

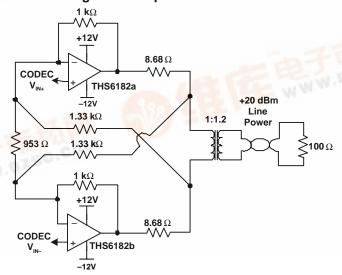
THS6182

SLLS544E - SEPTEMBER 2002 - REVISED JULY 2003

LOW POWER DISSIPATION ADSL LINE DRIVER

FEATURES

- Low Power Dissipation Increases ADSL Line Card Density
- Low THD of -88 dBc (100-Ω, 1 MHz)
- Low MTPR Driving +20 dBm on the Line
 - -76 dBc With High Bias Setting
 - -74 dBc With Low Bias Setting
- Wide Output Swing of 44V_{PP} Differential Into a 200 Ω Differential Load (V_{CC} = ±12 V)
- High Output Current of 600 mA (Typ)
- Wide Supply Voltage Range of ±5 V to ±15 V
- Pin Compatible With EL1503C and EL1508C
 - Multiple Package Options
- Multiple Power Control Modes
 - 11 mA/ch Full Bias Mode
 - 7.5 mA/ch Mid Bias Mode
 - 4 mA/ch Low Bias Mode
 - 0.25 mA/ch Shutdown Mode
 - I_{ADJ} Pin for User Controlled Bias Current
 - Stable Operation Down to 2 mA/ch
- Low Noise for Increased Receiver Sensitivity
 - 3.2 nV/√Hz Voltage Noise
 - 1.5 pA/√Hz Noninverting Current Noise
 - 10 pA/√Hz Inverting Current Noise


APPLICATIONS

Ideal for Full Rate ADSL Applications

DESCRIPTION

The THS6182 is a current feedback differential line driver ideal for full rate ADSL systems. Its extremely low power dissipation is ideal for ADSL systems that must achieve high densities in ADSL central office rack applications. The unique architecture of the THS6182 allows the quiescent current to be much lower than existing line drivers while still achieving very high linearity without the need for excess open loop gain. Fixed multiple bias settings of the amplifiers allow for enhanced power savings for line lengths where the full performance of the amplifier is not required. To allow for even more flexibility and power savings, an IADJ pin is available to further lower the bias currents while maintaining stable operation with as little as 2 mA per channel. The wide output swing of 44 V_{pp} differentially with ±12V power supplies allows for more dynamic headroom, keeping distortion at a minimum. With a low 3.2 nV/√Hz voltage noise coupled with a low 10 pA/√Hz inverting current noise, the THS6182 increases the sensitivity of the receive signals, allowing for better margins and reach.

Typical ADSL CO Line Driver Circuit Utilizing Active Impedance

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SLLS544E - SEPTEMBER 2002 - REVISED JULY 2003

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage.

ORDERING INFORMATION

PRODUCT	PACKAGE	PACKAGE CODE	SYMBOL	TA	ORDER NUMBER	TRANSPORT MEDIA		
THS6182RHF	Leadless 24-pin 4 mm x	DUE 24	RHF-24 6182		THS6182RHFR	Tape and reel (3000 devices)		
11130102KHF	5 mm PowerPAD™	KHF-24	0102		THS6182RHFT	Tape and reel (250 devices)		
				-40°C to 85°C	THS6182D	Tube (40 devices)		
THS6182D	SOIC-16	D-16	THS6182	-40 C 10 05 C	THS6182DR	Tape and reel (2500 devices)		
					THS6182DW	Tube (25 devices)		
THS6182DW	SOIC-20	DW-20 THS618		SOIC-20 DW-20 THS6182			THS6182DWR	Tape and reel (2000 devices)

PACKAGE DISSIPATION RATINGS(1)

PACKAGE	PowerPAD SOLDERED(2) [⊖] JA	SOLDERED(2) NOT SOLDERED(3)	
RHF-24	32°C/W	74°C/W	1.7°C/W
D-16	-	62.9°C/W	25.7°C/W
DW-20	_	45.4°C/W	16.4°C/W

⁽¹⁾ Θ_{JA} values shown are typical for standard test PCBs only.

