DUAL VIDEO 6dB AMPLIFIER WITH 75 Ω driver

GENERAL DESCRIPTION

NJM2268 is a dual video 6dB amplifier with 75 Ω drivers for S-VHS VCRs, HI-BAND VCRs, etc..One channel has clamp function that fixes DC level of video sighal and another one is bias type. Furthermore it has 75 Ω drivers to be connected to TV monitors directly and sag corrective circuits that prevent the generation of sag with smaller capacitance than ever.

Its operating supply voltage is 4.85 to 9V and bandwidth is 7MHz.

FEATURES

- Wide Operating Voltage (4.85~9.0V)
- Dual Channel (Clamp Type, Bias Type)
- Internal Driver Circuit For 75 Ω Load
- SAG Corrective Function
- Wide Frequency Range 7MHz
- Low Operating Current 14.0mA (Dual)
- Package Outline DIP8, DMP8, SSOP8
- Bipolar Technology

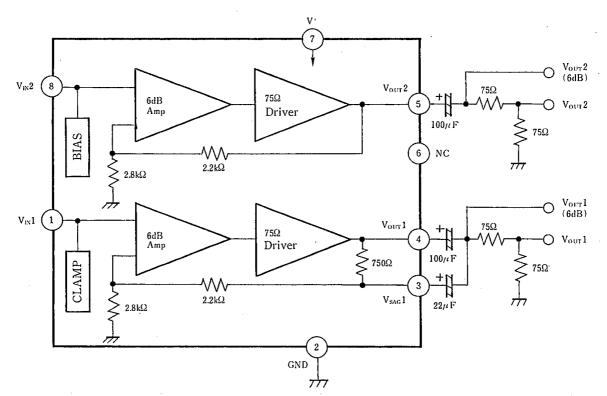
RECOMMENDED OPERATING CONDITION

Operating Voltage V⁺
4.85~9.0V

APPLICATIONS

• VCR, Video Camera, TV, Video Disc Player

BLOCK DIAGRAM


PACKAGE OUTLINE

NJM2268D

NJM2268V

■ ABSOLUTE MAXIMUM RAT	(Ta=25℃)		
PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V*	10	v
Power Dissipation	PD	(DIP8) 500	mW
		(DMP8) 300	mW
		(SSOP8) 250	mW
Operating Temperature Range	Topr	-40~+85	Ĉ
Storage Temperature Range	Tsig	-40~+125	°C

ELECTRICAL CHARACTERISTICS:

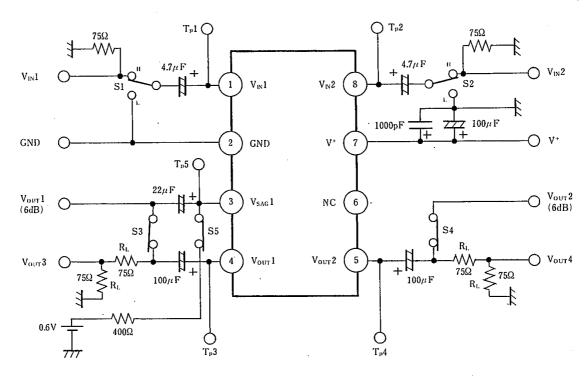
(V⁺=5V, Ta=25℃)

	<u> </u>					
PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current	Icc	No Signal		14.0	18.2	mA
Voltage Gain	Gv	V _{IN} =1MHz, 1V _{P-P} Sinewave	5.7	6.2	6.7	dB
Frequency Characteristic	Gf	V _{IN} =1V _{P-P} , Sinewave, 7MHz/1MHz	—		±1.0	dB
Differentail Gain *	DG	V _{IN} =1V _{P-P} , Staircase	—	1.0	3.0	%
Differentail Phase *	DP	$V_{IN} = I V_{P-P}$, Staircase	—	1.0	3.0	deg
Crosstalk	СТ	V _{IN} =4.43MHz, 1V _{P-P} , Sinewave		-70		dB
Gain Offset	GCH	$V_{IN} = IMHz$, IV_{P-P} , $G_{CH} = V_{OUT1} - V_{OUT2}$		—	± 0.5	dB
Input Clamp Voltage	VCL		1.79	1.91	2.03	v
Input Bias Voltage	V _{Bt}		2.56	2.84	3.12	v
SAG Terminal Gain	Gsag		35	45	—	dB
					[

NOTE: "*" is applied to clamp type input side only/

APPLICATION

Oscillation Prevention


It is much effective to insert LPE (Cutoff Frequency 70MHz) under light loading conditions ($R_L \gg 1 k\Omega$).

