} = \pm 6 V, \pm 12 V$		40	100	μΑ
IIH(SHDN)	Shutdown pin input bias current for power down	V _{CC} = ±6 V, ±12 V, V(SHND) = 3.3 V		50	100	μA

NOTE 3: Disable/enable time is defined as the time from when the shutdown signal is applied to the SHDN pin to when the supply current has reached half of its final value.

SLOS293D - JUNE 2000 - REVISED DECEMBER 2001




Figure 1. THS6052 ADSL Application With 1:1 Transformer Ratio



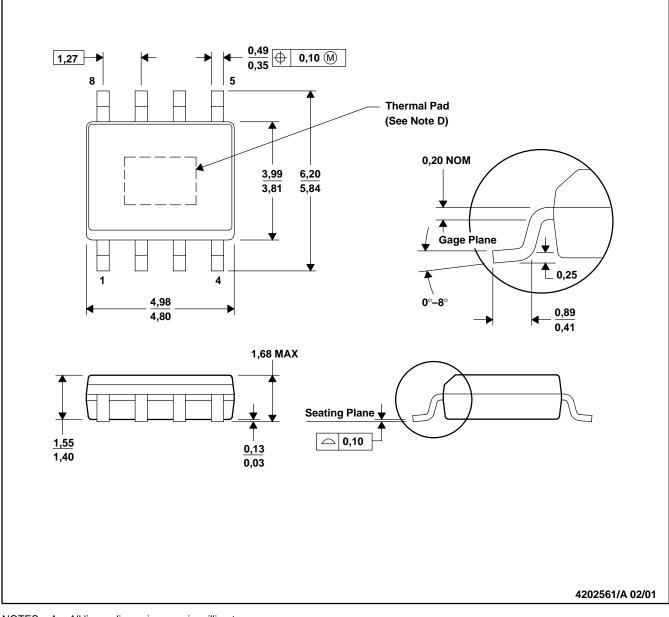
SLOS293D - JUNE 2000 - REVISED DECEMBER 2001

MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-012



SLOS293D - JUNE 2000 - REVISED DECEMBER 2001

MECHANICAL DATA

DDA (S-PDSO-G8)

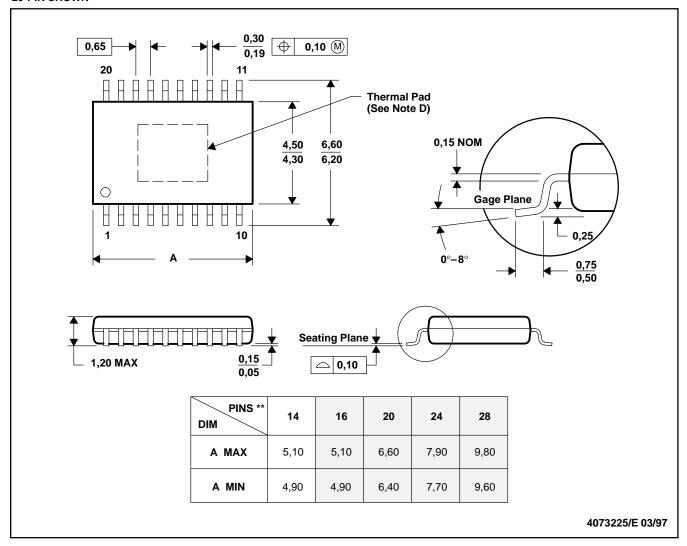
Power PAD[™] PLASTIC SMALL-OUTLINE

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. The package thermal performance may be enhanced by bonding the thermal pad to an external thermal plane. This pad is electrically and thermally connected to the backside of the die and possibly selected leads.

PowerPAD is a trademark of Texas Instruments.



SLOS293D - JUNE 2000 - REVISED DECEMBER 2001

MECHANICAL INFORMATION

PowerPAD[™] PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusions.
- D. The package thermal performance may be enhanced by bonding the thermal pad to an external thermal plane. This pad is electrically and thermally connected to the backside of the die and possibly selected leads.

E. Falls within JEDEC MO-153

PowerPAD is a trademark of Texas Instruments.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third–party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2001, Texas Instruments Incorporated