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range unless otherwise noted(1)

ELECTRICAL	THS6182
Supply voltage, V _{CC} ⁽²⁾	±16.5 V
Input voltage, V _I	±VCC
Output current, IO (2)	1000 mA
Differential input voltage, V _{IO}	±2 V
THERMAL	
Maximum junction temperature, any condition (3), TJ	150°C
Maximum junction temperature, continuous operation, long term reliability ⁽⁴⁾ , T _J	125°C
Operating free–air temperature, T _A	-40°C to 85°C
Storage temperature, T _{sgt}	−65°C to 150°C
Lead temperature, 1,6 mm (1/16-inch) from case for 10 seconds	300°C

- (1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) The THS6182 may incorporate a PowerPAD on the underside of the chip. This acts as a heatsink and must be connected to a thermally dissipating plane for proper power dissipation. Failure to do so may result in exceeding the maximum junction temperature that could permanently damage the device. See TI Technical Brief SLMA002 for more information about utilizing the PowerPAD thermally enhanced package.
- (3) The absolute maximum temperature under any condition is limited by the constraints of the silicon process.
- (4) The maximum junction temperature for continuous operation is limited by package constraints. Operation above this temperature may result in reduced reliability and/or lifetime of the device.

⁽²⁾ For high power dissipation applications, use of the PowerPAD package and soldering the PowerPAD to the PCB is required. Failure to do so may result in reduced reliability and/or lifetime of the device. See TI technical brief SLMA002 for more information about utilizing the PowerPAD thermally enhanced package.

⁽³⁾ Use of packages without the PowerPAD or not soldering the PowerPAD to the PCB, should be limited to low-power dissipation applications.

ABSOLUTE MAXIMUM RATINGS

ESD	ESD				
	НВМ	500 V			
ESD ratings	CDM	1500 V			
	MM	200 V			

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
Complements are Marian	Dual supply	±5	±12	±15	.,
Supply voltage, V _{CC+} to V _{CC-}	Single supply	10	24	30	V
Operating free-air temperature, TA	Operating free-air temperature, T _A			85	°C
Operating junction temperature, continuous operation T _J				125	°C
Normal storage temperature, T _{stg}	Normal storage temperature, T _{Sta}			85	°C

ELECTRICAL CHARACTERISTICS

over recommended operating free-air temperature range, T_A = 25°C, V_{CC} = ± 12 V, R_F = 2 k Ω , Gain = +5, I_{ADJ} = Bias1 = Bias2 = 0 V, R_L = 50 Ω (unless otherwise noted)

NOISE	/DISTORTION PE	RFORMANCE						
	PARAMET	ER	TEST CO	NDITIONS	MIN	TYP	MAX	UNIT
MTPR	PR Multitone power ratio		· ·	Gain =+9.5, 163 kHz to 1.1 MHz DMT, +20 dBm Line Power, See Figure 1 for circuit		-76		dBc
	Receive band spil	lover	Gain =+5, 25 kHz to 138 kH See Figure 1 for circuit	z with MTPR signal applied,		-95		dBc
			2nd harmonic	Differential load = 200Ω		-88		dBc
HD	Harmonic distortion	on, V _{O(PP)} = 2 V	Znanamonic	Differential load = 50Ω		-70		иыс
ни	f = 1 MHz	_(/	3rd harmonic	Differential load = 200Ω		-107		dBc
			3.4 Halmonic	Differential load = 50Ω		-84		иыс
V _n	Input voltage nois	е	$V_{CC} = \pm 5 \text{ V}, \pm 12 \text{ V}, \pm 15 \text{ V},$	f = 100 kHz		3.2		nV/√Hz
	Input current	+Input	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	f _ 100 k∐-		1.5		pA/√Hz
^I n	noise	-Input	V _{CC} = ±5 V, ±12 V, ±15 V, f = 100 kHz		= 100 KHZ			P/-/ 1112
	Crosstalk		$f = 1 \text{ MHz}, V_{O(PP)} = 2 \text{ V}, V_{CC} = \pm 5 \text{ V}, \pm 12 \text{ V}, \pm 15 \text{ V}$	$R_L = 100 \Omega$	-65			dBc
	Orossian		$V_{CC} = \pm 5 \text{ V}, \pm 12 \text{ V}, \pm 15 \text{ V}$ $R_L = 25 \Omega$			-60		dBc
OUTPU	UT CHARACTER	ISTICS						
			V _{CC} = ±5 V	R _L = 100 Ω	±3.9	±4.1		V
			$\Lambda CC = \mp 2 \Lambda$	R _L = 25 Ω	±3.7	±3.9		V
V ₀	Single-ended outp	vut voltogo oving	Vaa – ±12 V	R _L = 100 Ω	±10.7	±11.0		V
VO	Single-ended out	out voitage swing	V _{CC} = ±12 V	$R_L = 25 \Omega$	±10.0	±10.6		V
			V _{CC} = ±15 V	$R_L = 100 \Omega$	±13.5	±13.9		V
			ACC = ∓12 A	$R_L = 25 \Omega$	±12.7	±13.4		V
			$R_L = 5 \Omega$	$V_{CC} = \pm 5 \text{ V}$	±350	±400		
lo	Output current (1)		R _I = 10 Ω	$V_{CC} = \pm 12 \text{ V}$	±450	±600		mA
			IXL = 10 22	$V_{CC} = \pm 15 V$	±450	±600		
I(SC)	Short-circuit curre	nt (1)	R _L = 1 Ω	V _{CC} = ±12 V		1000		mA
	Output resistance		Open-loop			6		Ω
	Output resistance	—terminate mode	f = 1 MHz,	Gain = +10		0.05		Ω
	Output resistance	-shutdown mode	f = 1 MHz,	Open-loop		8.5		kΩ

