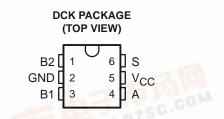
查询SN74LVC1G3157-Q1供应商


捷多邦, 专业PCB打样工厂, 24/SN小组公C1G3157-Q1 SINGLE-POLE, DOUBLE-THROW ANALOG SWITCH

SCES463 - JUNE 2003

- Qualification in Accordance With AEC-Q100[†]
- Qualified for Automotive Applications
- Customer-Specific Configuration Control Can Be Supported Along With Major-Change Approval
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- 1.65-V to 5.5-V V_{CC} Operation
- Useful for Both Analog and Digital Applications
- Specified Break-Before-Make Switching

[†] Contact factory for details. Q100 qualification data available on request.

- Rail-to-Rail Signal Handling
- High Degree of Linearity
- High Speed, Typically 0.5 ns (V_{CC} = 3 V, C_L = 50 pF)
- Low On-State Resistance, Typically ≈6 Ω (V_{CC} = 4.5 V)
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II

description/ordering information

This single-pole, double-throw (SPDT) analog switch is designed for 1.65-V to 5.5-V V_{CC} operation.

The SN74LVC1G3157 can handle both analog and digital signals. The device permits signals with amplitudes of up to V_{CC} (peak) to be transmitted in either direction.

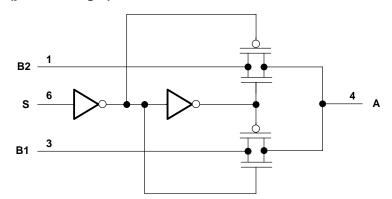
Ap<mark>plications include</mark> signal gating, chopping, modulation or demodulation (modem), and signal multiplexing for analog-to-digital and digital-to-analog conversion systems.

ORDERING INFORMATION

Τ _Α	PACKAGE [‡]		ORDERABLE PART NUMBER	TOP-SIDE MARKING
–40°C to 125°C	SOT (SC-70) – DCK	Tape and reel	1P1G3157QDCKRQ1	C5R

[‡] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

FUNCTION TABLE						
CONTROL INPUT S	ON CHANNEL					
L	B1					
н	B2					



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SCES463 - JUNE 2003

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} (see Note 1)	–0.5 V to 6.5 V
Control input voltage range, V _{IN} (see Notes 1 and 2)	–0.5 V to 6.5 V
Switch I/O voltage range, V _{I/O} (see Notes 1, 2, 3, and 4)	–0.5 V to V _{CC} + 0.5 V
Control input clamp current, I _{IK} (V _{IN} < 0)	–50 mA
I/O port diode current, I_{IOK} ($V_{I/O} < 0$ or $V_{I/O} > V_{CC}$)	±50 mA
On-state switch current, $I_{I/O}$ ($V_{I/O} = 0$ to V_{CC}) (see Note 5)	±128 mA
Continuous current through V _{CC} or GND	±100 mA
Package thermal impedance, θ_{JA} (see Note 6)	258°C/W
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltages are with respect to ground unless otherwise specified.

- 2. The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
- 3. This value is limited to 5.5 V maximum.
- 4. V_I , V_O , V_A , and V_{Bn} are used to denote specific conditions for $V_{I/O}$.
- 5. IJ, IO, IA, and IBn are used to denote specific conditions for IJ/O.
- 6. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 7)

			MIN	MAX	UNIT	
V _{CC}		1.65	5.5	V		
V _{I/O}			0	VCC	V	
VIN			0	5.5	V	
V	High-level input voltage, control input	V _{CC} = 1.65 V to 1.95 V	$V_{CC} \times 0.75$		V	
VIH	nigh-level liiput voltage, control niput	V_{CC} = 2.3 V to 5.5 V	$V_{CC} \times 0.7$		v	
	Low-level input voltage, control input	V _{CC} = 1.65 V to 1.95 V		$V_{CC} \times 0.25$	V	
VIL	Low-level input voltage, control input	V_{CC} = 2.3 V to 5.5 V		$V_{CC} \times 0.3$	v	
		V _{CC} = 1.65 V to 1.95 V		20		
A4/A.	long the transition rise (fall time	V_{CC} = 2.3 V to 2.7 V		20	ns/V	
Δt/Δv	Input transition rise/fall time	V _{CC} = 3 V to 3.6 V		10	ns/v	
		V _{CC} = 4.5 V to 5.5 V		10		
Т _А			-40	125	°C	

