FM IF WITH LOG AMPLIFIER

■ CONNECTION DIAGRAM

The NJM2232A is high precision FM IF IC with log amplifier, designed to be used for handy type wireless apparatus.

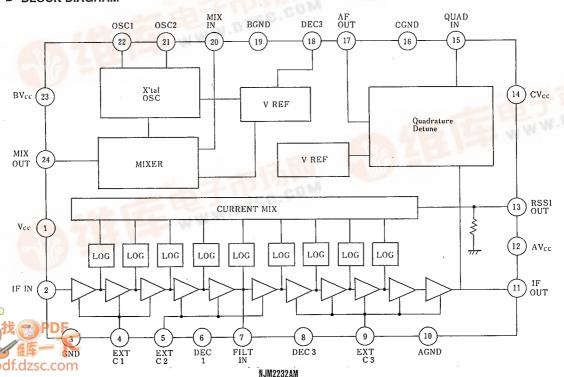
The NJM2232A includes in one chip of IC, at each block, the mixer, local oscillator limitter, log amplifier, FM detector, and so on, with which set up the IF block of handy type wireless apparatus that requires high precision electronic detection.

■ FEATURES

RSSI features are excellent

Linearity $\pm 1 dB$ Dynamic Range 90dB
Temperature $\pm 2 dB$ Low power dissipation (Vcc=6V) 5.2mA typ.
Operating voltage $5 \sim 9V$ Package Outline DMP24

Package OutlineBipolar Technology


■ RECOMMENDED OPERATIONAL CONDITION

• Operating Voltage V+ 5.0~9.0V

APPLICATION

- Automobile telephone
- Codeless Telephone
- MCA
- Celler Radio
- Business Wireless apparatus
- Various measuring units

■ BLOCK DIAGRAM

■ PACKAGE OUTLINE

■ TERMINAL EXPLANATION

PIN	SYMBOL	Function				
ı	Vcc	Supply Voltage Input of IF-AMP1,RSSI and Reference				
2	IF IN	1F-AMP1(Limitter Amp.) Signal Input.				
3	GND ·	Ground of IF-AMP1,RSSI and Reference				
4	EXT. CI	Capacitor Connection Terminal1(Limitter Amp. AC Decoupling)				
. 5	EXT. C2	Capacitor Connection Terminal2 (Limitter Amp. AC Decoupling)				
6	DEC 1	Reference Decoupling Capacitor!				
7	FILT IN	Filter Input between IF-AMP1 and IF-AMP2				
8	DEC 2	Reference Decoupling Capacitor2				
9	EXT. C3	Capacitor Connection Terminal3 (Limitter Amp. AC Decoupling)				
10	AGND	Ground of IF-AMP2 and RSSI				
11	IF OUT	IF-AMP2(Limitter Amp.) Signal Output				
12	AV_{CC}	Supply Voltage Input of IF-AMP2 and RSSI				
13	RSSI	RSSI Input				
14	CV_{CC}	FM-DISCRI Supply Voltage Input				
15	QUAD IN	Quadrature Detector Input				
16	CGND	FM-DISCRI Ground				
17	AF OUT	Audio Signal Output				
18	DEC 3	Reference Decoupling Capacitor3				
19	BGND	Mixer Ground				
20	MIX IN	Mixer Signal Input				
21	OSC 2	Crystal Oscillator Terminal2				
22	OSC 1	Crystal Oscillator Terminal I				
23	BV_{CC}	Mixer Supply Voltage Input				
24	MIX OUT	Mixer Signal Output				

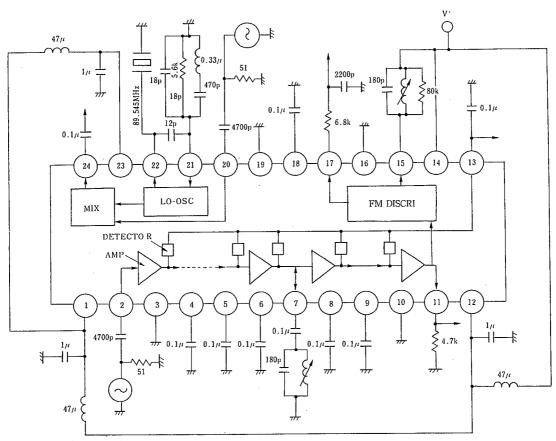
■ ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT	
Supply Voltage	V ⁺ 12		V	
Power Dissipation	PD	700		
Operating Temperature Range	Topr	-20~+75	r	
Storage Temperature Range	Tstg	-40~+125	°C	

■ ELECTRICAL CHARACTERISTICS

(V+=6V, Ta=25°C)


PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT:
Operating Current	Icc	11, 21, 22pin, no loading		5.2	8.5	mA
Mixer Voltage Gain	G _{MIX}	f _{IN} =90MHz, -40dBm	18	20	22	dB
RSSI Output Voltage (1)	VLI	f _{IN} =455kHz, -90dBm	0.135		0.405	v
RSSI Output Voltage (2)	V _{L2}	f _{IN} =455kHz, -80dBm	0.41	l —	0.71	v
RSSI Output Voltage (3)	V _{L3}	f _{IN} =455kHz, 0dBm	2.56		2.94	v
RSSI Linearity	VLIN	(Note 1)	-1	0	1	dB
RSSI Dynamic Range	DR	(Note 1)	90	_	l —	dB
IF Output Voltage	ViF	f _{IN} =455kHz, -50dBm	1.2	1.4	1.6	v
Audio Output Voltage	Vout	Standard Modulation Signal (Note 2)	150	200	250	mV
Total Harmonic Distortion	THD	Standard Modulation Signal (Note 2)	_	_	1	%
S/N Ratio	S/N	Standard Modulation Signal (Note 2)	40	<u> </u>	_	dB
AMRR	AMR	Standard Modulation Signal (Note 3)	30		-	dB

⁽Note 1) RSSI Linearity has 10 measuring points (-90,-80~0dBm) from where getting the ideal linearity by way of mini square method, and that each 10 measured spots should stay on within the range of ± 1 dB that can be obtained during the process of the measurement. Also in the process of the measurement, RSSI dynamic range 90 dB can be obtained at the same time.

⁽Note 2) f_{IN} =455kHz, -20dBm, f_{MOD} =1kHz, f_{DEV} =3kHz

⁽Note 3) $f_{1N}=455kHz$, -20dBm, $f_{MOD}=1KhZ$, AM 30%MOD

■ TEST CIRCUIT

Adjustable Coil:L-5K4-R(Mitsumi)

TERMINAL EXPLANATION

(1) Supply Voltage

The supply voltage is to be delivered at each block, such as limitter Amplifier block ((1), (12) Pin), Mixer block (23) pin, FM Discrimination block (14) pin and so on. When applying the voltage, proceed it supplying from the latter block to front in order of the block structure. When the mixer block and FM block are not required the IC is not operation, no functioning as long as the power supply is off.

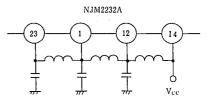
(2) Mixer Input

Mixer input impedance (20) pin is designed to be set at $1.5k\Omega$ (standard) on voltage. It is advisable to input after DC cutting, for desired matched circuit.

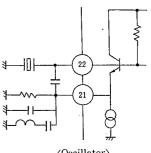
(3) Oscillator

As far as the local oscillator input goes, there are 2 methods as shown

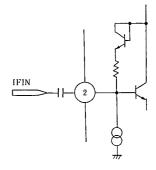
- 1. Input after setting the crystal oscillating circuit, on (21), (22) pins.
- 2. Connect (21) pin directly on supply voltage, and then input the external local oscillator output directly to pin 22.
- (4) Filter (to be used between Mixer and Limitter Amp.) Mixer output impedance (24) pin is 2 k Ω (standard), Limitter Amp. Impedance (2) pin is 18kΩ (standard) are desired. Input harmonizing to the filter to be used for adequate matched circuit.

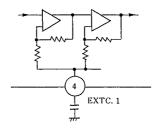

(5) Limitter Amp. Input Limitter amp. impedance is designed to be $18k\Omega$ (standard). Be sure to input after DC cutting.

(6) Decoupling Capacitance


(4), (5), (9) pins capacitor are AC decoupling capacitor, Which are set as a part of amplifier feed back circuit of Limitter amp. block. Please apply about 0.1μF capacitance.

(7) Reference Capacitor


(6), (8), (18) pins capacitor are AC decoupling capacitor which are to be connected to the internal reference. Please apply about $0.1\mu F$ capacitance.


(Supply Voltage)

(Oscillator)

<Limitter Amp. Input>

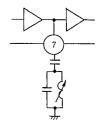
(Decoupling Capacitor)

(8) Limitter Amp. Inter Section Filter

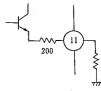
The limiter amp, the inter section filter is composed of the resonator applied with the tuning coil as in the drawing.

Upon designing the RSSI linearity, it is advisable to apply the resonator coil with no loading Q=55, $L=680\mu$ H condition, and so proceed DC cutting before the coil.

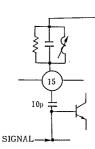
(9) Limitter Amplisier

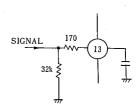

As shown in the drawing, the limitter amp. is the open emitter, and the limitter amp. output can be obtained by putting adequate resistor to pin (11).

(10) Quadrature Detecting phase Shifter

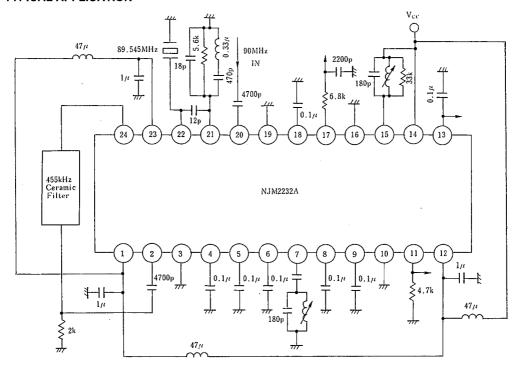

In order to detect quadrature, input the signal that has shifted the phase for 90 degree from pin (15) to RLC paralleled resonator.

The resistor value should be decided to obtain the desired audio output.


(11) RSSI detecting current shall be shifted from current into voltage by the internal resistor 32kΩ, And at the same time, please put the external capacitor value to be able to stay constantly for the desired time.


(Inter Section Filter)

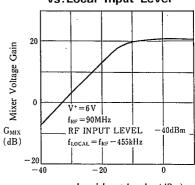
(Limitter Amp. Output)



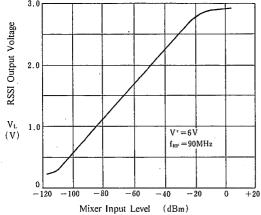
(Phase Shifter)

⟨RSSI Output⟩

■ TYPICAL APPLICATION


•

TYPICAL CHARACTERISTICS


Frequency f (Hz)

mixer Voltage Gain vs.Local Input Level

Local Input Level (dBm)

RSSI Characteristics vs. Mixer Input

RSSI Output Voltage vs. Temperature

_

NJM2232A

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.