⁽¹⁾ A heatsink is rsequired to keep the junction temperature below absoulte maximum rating when an output is heavily loaded or shorted. See Absolute Maximum Ratings section for more information.

ELECTRICAL CHARACTERISTICS (continued) over recommended operating free-air temperature range, $T_A = 25^{\circ}C$, $V_{CC} = \pm 12$ V, $R_F = 2$ kΩ, Gain = +5, $I_{ADJ} = Bias1 = Bias2 = 0$ V, $R_L = 50$ Ω (unless otherwise noted)

POWE	R SUPPLY						
	PARAMETER	TEST	CONDITIONS	MIN	TYP	MAX	UNIT
V00	Operatingrange	Dual supply		±4	±12	±16.5	V
VCC	Operatingrange	Single supply		8	24	33	V
Quiescent current (T _A = 25°C		9.7	10.7	mA
	Quiescent current (each driver) ⁽¹⁾	$V_{CC} = \pm 5 V$	T _A = full range			11.7	IIIA
	Full-bias mode	V 142.V	T _A = 25°C		11	12	A
	(Bias-1 = 0, Bias-2 = 0) (Trimmed with $V_{CC} = \pm 15 \text{ V}$ at 25°C)	V _{CC} = ± 12 V	T _A = full range			12.5	mA
ICC		V 145V	T _A = 25°C		11.5	12.5	A
		$V_{CC} = \pm 15 \text{ V}$	T _A = full range			13	mA
		Mid; Bias-1 = 1, Bias-2 = 0			7.5	8.5	
	Quiescent current (each driver) Variable bias modes, V _{CC} = ± 12 V	Low; Bias-1 = 0, Bias-2 = 1			4	5	mA
	variable bias modes, vCC = ± 12 v	Shutdown; Bias-1 = 1	Shutdown; Bias-1 = 1, Bias-2 = 1		0.25	0.9	
		$V_{CC} = \pm 5 V$,	T _A = 25°C	-50	-56		
DODD	Power supply rejection ratio	$\Delta V_{CC} = \pm 0.5 \text{ V}$	T _A = full range	-47			.ID
PSRR	$(\Delta V_{CC} = \pm 1 V)$	$V_{CC} = \pm 12 \text{ V}, \pm 15 \text{ V},$	T _A = 25°C	-56	-60		dB
		$\Delta V_{CC} = \pm 1 \text{ V}$	T _A = full range	-53			

⁽¹⁾ Approximately 0.5 mA (total) flows from $\rm V_{\hbox{\scriptsize CC+}}$ to GND for internal logic control bias.