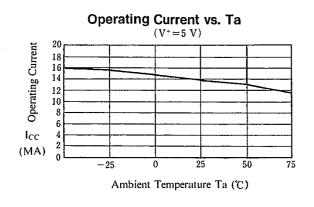
This IC requires $1M\Omega$ resistance between INPUT and GND pin for clamp type input since

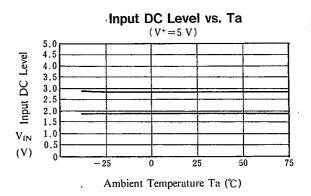
the minute current causes an unstable pin voltage.

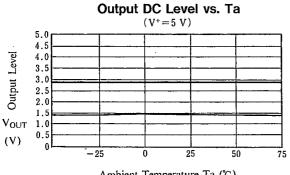
TEST CIRCUIT

TEST METHODES

		SWITCH CONDITIONS				ITIO	NS		
PARAMETER	SYMBOL	SI	S2	S3	S4	S5	S6	CONDITIONS	
Supply Current	lcc	н	Н					7PIN Sink Current	
Voltage Gain	Gv	н	н	ON	ON			V_{OUT1}/V_{IN1} , V_{OUT2}/V_{IN2} at $V_{IN1}(V_{IN2})=1MHz$, $1V_{P-P}$, Sinewave	
Frequency Characteristic	Gr	н	Н	ON	ON			G_{VIM} ; Voltage Gain at $V_{IN1}(V_{IN2})=1MHz$, IV_{P-P} G_{VI0M} ; Voltage Gain at $V_{IN1}(V_{IN2})=10MHz$, $1V_{P-P}$ $G_f = G_{V10M} - G_{V1M}$	
Differential Gain	DG	н	Н	ON	ON			Measuring V _{OUT3} at V _{INI} =Staircase Signal	
Differential Phase	DP	н	н	ON	ON			Measuring V _{OUT3} at V _{IN1} =Staircase Signal	
Crosstalk	СТ	н	L	ON	ON			V_{OUT2}/V_{OUT1} at V_{1N1} =4.43MHz, $1V_{P.P.}$, Sinewave $V_{OUT1}/V1N2$ at V_{1N2} =4.43MHz, $1V_{P.P.}$, Sinewave	
Gain Offset	G _{CH}	н	Н	ON	ON			$G_{V1} = V_{OUT1}/V_{IN1}, G_{V2} = V_{OUT2}/V_{IN2}$ $G_{CH} = G_{V1} - G_{V2}$	
Input Clamp Voltage	V _{CL}	н	н					Measuring at TP1	
Input Bias Voltage	V _{Bi}	н	н					Measuring at TP2	
SAG Terminal Gain	G _{SAG}	н н	Н Н			ON	ON	TP3 Voltage; V_{O1A} , TP5 Voltage; V_{SO1A} TP3 Voltage; V_{O1B} , TP5 Voltage; V_{SO1B} $G_{SAG}=20log \{(V_{O1B}-V_{O1A})/(V_{SO1A}-V_{SO1B}\}$	


(V⁺=5.0V, Ta=25℃) **TERMINAL FUNCTION** FUNCTIONS PIN NAME SYMBOL EQUIVALENT CIRCUIT PIN No. Input terminal of 1VP-P composite VINI ī Input Signal or Y signal Clamp Clamp level is 1.9V Terminal 300µA (1)300 i Ground GND GND 2 SAG caused by a coupling capacitor of the output can be 3 SAG VSAGI prevented by connecting this tarminal with the output terminal correction through an external capacitor. (see block diagram) 3mA When SAG correcting function is not necessary, this terminal must be connected with pin "4" directly. Vouti Output terminal (clamp side) that can drive 75Ω line. Video 4 v Output! 3mA 750 Output terminal (bias side) that can drive 75Ω line. 5 Video VOUT2 Output2 3mA 2.2kNC No 6 Connection ٧+ Supply Voltage 7 ٧÷ Input terminal of IV_{P-P} coler signal. Bias level is 2.8V. Input 8 V_{IN2} ν Clamp 300/4A Terminal 20k 9 300 250 / A


5


5-230

NJM2268

TYPICAL CHARACTERISTICS

SAG Terminal Gain vs. Ta

 $(V^{+} = 5 V)$

0

25

Ambient Temperature Ta (℃)

