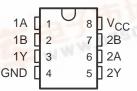
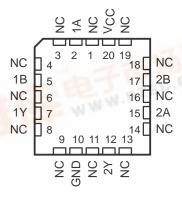
SLRS022A - DECEMBER 1976 - REVISED OCTOBER 1995


PERIPHERAL DRIVERS FOR HIGH-VOLTAGE, HIGH-CURRENT DRIVER APPLICATIONS

- Characterized for Use to 300 mA
- High-Voltage Outputs
- No Output Latch-Up at 30 V (After Conducting 300 mA)
- Medium-Speed Switching
- Circuit Flexibility for Varied Applications and Choice of Logic Function
- TTL-Compatible Diode-Clamped Inputs
- Standard Supply Voltages
- Plastic DIP (P) With Copper Lead Frame for Cooler Operation and Improved Reliability
- Package Options Include Plastic Small Outline Packages, Ceramic Chip Carriers, and Standard Plastic and Ceramic 300-mil DIPs


SUMMARY OF SERIES 55461/75461

I	DEVICE	LOGIC	PACKAGES
l	SN55461	AND	FK, JG
ı	SN55462	NAND	FK, JG
l	SN55463	OR	FK, JG
I	SN75461	AND	D, P
I	SN75462	NAND	D, P
I	SN75463	OR	D, P

SN55461, SN55462, SN55463 . . . JG PACKAGE SN75461, SN75462, SN75463 . . . D OR P PACKAGE (TOP VIEW)

SN55461, SN55462, SN55463 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

description

These dual peripheral drivers are functionally interchangeable with SN55451B through SN55453B and SN75451B through SN75453B peripheral drivers, but are designed for use in systems that require higher breakdown voltages than those devices can provide at the expense of slightly slower switching speeds. Typical applications include logic buffers, power drivers, relay drivers, lamp drivers, MOS drivers, line drivers, and memory drivers.

The SN55461/SN75461, SN55462/SN75462, and SN55463/SN75463 are dual peripheral AND, NAND, and OR drivers respectively (assuming positive logic), with the output of the gates internally connected to the bases of the npn output transistors.

Series SN55461 drivers are characterized for operation over the full military temperature range of -55°C to 125°C. Series SN75461 drivers are characterized for operation from 0°C to 70°C.

SN55461 THRU SN55463 SN75461 THRU SN75463 DUAL PERIPHERAL DRIVERS

SLRS022A – DECEMBER 1976 – REVISED OCTOBER 1995

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

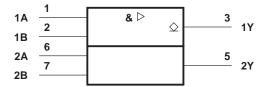
		SN55'	SN75'	UNIT	
Supply voltage, V _{CC} (see Note 1)		7	7	V	
Input voltage, V _I		5.5	5.5	V	
Intermitter voltage (see Note 2)	5.5	5.5	V		
Off-state output voltage, VO	35	35	V		
Continuous collector or output current (see Note 3)	400	400	mA		
Peak collector or output current ($t_W \le 10$ ms, duty cycle $\le 50\%$, see Not	e 4)	500	500	mA	
Continuous total power dissipation		See Diss	See Dissipation Rating Table		
Operating free-air temperature range, T _A		-55 to 125	0 to 70	°C	
Storage temperature range, T _{stg}		-65 to 150	-65 to 150	°C	
Case temperature for 60 seconds, T _C	FK package	FK package 260		°C	
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds	JG package	300		°C	
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	D or P package		260	°C	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. Voltage values are with respect to network GND unless otherwise specified.

- 2. This is the voltage between two emitters A and B.
- 3. This value applies when the base-emitter resistance (RBE) is equal to or less than 500 Ω .
- 4. Both halves of these dual circuits may conduct rated current simultaneously; however, power dissipation averaged over a short time interval must fall within the continuous dissipation rating.

DISSIPATION RATING TABLE

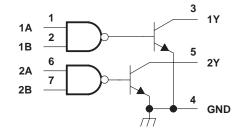

PACKAGE	T _A ≤ 25°C POWER RATING	* *		T _A = 125°C POWER RATING
D	725 mW	5.8 mW/°C	464 mW	-
FK	1375 mW	11.0 mW/°C	880 mW	275 mW
JG	1050 mW	8.4 mW/°C	672 mW	210 mW
Р	1000 mW	8.0 mW/°C	640 mW	_

recommended operating conditions

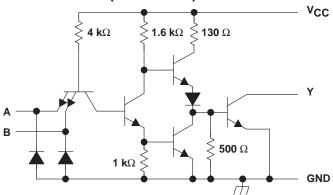
	SN55'			SN75'			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level input voltage, V _{IH}	2			2			V
Low-level input voltage, V _{IL}			0.8			0.8	V
Operating free-air temperature, TA	-55		125	0		70	°C

logic symbol†

† This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.


Pin numbers shown are for D, JG, and P packages.