DYNAMIC PERFORMANCE									
	PARAMETER	TES	TCONDITIONS	MIN	TYP	MAX	UNIT		
			Gain = +1, RF = 1.2 k Ω		100				
		D: 400.0	Gain = +2, RF = 1 k Ω		80				
		$R_L = 100 \Omega$ $Gain = +5, RF = 1 k\Omega$	Gain = +5, RF = 1 k Ω		35		MHz		
DIA	Single-ended small-signal bandwidth		Gain = +10, RF = 1 k Ω	20					
BW	$(-3 \text{ dB}), V_0 = 0.1 \text{ Vrms}$		Gain = +1, RF = 1.5k Ω		65				
		D. 05.0	Gain = +2, RF = 1 k Ω		60				
		$R_L = 25 \Omega$	Gain = +5, RF = 1 k Ω	, RF = 1 k Ω 40			MHz		
			Gain = +10, RF = 1 k Ω		22				
SR	Single-ended slew-rate ⁽²⁾	V _O = 10 V _{PP} ,	Gain =+5		450		V/μs		

⁽²⁾ Slew-rate is defined from the 25% to the 75% output levels

DC PE	RFORMANCE						
	PARAMETER	TEST CONDI	TIONS	MIN	TYP	MAX	UNIT
	lanut effectualtana		T _A = 25°C		1	20	
	Input offset voltage		T _A = full range			25	\/
V_{OS}	Differential offset voltage	V _{CC} = ± 5 V, ±12 V, ±15 V	T _A = 25°C		0.5	10	mV
			T _A = full range			15	
	Offset drift		T _A = full range		50		μV/°C
	Land His a summer		T _A = 25°C		8	15	
	-Input bias current	V 15V 140V 145V	T _A = full range			20	
I _{IB}	. I would be a summer	$V_{CC} = \pm 5 \text{ V}, \pm 12 \text{ V}, \pm 15 \text{ V}$	T _A = 25°C	8		15	μΑ
	+ Input bias current		T _A = full range			20	
Z _{OL}	Open loop transimpedance	Open loop transimpedance $R_{L} = 1 \text{ k}\Omega$, $V_{CC} = \pm 12 \text{ V}, \pm 15 \text{ V}$,			900		kΩ

ELECTRICAL CHARACTERISTICS (CONTINUED)

over recommended operating free-air temperature range, $T_A = 25^{\circ}C$, $V_{CC} = \pm 12$ V, $R_F = 2$ k Ω , Gain = +5, $I_{ADJ} = Bias1 = Bias2 = 0$ V, $R_L = 50$ Ω (unless otherwise noted)

INPUT	INPUT CHARACTERISTICS									
	PARAMETER	TEST COI	NDITIONS	MIN	TYP	MAX	UNIT			
		\\\c=\+E\\\	T _A = 25°C	±2.7	±3.0		V			
		$V_{CC} = \pm 5 \text{ V}$	T _A = full range	±2.6			V			
l.,	Innut common mode valtage range	V 142 V	T _A = 25°C	±9.5	±9.8		V			
V_{ICR}	Input common-mode voltage range	$V_{CC} = \pm 12 \text{ V}$	T _A = full range	±9.3			j v			
		V 145.V	T _A = 25°C	±12.4	±12.7		V			
		$V_{CC} = \pm 15 \text{ V}$	T _A = full range	±12.1			V			
OMBB	Common mode rejection ratio	V IEV 142V 14EV	T _A = 25°C	48	54		dB			
CMRR	Common-mode rejection ratio	$V_{CC} = \pm 5 \text{ V}, \pm 12 \text{ V}, \pm 15 \text{ V}$	T _A = full range	44			uБ			
	Innut registeres	+ Input			800		kΩ			
R _I	Inputresistance	- Input			30		Ω			
C _I	Input capacitance				1.7		pF			

LOCIO	LOCIC CONTROL CHARACTERISTICS											
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT						
VIH	Bias pin voltage for logic 1	Relative to GND pin voltage	2.0			V						
VIL	Bias pin voltage for logic 0	Relative to GND pin voltage			0.8	V						
lн	Bias pin current for logic 1	V _{IH} = 3.3 V, GND = 0 V		4	30	μΑ						
IIL	Bias pin current for logic 0	V _{IL} = 0.5 V, GND = 0 V		1	10	μΑ						
	Transition time—logic 0 to logic 1 ⁽¹⁾			1		μs						
	Transition time—logic 1 to logic 0 ⁽¹⁾			1		μs						

(1) Transition time is defined as the time from when the logic signal is applied to the time when the supply current has reached half its final value.

LOGIC	LOGIC TABLE							
BIAS-1	BIAS-2	BIAS-2 FUNCTION DESCRIPTION						
0	0	Full bias mode	Amplifiers ON with lowest distortion possible (default state)					
1	0	Mid bias mode	Amplifiers ON with power savings with a reduction in distortion performance					
0	1	Low bias mode	Amplifiers ON with enhanced power savings and a reduction of distortion performance					
1	1	Shutdown mode	Amplifiers OFF and output has high impedance					

NOTE: The default state for all logic pins is a logic zero (0).

