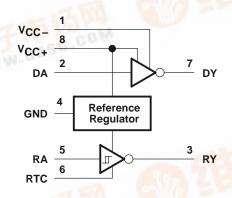
P OR PS PACKAGE

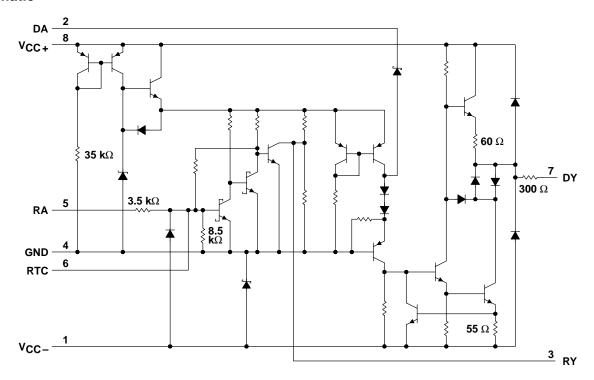
SLLS531 - MARCH 2002


- Meets or Exceeds the Requirements of ANSI TIA/EIA-232-C
- Wide Range of Supply Voltage
 V_{CC} = ±4.5 V to ±15 V
- Low Power . . . 117 mW ($V_{CC} = \pm 9 \text{ V}$)
- Receiver Output TTL Compatible
- Response Control Provides:
 - Input Threshold Shifting
 - Input Noise Filtering

description

The SN751701 line driver and receiver is designed to satisfy the requirements of the standard interface between data terminal equipment and data communication equipment as defined by ANSI TIA/EIA-232-E. The driver used is similar to the SN75188. The receiver used is similar to the SN75189A. The device operates over a wide range of supply voltages ($V_{CC} = \pm 4.5 \text{ V}$ to $\pm 15 \text{ V}$) from the included reference regulator.

logic diagram



W.OZSC.COM

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

schematic

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC+} (see Note 1) Supply voltage range, V _{CC-} (see Note 1) Input voltage range, V _I : Driver Receiver Output voltage range, V _O : Driver Receiver Output current, I _O (D) Driver	
Response control current range, I _{RES}	
Package thermal impedance, θ_{JA} (see Note 2): P package	
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values are with respect to the network ground terminal.
 - 2. The package thermal impedance is calculated in accordance with JESD 51-7.

SN751701 LINE DRIVER AND RECEIVER

SLLS531 - MARCH 2002

recommended operating conditions

			MIN	MAX	UNIT
V _{CC+}	V _{CC+} Supply voltage		4.5	15	V
VCC-	Supply voltage		-4.5	-15	V
VI _(D)	VI _(D) Input voltage, driver			15	V
V _{I(R)}	V _{I(R)} Input voltage, receiver		-25	25	V
IRESP	I _{RESP} Response control current		-5.5	5.5	mA
I _{O(R)}	O(R) Output current, receiver			24	mA
TA	Operating free-air temperature	P package	-20	85	٥̈
'A		PS package	-20	70	C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

total device

	PARAMETER	TI	EST CONDITIONS	MIN TYP†	MAX	UNIT
		V _{CC} = ±5 V	V _{I(D)} = 2 V,	6.3	8.1	
ICCH+	High-level supply current		9.1	11.9	mA	
			Output open	10.4	14	
		$V_{CC} = \pm 5 \text{ V}$	$V_{I(D)} = 0.8 \text{ V},$	2.5	3.4	
$V_{CC} = \pm 9 V$ $V_{CC} = 0$		3.7	5.1	mA		
		V _{CC} = ±12 V	Output open	4.1	5.6	
	High-level supply current	V _{CC} = ±5 V	V _I (D) = 2 V, V _I (R) = VT+(max), Output open	-2.4	-3.1	mA
ICCH-		VCC = ±9 V		-3.9	-4.9	
		V _{CC} = ±12 V		-4.8	-6.1	
		V _{CC} = ±5 V	$V_{I(D)} = 0.8 \text{ V},$	-0.2	-0.35	
ICCL-	Low-level supply current	V _{CC} = ±9 V	$V_{I(R)} = V_{T-(min)}$	-0.25	-0.4	mA
		V _{CC} = ±12 V	Output open	-0.27	-0.45	
ICC+	Decilion and a second	V _{CC} = ±5 V	$V_{I(R)} = V_{T+(max)}, V_{I(D)} = 0 V,$ $V_{CC-} = 0 V,$	4.8	6.4	mA
	Positive supply current	V _{CC} = ±12 V	Output open	6.7	9.1	IIIA

[†] All typical values are at $T_A = 25$ °C.