FUNCTION TABLE (each driver)


Α	В	Y
L	L	L (on state)
L	Н	L (on state)
Н	L	L (on state)
н	Н	H (off state)

positive logic: $\underline{\underline{}}$ Y = AB or \overline{A} + \overline{B}

logic diagram (positive logic)

schematic (each driver)

Resistor values shown are nominal.

electrical characteristics over recommended operating free-air temperature range

	DADAMETED		TEST CONDITIONS†		SN55461		SN75461			UNIT
	PARAMETER	I LEST CON			TYP [‡]	MAX	MIN	MIN TYP‡ I		UNII
VIK	Input clamp voltage	$V_{CC} = MIN,$	$I_{I} = -12 \text{ mA}$		-1.2	-1.5		-1.2	-1.5	V
ЮН	High-level output current	V _{CC} = MIN, V _{OH} = 35 V	V _{IH} = MIN,			300			100	μΑ
\/a.	Low-level output voltage	V _{CC} = MIN, I _{OL} = 100 mA			0.25	0.5		0.25	0.4	V
VOL		V _{CC} = MIN, I _{OL} = 300 mA			0.5	0.8		0.5	0.7	V
Ц	Input current at maximum input voltage	$V_{CC} = MAX$,	V _I = 5.5 V			1			1	mA
lн	High-level input current	$V_{CC} = MAX$,	V _I = 2.4 V			40			40	μΑ
I _{IL}	Low-level input current	$V_{CC} = MAX$,	V _I = 0.4 V		-1	-1.6		-1	-1.6	mA
ІССН	Supply current, outputs high	$V_{CC} = MAX$,	V _I = 5 V		8	11		8	11	mA
ICCL	Supply current, outputs low	$V_{CC} = MAX$,	V _I = 0		56	76		56	76	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

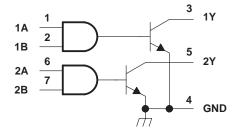
switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

	PARAMETER			TEST CONDITIONS			MAX	UNIT
^t PLH	Propagation delay time, low-to-high-level o	utput				30	55	
tPHL	Propagation delay time, high-to-low-level o	utput	I _O ≈ 200 mA,	CL = 15 pF,		25	40	
tTLH			$R_L = 50 \Omega$,	See Figure 1		8	20	ns
tTHL	Transition time, high-to-low-level output		1			10	20	
	High level cutrust voltage often cuttabing	SN55461	Vs = 30 V,	I _O ≈ 300 mA,	V _S -10			mV
VOH	High-level output voltage after switching	SN75461	See Figure 2		V _S −10			1117

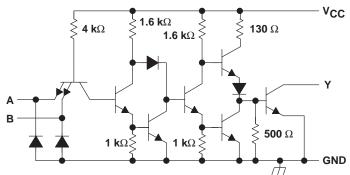
 $[\]ddagger$ All typical values are at V_{CC} = 5 V, T_A = 25°C.

logic symbol†

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.


Pin numbers shown are for D, JG, and P packages.

FUNCTION TABLE (each driver)


Α	В	Υ
L	L	H (off state)
L	Н	H (off state)
Н	L	H (off state)
Н	Н	L (on state)

positive logic: $Y = \overline{AB} \text{ or } \overline{A} + \overline{B}$

logic diagram (positive logic)

schematic (each driver)

Resistor values shown are nominal.

electrical characteristics over recommended operating free-air temperature range

	DADAMETED		.p.z.eet		SN55462		SN75462			UNIT
	PARAMETER	TEST CON	TEST CONDITIONS†		TYP [‡]	MAX	MIN	TYP [‡]	MAX	UNII
٧IK	Input clamp voltage	$V_{CC} = MIN,$	$I_I = -12 \text{ mA}$		-1.2	-1.5		-1.2	-1.5	V
ЮН	High-level output current	V _{CC} = MIN, V _{OH} = 35 V	V _{IL} = 0.8 V,			300			100	μΑ
Vai	Low-level output voltage	V _{CC} = MIN, I _{OL} = 100 mA			0.25	0.5		0.25	0.4	V
VOL		V _{CC} = MIN, I _{OL} = 300 mA	V _{IH} = MIN,		0.5	0.8		0.5	0.7	V
I _I	Input current at maximum input voltage	$V_{CC} = MAX,$	V _I = 5.5 V			1			1	mA
lн	High-level input current	$V_{CC} = MAX,$	V _I = 2.4 V			40			40	μΑ
I _I L	Low-level input current	$V_{CC} = MAX$,	V _I = 0.4 V		-1.1	-1.6		-1.1	-1.6	mA
ICCH	Supply current, outputs high	$V_{CC} = MAX$,	V _I = 0		13	17		13	17	mA
ICCL	Supply current, outputs low	$V_{CC} = MAX$,	V _I = 5 V		61	76		61	76	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

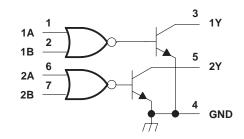
	PARAMETER			TEST CONDITIONS			MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level or	utput				45	65	
tPHL	TLH Transition time, low-to-high-level output		$I_O \approx 200 \text{ mA},$ $R_L = 50 \Omega,$	C _L = 15 pF, See Figure 1		30	50	20
tTLH						13	25	ns
tTHL]			10	20	
Va	High-level output voltage after switching	SN55462	$V_S = 30 V$,	I _O ≈ 300 mA,		V _S -10		mV
VOH	nigh-level output voltage after switching	SN75462	See Figure 2		V _S −10			IIIV

[‡] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

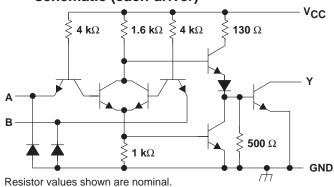
logic symbol†

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Pin numbers shown are for D, JG, and P packages.