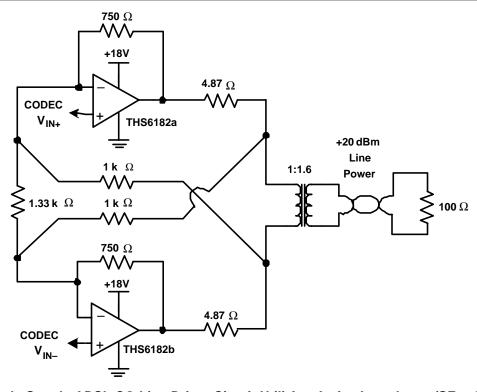
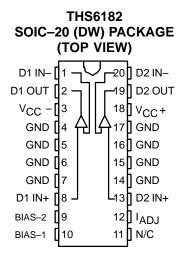
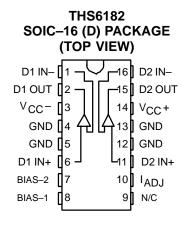
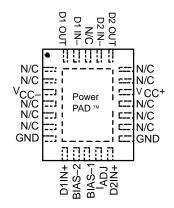
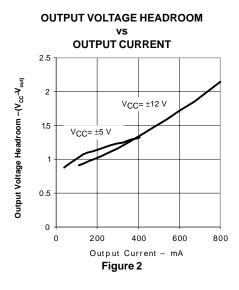




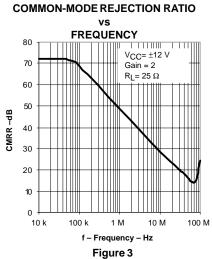
Figure 1. Single-Supply ADSL CO Line Driver Circuit Utilizing Active Impedance (SF = 4)

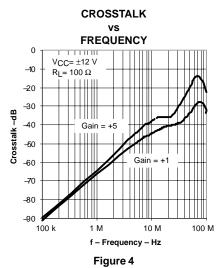


PIN ASSIGNMENTS

THS6182 Leadless 24-pin PowerPAD™ 4 mm X 5 mm (RHF) PACKAGE (TOP VIEW)


TYPICAL CHARACTERISTICS


Table of Graphs


		FIGURE
Output voltage headroom	vs Output current	2
Common-mode rejection ratio	vs Frequency	3
Crosstalk	vs Frequency	4
Total quiescent current		5
Large signal output amplitude	vs Frequency	6-8
Voltage and current noise	vs Frequency	9
Overdrive recovery		10
Power supply rejection ratio	vs Frequency	11
Outputamplitude	vs Frequency	12 – 37
Slew rate	vs Output voltage	38
Closed-loop output impedance	vs Frequency	39
Quiescent current	vs Supply voltage	40
Quiescent current	vs Temperature	41
Common-mode rejection ratio	vs Common-mode voltage	42
Input bias current	vs Temperature	43
Input offset voltage	vs Temperature	44
2nd Harmonic distribution	vs Frequency	45 – 52
3rd Harmonic distribution	vs Frequency	53 – 60
2nd Harmonic distribution	vs Output voltage	61 – 64
3rd Harmonic distribution	vs Output voltage	65 – 68