NOTE 7: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCES463 - JUNE 2003

	PARAMETER		TEST CONDITIONS			Vcc	MIN	түр†	MAX	UNIT	
				V _I = 0 V	IO= 4 mA	1.65 V		11	20		
				V _I = 1.65 V	I _O = -4 mA	1.05 V		15	50		
				V _I = 0 V	IO = 8 mA	0.0.1/		8	12		
			_	V _I = 2.3 V	I _O = –8 mA	2.3 V		11	30		
ron	On-state switch resistant	ce‡	See Figures 1 and 2	V _I = 0 V	I _O = 24 mA	3 V		7	9.5	Ω	
			riguros runa z	V _I = 3 V	I _O = -24 mA	3 V		9	20		
				$V_{I} = 0 V$	l _O = 30 mA			6	7.5		
				V _I = 2.4 V	I _O = -30 mA	4.5 V		7	12		
				V _I = 4.5 V	I _O = -30 mA			7	15		
					I _A = –4 mA	1.65 V			140		
-	On-state switch resistance	ce	$0 \le V_{Bn} \le V_{CC}$		I _A = –8 mA	2.3 V			45	0	
rrange	over signal range‡§		(see Figures 1 a	nd 2)	I _A = -24 mA	3 V			18	Ω	
					I _A = -30 mA	4.5 V			10		
∆r _{on}				V _{Bn} = 1.15 V	$I_A = -4 \text{ mA}$	1.65 V		0.5			
	Difference of on-state resistance between switches‡¶#		See Figure 1	V _{Bn} = 1.6V	I _A = -8 mA	2.3 V		0.1		Ω	
				V _{Bn} = 2.1 V	I _A = -24 mA	3 V		0.1			
				V _{Bn} = 3.15 V	I _A = -30 mA	4.5 V		0.1			
					$I_A = -4 \text{ mA}$	1.65 V		110			
•	ON resistance flatness [‡] ¶	ON registeres flata and †¶ll				2.3 V		26		Ω	
ron(flat)	ON resistance flatness+		$0 \le V_{Bn} \le V_{CC}$		I _A = -24 mA	3 V		9			
			IA		I _A = -30 mA	4.5 V		4		1	
• *	Off state switch lookage	ourropt	$0 \le V_{I}, V_{O} \le V_{CO}$			1.65 V			±1		
l _{off} ☆	Off-state switch leakage	current	$0 \ge 0$, $0 \ge 0$ CC	;, (see Figure 3)		to 5.5 V		±0.05	±1†	μA	
	On-state switch leakage	curront	V _I = V _{CC} or GND, V _O = Open (see Figure 4)			5.5 V			±1		
IS(on)	On-state switch leakage	current				5.5 V	±0.1†		μA		
	Control input current		$0 \le V_{IN} \le V_{CC}$			0 V to			±1	μA	
IN	Control input current		$0 \leq V \ln \leq V CC$			5.5 V		±0.05	±1†	μΑ	
ICC	Supply current		V _{IN} = V _{CC} or GND			5.5 V		1	10	μΑ	
∆lCC	Supply-current change		$V_{IN} = V_{CC} - 0.6 V$			5.5 V			500	μΑ	
C _{in}	Control input capacitance	s				5 V		2.7		pF	
C _{io(off)}	Switch input/output capacitance	Bn				5 V		5.2		pF	
	Switch input/output	Bn				5 V —		17.3		- 5	
C _{io(on)}	capacitance	А	1					17.3		pF	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

† T_A = 25°C

‡ Measured by the voltage drop between I/O pins at the indicated current through the switch. ON resistance is determined by the lower of the voltages on the two (A or B) ports.

§ Specified by design

 $\int \Delta r_{on} = r_{on}(max) - r_{on}(min)$ measured at identical V_{CC}, temperature, and voltage levels. # This parameter is characterized, but not tested in production.

|| Flatness is defined as the difference between the maximum and minimum values of ON resistance over the specified range of conditions.

 $*I_{\text{Off}}$ is the same as $I_{\text{S(off)}}$ (off-state switch leakage current).