SN751701 LINE DRIVER AND RECEIVER

SLLS531 - MARCH 2002

electrical characteristics over recommended operating free-air temperature range, V_{CC+} = 12 V, V_{CC-} = -12 V (unless otherwise noted)

driver section

	PARAMETER TEST CONDITIONS		MIN	TYP†	MAX	UNIT	
VIH	High-level input voltage						V
V _{IL}	Low-level input voltage					0.8	V
			$V_{CC} = \pm 5 \text{ V}$	3.2	3.7		
Vон	High-level output voltage	$V_{I(D)} = 0.8 \text{ V}, R_L = 3 \text{ k}\Omega$	$V_{CC} = \pm 9 V$	6.5	7.2		V
			$V_{CC} = \pm 12 \text{ V}$	8.9	9.8		
			$V_{CC} = \pm 5 \text{ V}$		-3.6	-3.2	
VOL	Low-level output voltage	$V_{ID} = 2 V, R_{L} = 3 k\Omega$	$V_{CC} = \pm 9 V$		-7.1	-6.4	V
			$V_{CC} = \pm 12 \text{ V}$		-9.7	-8.8	
ΊΗ	High-level input current	V _{I(D)} = 7 V	V _{I(D)} = 7 V			5	μΑ
I _I L	Low-level input current	$V_{I(D)} = 0 V$	$V_{I(D)} = 0 V$		-0.73	-1.2	mA
IOS(H)	High-level short-circuit output current	$V_{I(D)} = 0.8 \text{ V}, V_{O(D)} = 0 \text{ V}$		-7	-12	-14.5	mA
I _{OS(L)}	Low-level short-circuit output current	$V_{I(D)} = 2 \text{ V}, V_{O(D)} = 0 \text{ V}$		6.5	11.5	14	mA
rO	Output resistance	$V_{CC+} = 0 \text{ V}, V_{O(D)} = -2 \text{ V}$	to 2 V	300			Ω

[†] All typical values are at $T_A = 25$ °C.

switching characteristics, V_{CC+} = 12 V, V_{CC-} = -12 V, T_A = 25°C (unless otherwise noted)

driver section (see Figure 2)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH	Propagation delay time, low- to high-level output	Pr = 2 kO Cr = 50 pE		340	480	20
tPHL	Propagation delay time, high- to low-level output	$R_L = 3 kΩ$, $C_L = 50 pF$		100	150	ns
tTLH	Transition time, low- to high-level output	R_L = 3 kΩ, C_L = 50 pF		120	180	no
tTHL	Transition time, high- to low-level output			105	160	ns
tTLH	Transition time, low- to high-level output	R_L = 3 kΩ to 7 kΩ (see Note 3), C_L = 2500 pF		2.1	3	
tTHL	Transition time, high- to low-level output	C _L = 2500 pF		2.1	3	μs

NOTE 3: The time is measured between 3 V and –3 V on output waveform.

SLLS531 - MARCH 2002

electrical characteristics over recommended operating free-air temperature range, V_{CC+} = 12 V, V_{CC-} = -12 V (unless otherwise noted)

receiver section (see Figure 1) (see Note 4)

	PARAMETER	TEST CONDITIONS		MIN	TYP†	MAX	UNIT	
V _{IT+}	Positive-going input threshhold voltage				1.9	2.3	V	
V _{IT} _	Negative-going input threshhold voltage				0.95	1.2	V	
V _{hys}	Hystresis voltage (V _{IT+} – V _{IT})			0.6			V	
		Voca Van de de Voc	V _{CC+} = 5 V	3.7	4.1	4.5		
\/a#\\	High level output voltage	$V_{I(R)} = V_{T-(min)}, I_{OL} = -10 \mu A$	V _{CC+} = 12 V	4.4	4.7	5.2	V	
VO(H)	High-level output voltage	1 1(13) 1 (11111),	V _{CC+} = 5 V	3.1	3.4	3.8	V	
					V _{CC+} = 12 V	3.6	4	4.5
V _{O(L)}	Low-level output voltage	$V_{I(R)} = V_{T+(max)}$	I _{OL} = 24 mA		0.2	0.3	V	
I	High-level input current	V _{I(R)} = 25 V		3.6	6.7	8.3	mA	
l'IH	High-level input current	$V_{I(R)} = 3 V$		0.43	0.67	1	mA	
1	Low-level input current	V _{I(R)} = -25 V		-3.6	-6.7	-8.3	mA	
'IL		$V_{I(R)} = -3 V$		-0.43	-0.74	-1	mA	
los	Short-circuit output current	$V_{I(R)} = V_{T-(min)}$			-2.8	-3.7	mA	

 $[\]uparrow$ All typical values are at $T_A = 25$ °C.