TYPICAL CHARACTERISTICS

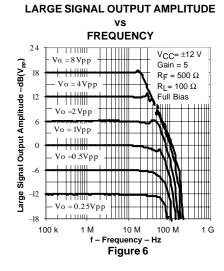
TOTAL QUIESCENT CURRENT

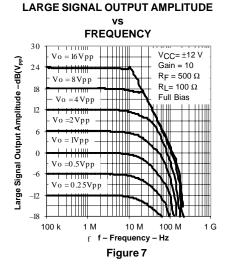
25

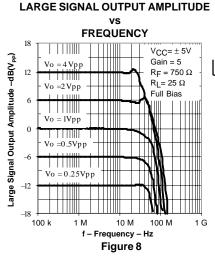
Full Bias Mode

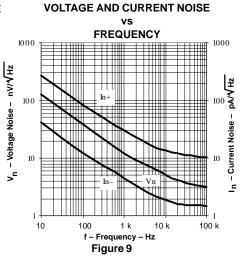
Full Bias Mode

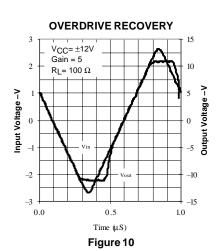
Mid Bias Mode


Low Bias Mode


10


0.01


Rset to GND-kΩ


Figure 5

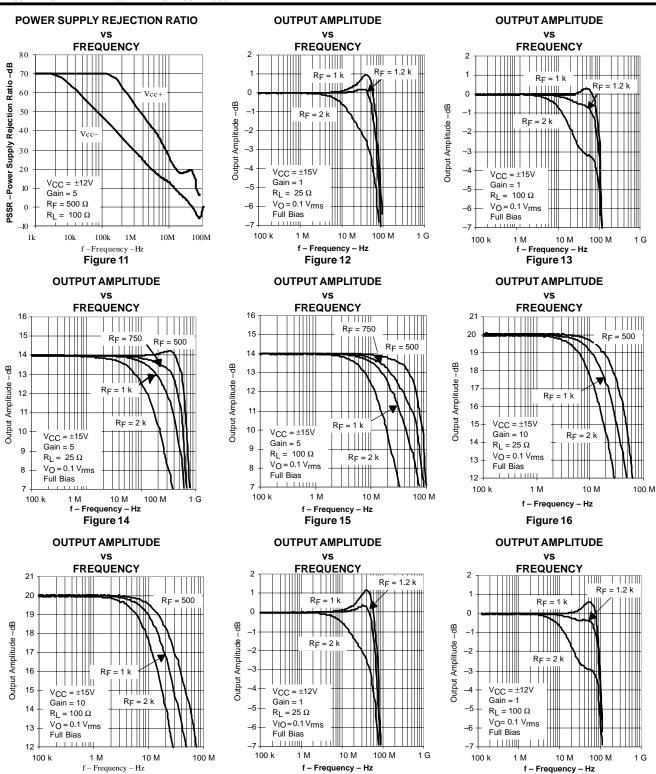
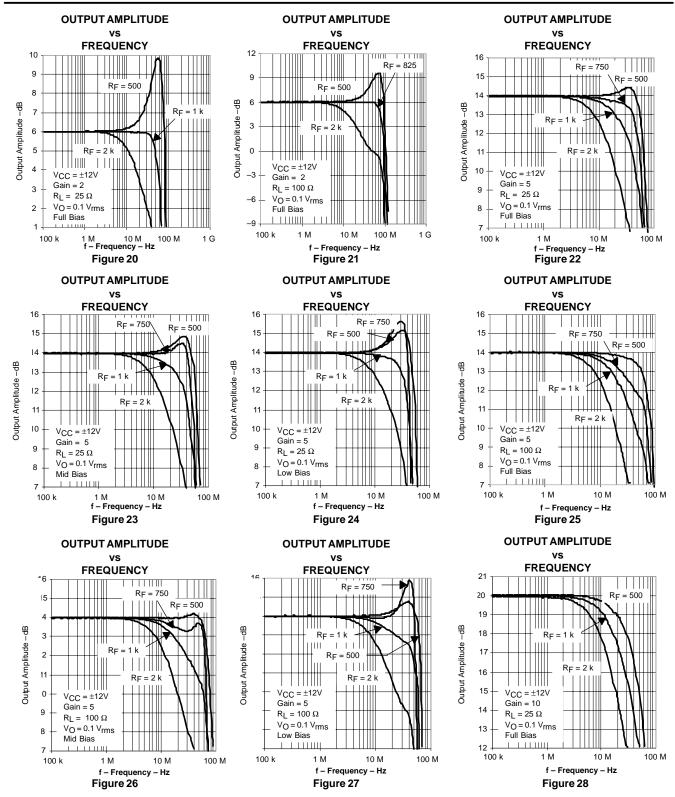