SCES463 - JUNE 2003

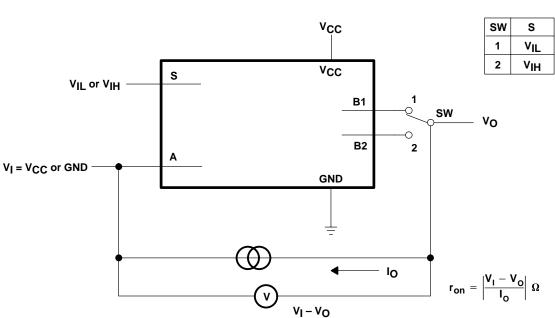
analog switch characteristics, T_A = 25°C

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	vcc	ТҮР	UNIT
				1.65 V	300	
Frequency response	A or Bn	Bn or A	$R_{L} = 50 \Omega,$	2.3 V	300	
(switch on) [†]	A OLDI	BITOLA	f _{in} = sine wave (see Figure 6)	3 V	300	MHz
			(111 31 1)	4.5 V	300	
				1.65 V	-54	
Crosstalk	D1 or D2	B2 or B1	$R_{L} = 50 \Omega,$	2.3 V	-54	dB
(between switches)‡	B1 or B2		f _{in} = 10 MHz (sine wave) (see Figure 7)	3 V	-54	
			(0001.90.01)	4.5 V	-54	
		Bn or A		1.65 V	-57	dB
Feed-through attenuation	A or Bn		$C_L = 5 \text{ pF}, R_L = 50 \Omega,$ $f_{in} = 10 \text{ MHz} \text{ (sine wave)}$ (see Figure 8)	2.3 V	-57	
(switch off) [‡]				3 V	-57	
			()	4.5 V	-57	
	0	٨	$C_{L} = 0.1 \text{ nF}, R_{L} = 1 \text{ M}\Omega,$	3.3 V	3	-0
Charge injection§	S	A	(see Figure 9)	5 V	7	рС
		5 4	V _I = 0.5 V p-p, R _L = 600 Ω,	1.65 V	0.1	%
Total harmonia diatortian			$f_{in} = 600 \text{ Hz to } 20 \text{ kHz}$	2.3 V	0.025	
Total harmonic distortion	A or Bn	Bn or A	(sine wave)	3 V	0.015	
			(see Figure 10)	4.5 V	0.01	

[†] Adjust fin voltage to obtain 0 dBm at output. Increase fin frequency until dB meter reads –3 dB.

[‡] Adjust fin voltage to obtain 0 dBm at input.

§ Specified by design


switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figures 5 and 11)

PARAMETER	FROM	FROM TO (INPUT) (OUTPUT)		V _{CC} = 1.8 V ± 0.15 V		V _{CC} = 2.5 V ± 0.2 V		V _{CC} = 3.3 V ± 0.3 V		V _{CC} = 5 V ± 0.5 V	
		(001-01)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{pd} †	A or Bn	Bn or A		2		1.2		0.8		0.3	ns
t _{en} ‡	s	Bn	7	24	3.5	14	2.5	7.6	1.7	5.7	
t _{dis} §	3	Ы	3	13	2	7.5	1.5	5.3	0.8	3.8	ns
t _{B-M} ¶			0.5		0.5		0.5		0.5		ns

type: to the solution of the solution of

SCES463 - JUNE 2003

PARAMETER MEASUREMENT INFORMATION

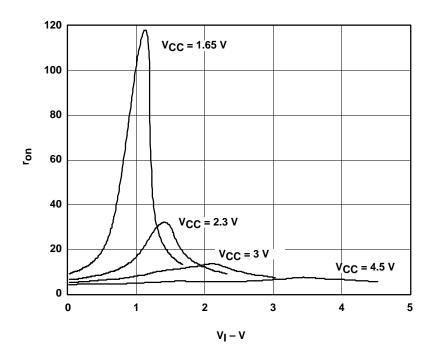
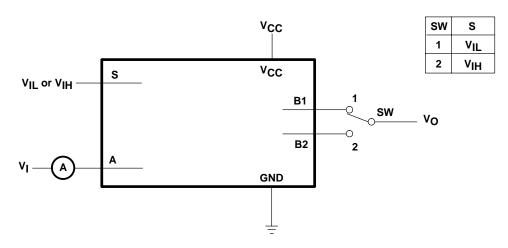



Figure 2. Typical r_{on} as a Function of Input Voltage (V_I) for V_I = 0 to V_{CC}