NOTE 4: Response Control pin is open.

switching characteristics, V_{CC+} = 12 V, V_{CC-} = -12 V, T_A = 25°C (unless otherwise noted)

receiver section (see Figure 2)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
^t PLH	Propagation delay time, low- to high-level output	Pr = 400 kO Cr = 50 pE		150	240	no
tPHL	Propagation delay time, high- to low-level output	$R_L = 400 \text{ k}\Omega$, $C_L = 50 \text{ pF}$		50	100	ns
tTLH	Transition time, low- to high-level output	D. 400 kg G. 50 pF		250	360	no
tTHL	Transition time, high- to low-level output	R_L = 400 kΩ, C_L = 50 pF		18	35	ns

PARAMETER MEASUREMENT INFORMATION

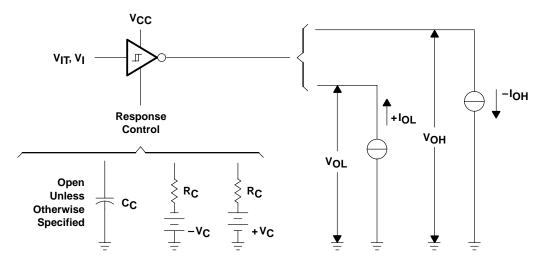
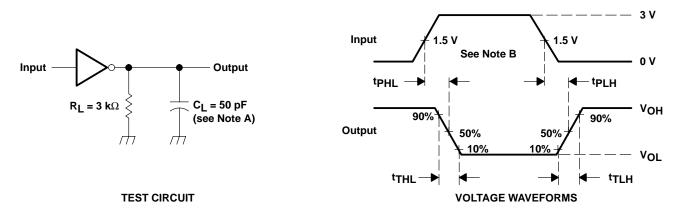



Figure 1. Receiver Section Test Circuit (V_{IT+} , V_{IT-} , V_{OH} , V_{OL})

NOTES: A. C_I includes probe and jig capacitance.

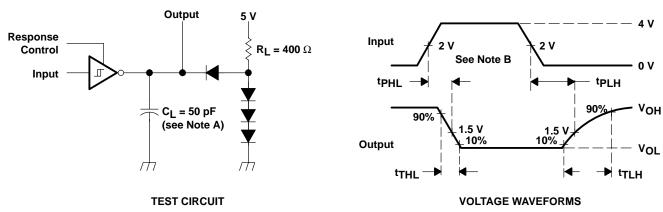

B. The input waveform is supplied by a generator having the following characteristics: $Z_O = 50 \Omega$, $t_W = 500 \text{ ns}$, $t_{TLH} \le 5 \text{ ns}$, $t_{THL} \le 5 \text{ ns}$.

Figure 2. Driver Section Switching Test Circuit and Voltage Waveforms

SLLS531 - MARCH 2002

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

B. The input waveform is supplied by a generator having the following characteristics: $Z_O = 50 \ \Omega$, $t_W = 500 \ ns$, $t_{THL} \le 5 \ ns$, $t_{TLH} \le 5 \ ns$.

Figure 3. Receiver Section Switching Test Circuit and Voltage Waveforms

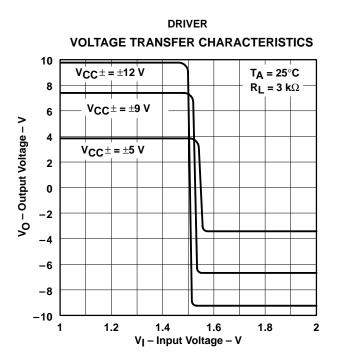
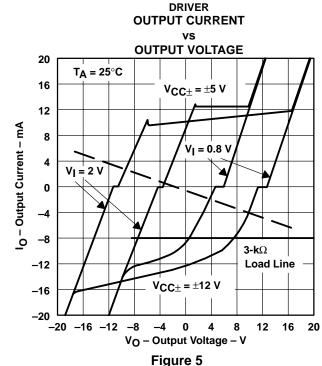



Figure 4

DRIVER SHORT-CIRCUIT OUTPUT CURRENT FREE-AIR TEMPERATURE 15 los(L) I_{OS}-Short-Circuit Output Current - mA $V_{I(D)} = H^{-1}$ 10 V_{CC+} = 12 V V_{CC}-=-12 V $V_O = 0$ 0 -5 IOS(H) -10 $V_{I(D)} = L$ -15 70 T_A - Free-Air Temperature - °C

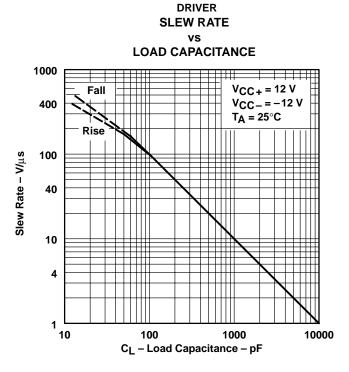


Figure 7

RECEIVER OUTPUT VOLTAGE

vs INPUT VOLTAGE

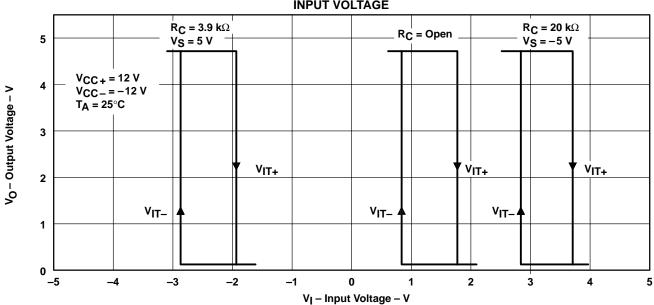


Figure 8

RECEIVER OUTPUT VOLTAGE

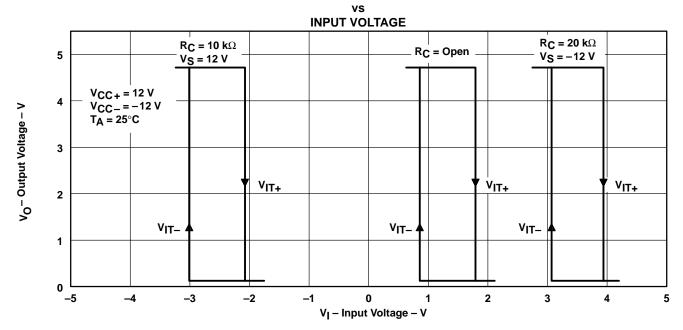
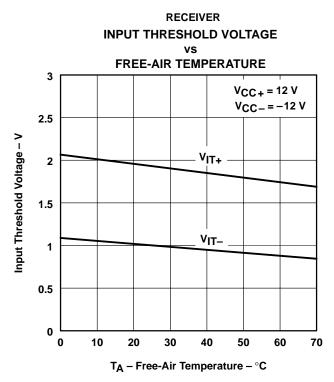
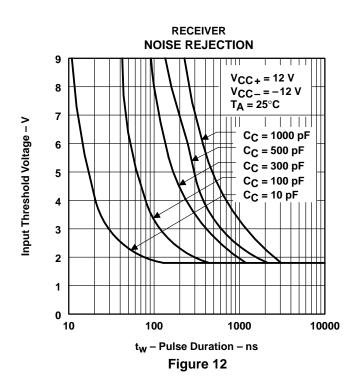



Figure 9



RECEIVER INPUT CURRENT INPUT VOLTAGE 10 T_A = 25°C V_{CC+} = 12 V 8 $V_{CC} = -12 V$ 6 I - Input Current - mA 4 2 0 -2 -4 -6 -8 -10 -25 -20 -15 -10 -5 0 5 10 15 20 25 V_I - Input Voltage - V

Figure 10

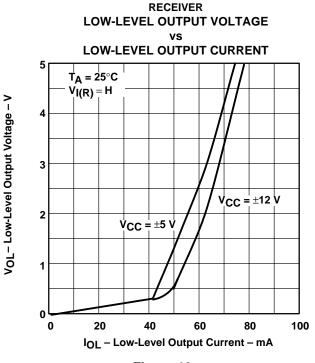
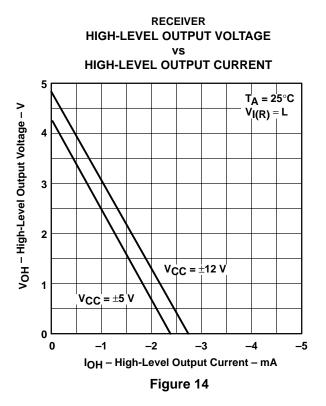
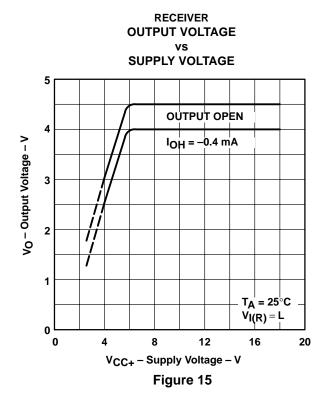




Figure 13

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third—party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265