FUNCTION TABLE (each driver)

Α	В	Υ
L	L	L (on state)
L	Н	H (off state)
н	L	H (off state)
Н	Н	H (off state)


positive logic:

 $Y = A + B \text{ or } \overline{A} \overline{B}$

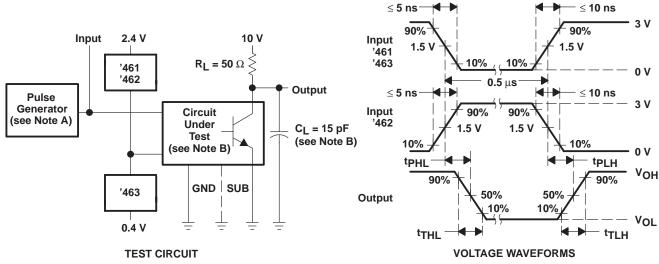
logic diagram (positive logic)

schematic (each driver)

electrical characteristics over recommended operating free-air temperature range

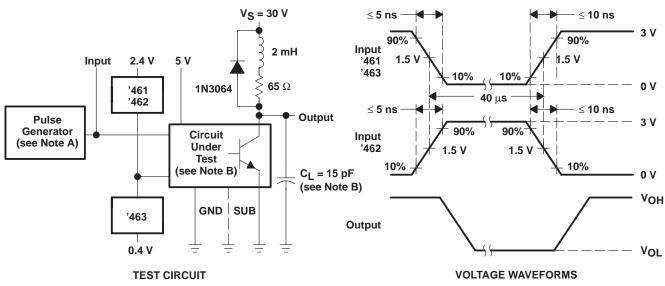
	DADAMETED		TEST SOMBITIONS		SN55463		SN75463			UNIT
	PARAMETER	TEST CONDITIONS†		MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNII
VIK	Input clamp voltage	$V_{CC} = MIN, I_I = -$	–12 mA		-1.2	-1.5		-1.2	-1.5	V
ЮН	High-level output current	V _{CC} = MIN, V _{IH} V _{OH} = 35 V	= MIN,			300			100	μΑ
\/a.	Low-level output voltage	$V_{CC} = MIN, V_{IL} = 100 \text{ mA}$	= 0.8 V,		0.25	0.5		0.25	0.4	V
VOL		V _{CC} = MIN, V _{IL} : I _{OL} = 300 mA	= 0.8 V,		0.5	0.8		0.5	0.7	V
lį	Input current at maximum input voltage	$V_{CC} = MAX, V_I =$	5.5 V			1			1	mA
Ι _{ΙΗ}	High-level input current	$V_{CC} = MAX, V_I =$	2.4 V			40			40	μΑ
I _{IL}	Low-level input current	$V_{CC} = MAX, V_I =$	0.4 V		-1	-1.6		-1	-1.6	mA
ICCH	Supply current, outputs high	$V_{CC} = MAX, V_I =$	5 V		8	11		8	11	mA
ICCL	Supply current, outputs low	$V_{CC} = MAX, V_I =$	0		58	76		58	76	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.


switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

PARAMETER			TEST CONDITIONS		MIN	TYP	MAX	UNIT
tPLH	Propagation delay time, low-to-high-level o	utput		C _L = 15 pF,		30	55	
tPHL	Propagation delay time, high-to-low-level o	utput	I _O ≈ 200 mA,			25	40	
tTLH	Transition time, low-to-high-level output		$R_L = 50 \Omega$,	See Figure 1		8	25	ns
tTHL	Transition time, high-to-low-level output				10	25		
VOH	High-level output voltage after switching	SN55463	V _S = 30 V, See Figure 2	$I_O \approx 300 \text{ mA},$	V _S −10			mV
		SN75463			V _S −10			IIIV

[‡] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.


PARAMETER MEASUREMENT INFORMATION

NOTES: A. The pulse generator has the following characteristics: PRR \leq 1 MHz, $Z_O\approx$ 50 Ω

B. C_L includes probe and jig capacitance.

Figure 1. Test Circuit and Voltage Waveforms for Switching Times

NOTES: A. The pulse generator has the following characteristics: PRR \leq 12.5 kHz, Z_O = 50 Ω .

B. C_I includes probe and jig capacitance.

Figure 2. Test Circuit and Voltage Waveforms for Latch-Up Test

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated