AM/FM RADIO

■ GENERAL DESCRIPTION

The NJM2241 is monolithic integrated circuit in a 24-lead small outline package designed for use in 3-6V protable AM/FM radio receivers.

The functions incorporated are AM RF amplifier, AM mixer, FM/AM IF amplifier, FM/AM detecter, FM/AM detecter, FM/AM tuning/indicator, AM AGC circuit, Audio Power amplifier.

PACKAGE OUTLINE

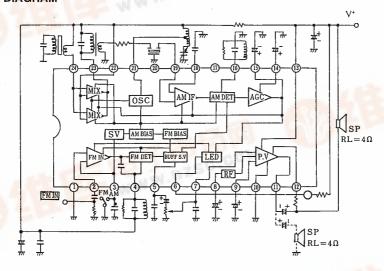
FEATURES

Wide Operating Voltage

(1.8~6.0V)

Tuning Indicator LED direct drive

(10mA Max.)


Very Simple DC switching of FM/AM

- High AM signal handling
- 4Ω speaker direct drive
- Low tweet
- Most suitable to use with NJM2236
- Package Outline

DMP24

Bipolar Technology

BLOCK DIAGRAM

(note) Dotted line shows V_{CC}=4.5V

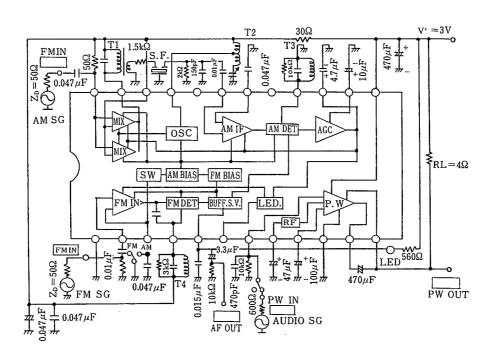
■ ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V ⁺	8	V
Lamp Current	l _{Lamp(Max)}	10	mA
Output Current	IO(peak)	550	mA
Power Dissipation	PD	700	mW
Operating Temperature Range	Topr	−20~+75	°C
Storage Temperature Range	Tstg	-40~+125	ဗ

■ ELECTRICAL CHARACTERISTICS

(V*=3V, Ta=25°C, FM: f=10.7MHz, \triangle f=22.5kHz dev., fm=1kHz AM: f=1MHz, Mod=30%, fm=1kHz Unless otherwise noted)

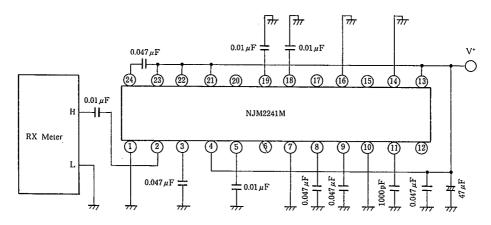

				MIN.			
CHARACTERISTICS		SYMBOLS	TEST CONDITIONS		TYP.	MAX.	UNIT
Operating Current		I _{CC} (FM)	V _{IN} =0	_	15	20	4
		I _{CC} (AM)	$V_{iN}=0$	-	15	20	mA
-3dB Limiting Sensitivity		V _{IN} (lim)			36	42.	dΒμ
	Detection Output Voltage	V _{OD}	V _{IN} =80dB _μ	22	31	44	mVrms
F	Signal to Noise Ratio	s/N	$V_{1N} = 80 dB\mu$	_	70	_	dB
М	Total Harmonic Distortion	THD	$V_{iN} = 80 dB\mu$	_	0.3	_	%
	Am Rejection	AMR	$V_{IN} = 80 dB\mu$	_	33	_	dB
	Lamp Lighting Sensitivity	V _L			47	55	dΒμ
	Voltage Gain	Gv	$V_{IN} = 30 dB_{\mu}$	5	11	17	mVrms
	Detection Output Voltage	V _{OD}	V _{IN} =66dBμ	22	31	44	mVrms
Α	Signal to Noise Ratio	s/N	$V_{IN} = 66 dB_{\mu}$	_	46		dB
^	T-val. III	THD1	V _{IN} =66dB _μ	_	1.5		0.
М	Total Harmonic Distortion	THD2	V _{IN} =106dB _μ		4.0	_	%
	Local OSC Stop Voltage	V _{stop}	V _{OSC} -6dB	_	1.0	1.5	V
	Lamp Lighting Sensitivity	Lamp Lighting Sensitivity V _L		_	30	_	dΒμ
	Voltage Gain	Gv	$f=1kHz, R_L=4\Omega$	37	40	43	dB
		P _{OD} 1	$f=1kHz$, $R_L=4\Omega$, $THD=10\%$	180	220		
P	Output Power	P _{OD} 2	$V^* = 4.5V$ $f = 1 \text{kHz}, R_L = 4\Omega, \text{THD} = 10\%$		500	_	mW
W	Total Harmonic Distortion THE		$f=1kHz$, $R_L=4\Omega$, $P_O=50mW$	_	0.5	2.0	%
	Output Noise Voltage	V _{NO}	$R_0=10k\Omega$, $RL=4\Omega$ $BW=30Hz\sim20kHz$	_	0.18		mVrms

■ TERMINAL VOLTAGE AT NO SIGNAL

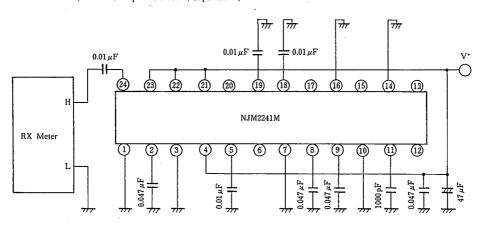
(V*=3V, Ta=25°C)

CHARACTERISTICS PIN NO FUNCTION		SAN ABOL 0	TYPICAL		UNIT
		SYMBOLS	AT AM	AT FM	UINI I;
ı	GND	V _i	0	. 0	v
2	FM IF IN	V ₂	2.4	2.0	V
3	FM/AM Switch	V ₃	0	2.0	٧
4	FM DET	V ₄	2.9	2.9	V
5	DET OUT	V ₅	0.4	0.7	v
6	LED DRIVER	V ₆			V
7	PW IN	V ₇	0	0	v
8	PW REF	V ₈	1.35	1.35	V
9	PW Bipass	V ₉	0.6	0.6	V
10	PW GND	V _{i0}	0	0	V
11	PW OUT	VII	1.5	1.5	V
12	PW Bootstrap	V ₁₂	2.8	2.8	V
13	V* 1	V ₁₃	3.0	3.0	V
14	AGC1	V ₁₄	0.6	0	V
15	AGC2	V ₁₅	0.6	0	V
16	AM DET	V ₁₆	0	0	V
17	Not Use	-	- .		_
18	AM Bipass	V ₁₈	1.3	0	V
19	AM IF IN	V ₁₉	1.3	0 .	V
20	Not Use	-	_	_	· —
21	AM Osc	V ₂₁	2.9	2.9	V
22	V* 2	V ₂₂	2.9	2.9	V
23	AM MIX OUT	V ₂₃	2.9	2.9	V
24	AM RF IN	V ₂₄	2.9	2.9	v

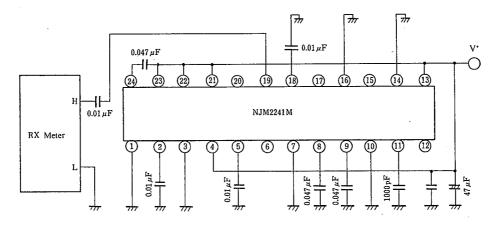
■ TEST CIRCUIT

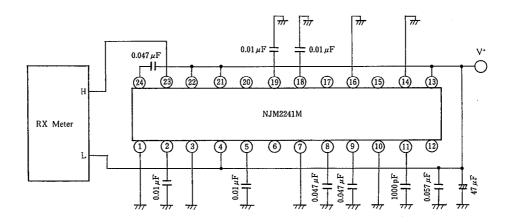

■ TEST CIRCUIT COIL DATA

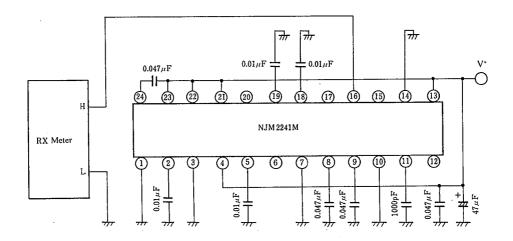
COIL NO.	Fo	Q0	TURNS	Co	
T ₁ : AM IFT (MIX OUT)	455 kHz	①-③ 80	①-③ 60 T ④-⑥ 16 T Wire: 0.09mmø UEW SUMIDA 2150-2173-302	①-③ 1500pF	3 4 2 1 6 Bottom View
T2:AM OSC	796 kHz	①-③ 125	①-② 15 T ②-③ 89 T Wire: 0.06 mm # UEW SUMIDA 2157-2239-213 A	_	3 4 2 6 Bottom View
T ₃ : AM DET	455 kHz	①-③ 105	①-③ 127 T Wire: 0.06mmø UEW SUMIDA 2150-2083-061	①-③ 330 pF	3 4 2 5 1 6 Bottom View
T₁:FM DET	10.7 MHz	①-③ 100	①-③ 10 T Wire: 0.12mm UEW SUMIDA: 2153-4095-331	①-③ 150pF	3 4 2 6 Bottom View


■ INPUT OUTPUT IMPEDANCE

	1			T	
CHARACTERISTICS	SYMBOLS	CIRCUITS	TEST CONDITIONS	TYP.	UNIT.
Pin 2 Input Impedance	RIN2		5-10 7141	4.6	kΩ
(FM)	CIN2	 	f=10.7MHz	5.0	pF
Pin 24 Input Impedance	RIN24	2	f=lkHz	20	kΩ
(AM)	CIN24	2	1-18112	11	pF
Pin 19 Input Impedance	RIN19	3	f=455kHz	6	kΩ
(AM)	CINI9	3	1—433КП2	3.7	pF
Pin 23 Output Impedance	RO23	4	f=455kHz	2.5	kΩ
(AM)	CO23	4	1-455KTZ	5.5	pF
Pin 16 Output Impedance	ROI6	5	f=455kHz	100	kΩ
(AM)	CO16	3	1 — 433K ПZ	5.0	pF


■ TEST CIRCUIT 1 (Pin 2 FM Input Resistance, Capacitance)

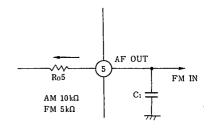

■ TEST CIRCUIT 2 (Pin 24 AM Input Resistance, Capacitance)


■ TEST CIRCUIT 3 (Pin 19 AM IF Input Resistance, Capacitance)

■ TEST CIRCUIT 4 (Pin 23 AM Mix Output Resistance, Capacitance)

■ TEST CIRCUIT 5 (Pin 16 AM DET Output Resistance, Capacitance)

■ NOTES


1. The frequency characteristics AM and FM mode

The output impedance of pin5 (Ro5) and external capacitor C1 decide frequency characteristics.

The value of Ro5 turns to $10k\Omega$ at AM mode and $5k\Omega$ at FM mode.

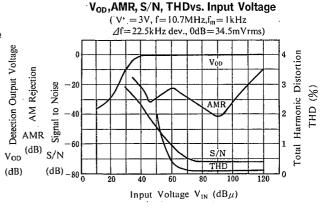
Accordingly should consider above, trim C1 to get proper frequency response.

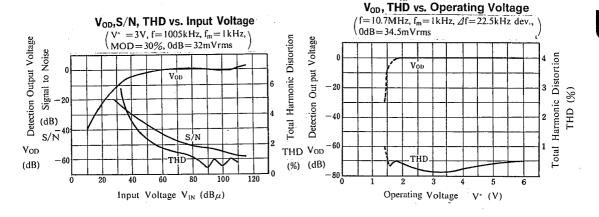
Besides should design the location of C1 closer to pin1 (GND) to get low tweet.

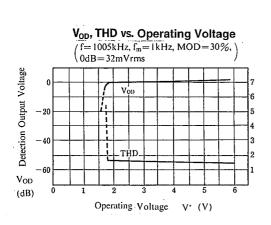
2. Loading speaker

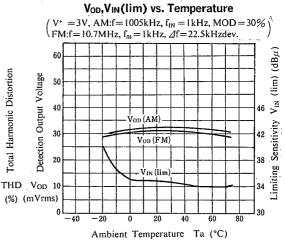
Recommend to connect the speaker between pin11 (Vcc) and pin10 (bootstrap) at $V^*=3V$ for better low supply to voltage operation. When Vcc is above 4.5V, recommend the speaker connection between pin9 (PW OUT) and (GND) through a coupling capacitor.

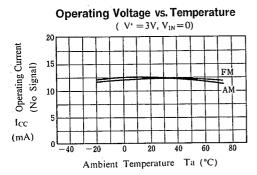
3. Termination to the power stage

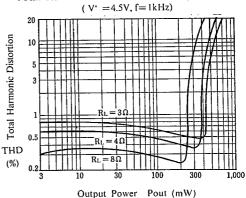

The audio signal of output pin5 includes carrier component slightly, therefore a capacitor between pin: and GND have to be connected to decrease carrier component.


4. Supply voltage start-up

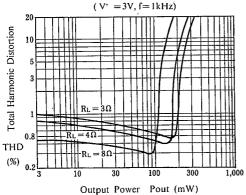

The supply voltage of radio circuit block should not start up before power stage start-up.

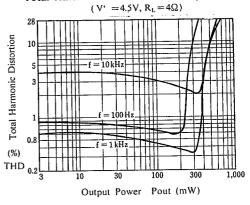

■ TYPICAL CHARACTERISTICS

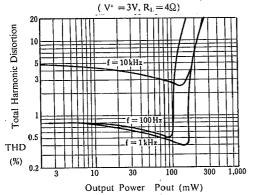


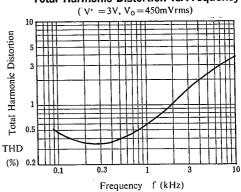


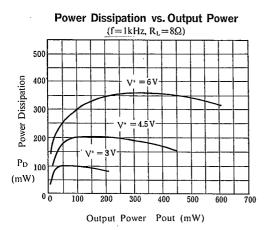
4

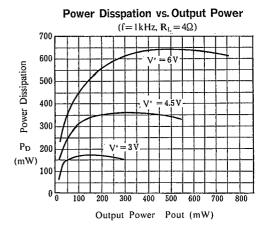

■ TYPICAL CHARACTERISTICS

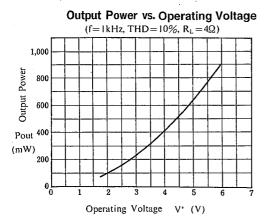

Total Harmonic Distortion vs. Output Power

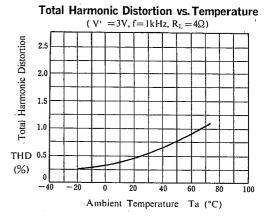

Total Harmonic Distortion vs. Output Power

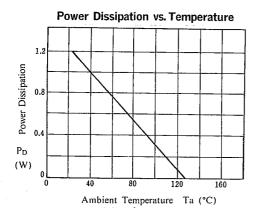

Total Harmonic Distortion vs. Output Power

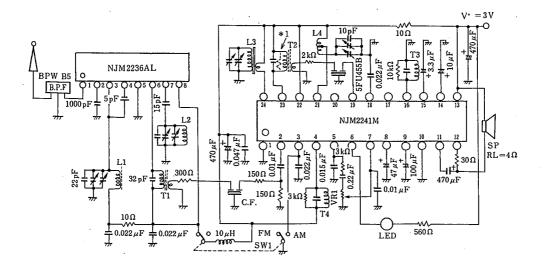

Total Harmonic Distortion vs. Output Power




Total Harmonic Distortion vs. Frequency




■ TYPICAL CHARACTERISTICS



■ FM/AM RADIO APPLICATION CIRCUIT

Resister should be located at *! if the Trans (T2) is high Q

■ FM/AM RADIO APPLICATION CIRCUIT

COIL NO.	Fo.	Q0 -	TURNS	Co	
L ₁ : RF Coil	100 MHz	100	0.7mm	22 pF (ext.)	7 mm 5 mm
L ₂ : OSC Coil	100 MHz	100	0.7mm∮ 2 ½ T SUMIDA 0295−056	30 pF (ext.)	7mm 5mm Ferrite Core
L ₃ : AM ANT	796 kHz	①-② 200	①-② 100 T L=600 µH ③-④ 17 T Wire: 4/0.07mm UATC Core::10mm ≠×80mm MITUMI YI-7160-1	_	1) 22 33 44 GND V.C. V* 24 pin 10 mm
L₄: AM OSC	796 kHz	①-③ 125	①—② 15 T ②—③ 89 T Wire: 0.06mm UEW SUMIDA: 2157—2239—213 A	_	V.C. 21 pin Vcc 1 6 BOTTOM VIEW

■ FM/AM RADIO APPLICATION CIRCUIT

COIL NO.	F ₀	Qo	TURNS	C ₀	BOTTOM VIEW
Tı: FM IFT	10.7 MHz	①-③ 90	①-③ 11T ④-⑥ 2 T Wire: 0.12mmø UEW SUMIDA 2153-414-041	①-③ 82pF	V' 3 GND G pin Bottom View
T2: AM IFT	455 kHz	①-③ 80	①③ 60T· ④-⑥ 16 T Wire: 0.09mmø UEW SUMIDA 2150-2173-302	①-③ 1500 pF	23 pin (3) 19 pin (2) GND GND Bottom View
T ₃ : AM DET	455kHz	①-③ 105	①-③ 127 T Wire: 0.06mmø UEW SUMIDA 2150-2083-061	①-③ 330pF	16 pin 3 4 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q
T ₄ : FM DET	10.7 MHz	①-③ 100	①-③ 10 T Wire: 0.12mm¢ UEW SUMIDA: 2153-4095-331	①-③ 150pF	V' (3) (4) (2) (5) (6) Bottom View

NJM2241

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.