Figure 18

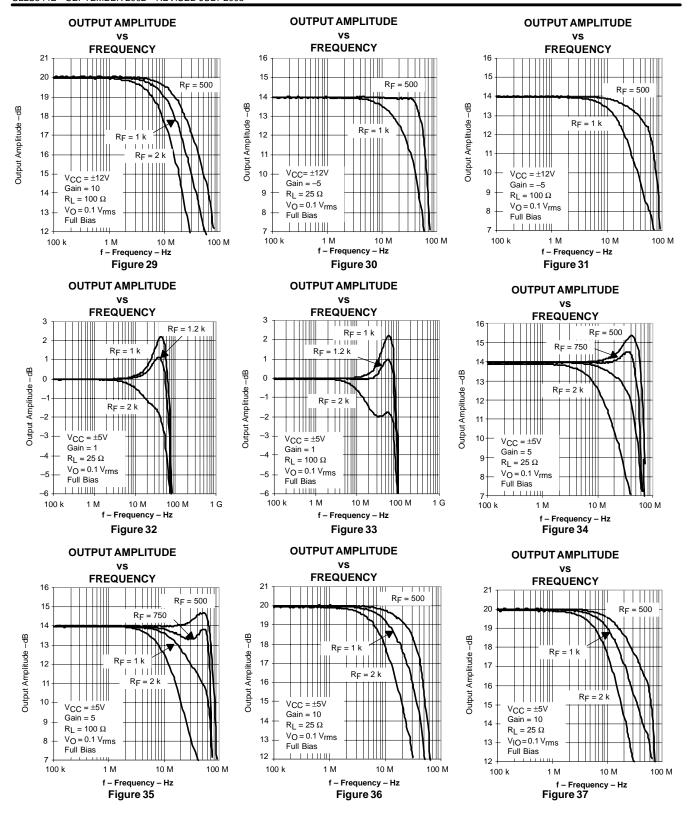
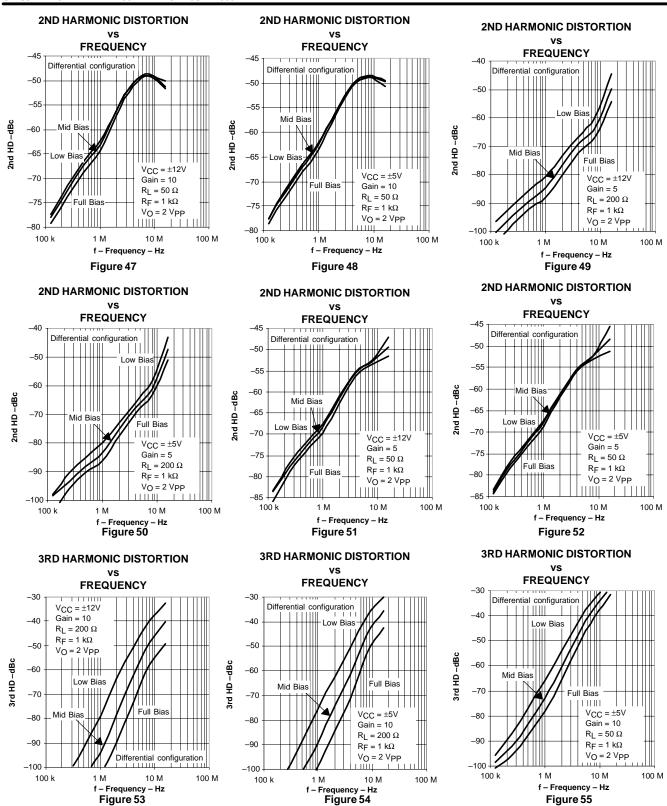
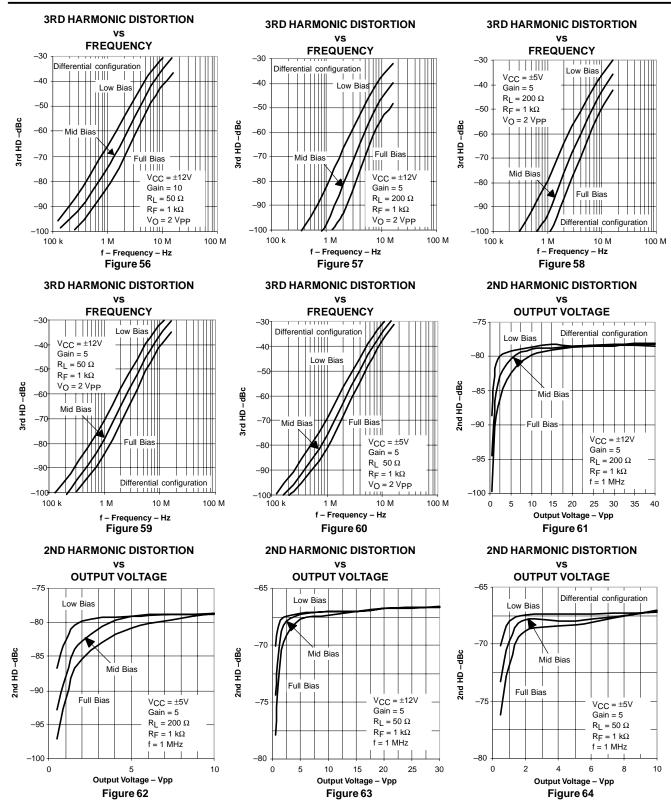
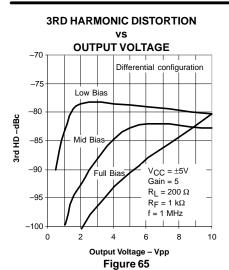