SCES463 - JUNE 2003

PARAMETER MEASUREMENT INFORMATION

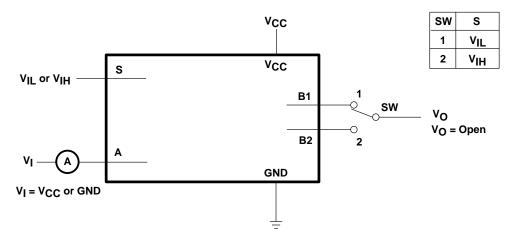
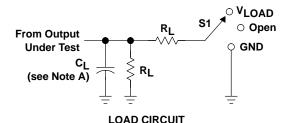
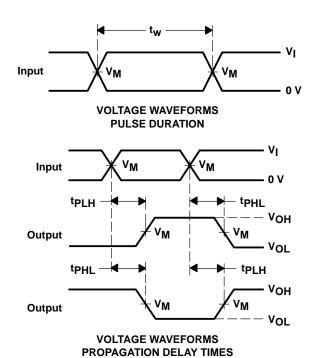



Figure 4. On-State Switch Leakage-Current Test Circuit

SCES463 - JUNE 2003


٧ı

PARAMETER MEASUREMENT INFORMATION

TEST	S1
^t PLH ^{/t} PHL ^t PLZ ^{/t} PZL	Open V _{LOAD}
^t PHZ ^{/t} PZH	GND

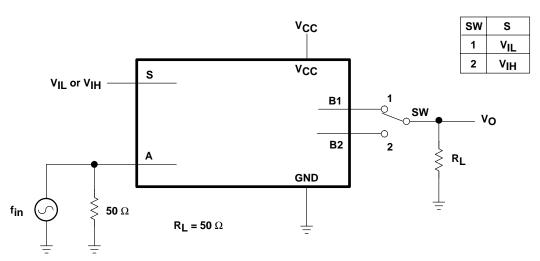
, v	INPUTS		N	V	0		N
Vcc	v _l	t _r /t _f	VM	VLOAD	сL	RL	v_Δ
$\textbf{1.8 V} \pm \textbf{0.15 V}$	v _{cc}	≤2 ns	V _{CC} /2	$2 \times V_{CC}$	50 pF	500 Ω	0.3 V
$\textbf{2.5 V} \pm \textbf{0.2 V}$	Vcc	≤2 ns	V _{CC} /2	2 × V _{CC}	50 pF	500 Ω	0.3 V
3.3 V \pm 0.3 V	Vcc	≤2.5 ns	V _{CC} /2	2 × V _{CC}	50 pF	500 Ω	0.3 V
5 V \pm 0.5 V	Vcc	≤2.5 ns	V _{CC} /2	$2 \times V_{CC}$	50 pF	500 Ω	0.3 V

Timing Input ٧_M 0 V t_{su} th ٧I vм Data Input ۷м 0 V **VOLTAGE WAVEFORMS** SETUP AND HOLD TIMES ٧ı Output ۷м ٧M Control 0 V - tPLZ ^tPZL Output VLOAD/2 Waveform 1 S1 at VLOAD ٧м VoL + VA (see Note B) VOL ^tPZH ^tPHZ Output ۷он Waveform 2 $V_{OH} - V_{\Delta}$ ٧M S1 at GND ≈0 V (see Note B) **VOLTAGE WAVEFORMS**

ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING

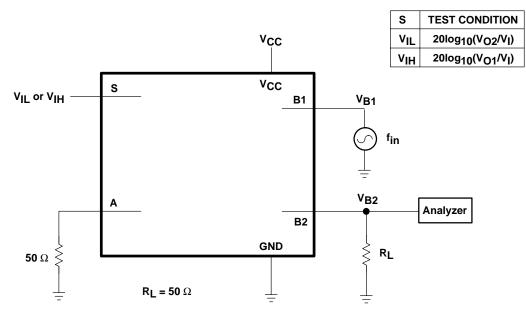
NOTES: A. CL includes probe and jig capacitance.

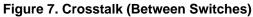
- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω .
- D. The outputs are measured one at a time with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .


INVERTING AND NONINVERTING OUTPUTS

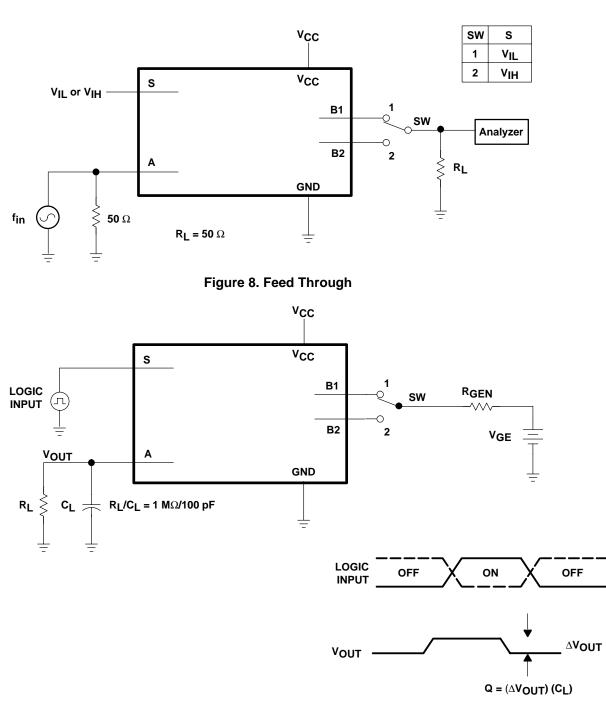
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

Figure 5. Load Circuit and Voltage Waveforms

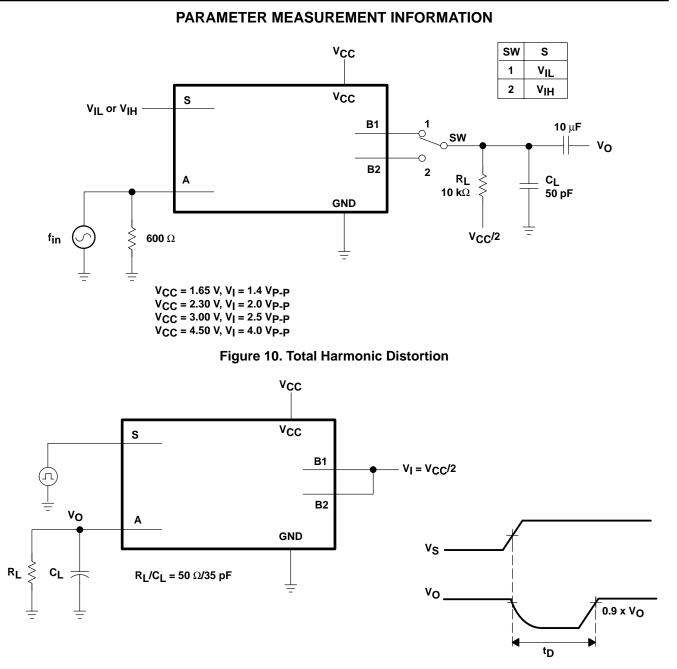



SCES463 - JUNE 2003

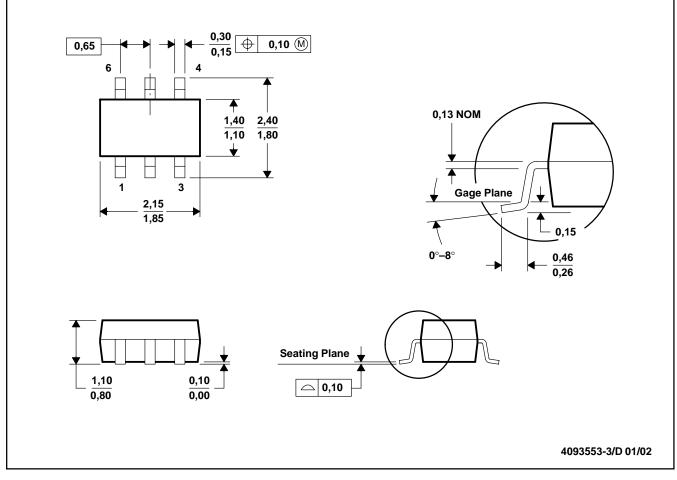
PARAMETER MEASUREMENT INFORMATION



SCES463 - JUNE 2003



SCES463 - JUNE 2003



MECHANICAL DATA

MPDS114 - FEBRUARY 2002

DCK (R-PDSO-G6)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion.
- D. Falls within JEDEC MO-203

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address:

Post Office Box 655303 Dallas, Texas 75265

Texas Instruments

Copyright © 2003, Texas Instruments Incorporated