Figure 19

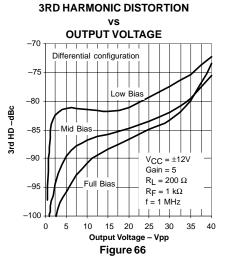
Figure 17

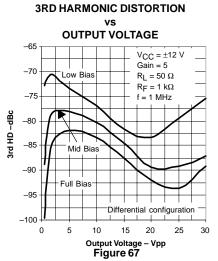


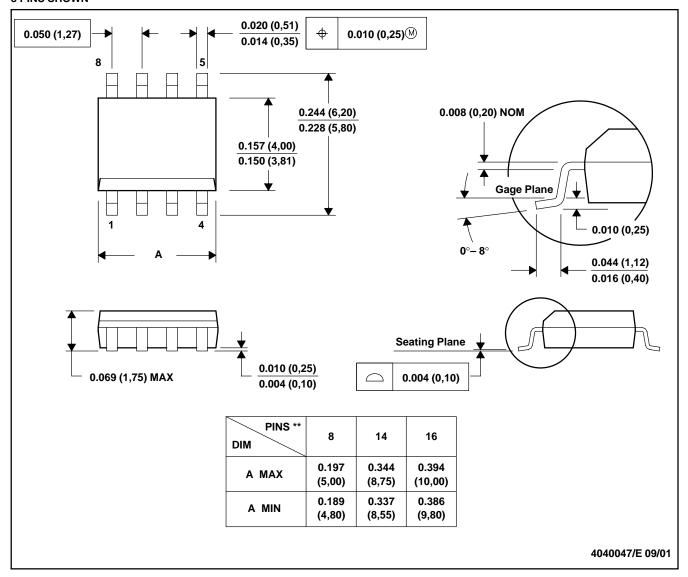












3RD HARMONIC DISTORTION vs **OUTPUT VOLTAGE** -65 -Differential configuration -70 Low Bias Mid Bias -75 3rd HD-dBc -80 -85 $V_{CC} = \pm 5V$ -90 Gain = 5 Full Bias $R_L = 50 \ \Omega$ -95 $R_F = 1 k\Omega$ f = 1 MHz -100 + 0 10 Output Voltage - Vpp Figure 68

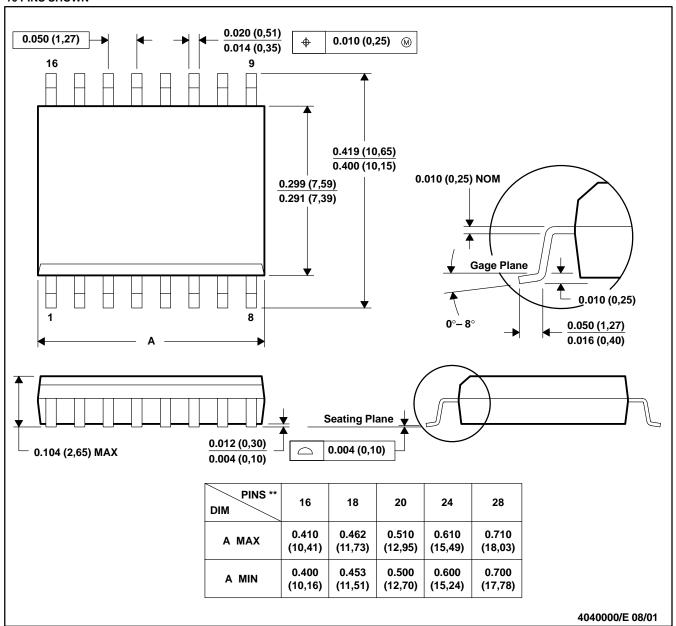
D (R-PDSO-G**)

8 PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.


C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-012

DW (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

16 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-013

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265