50

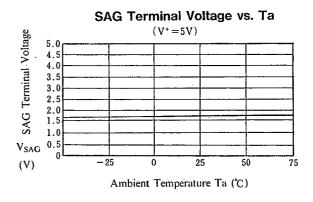
75

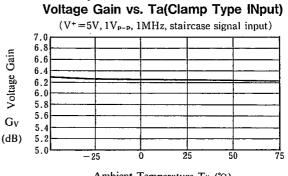
SAG Terminal Gain

GSAG

(dB)

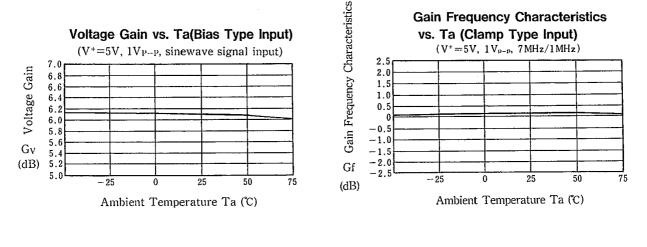
50 48 46

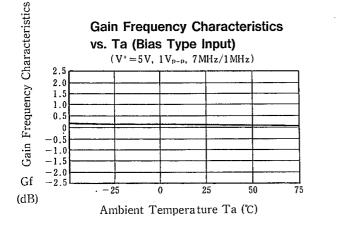

44

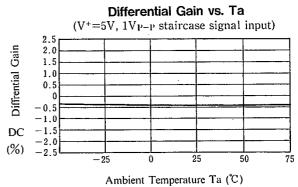

34

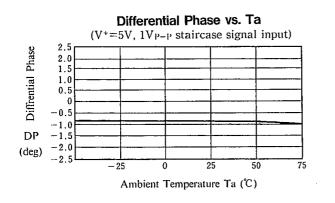
32

30

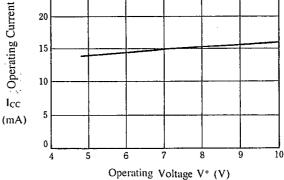

-25

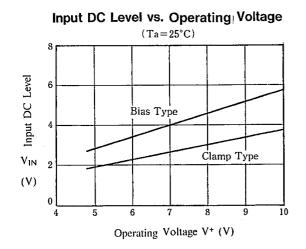


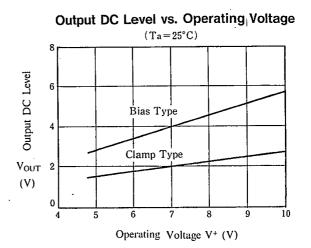



Ambient Temperature Ta (°C)

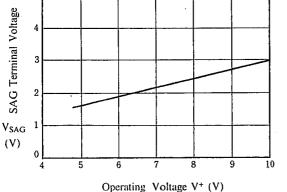
5

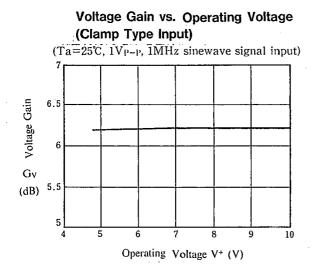


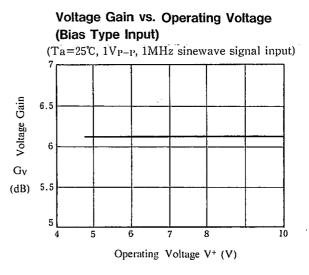




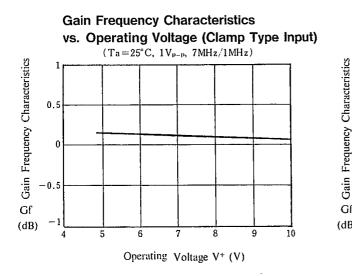
Operating Current vs. Operating Voltage (Ta=25°C)

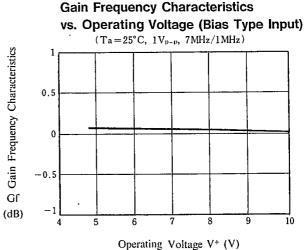



-New Japan Radio Co., Ltd.



SAG Terminal Voltage vs. Operating Voltage $(Ta = 25^{\circ}C)$

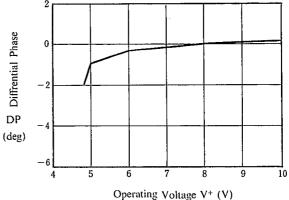

 $(Ta=25^{\circ}C)$ 60 SAG Terminal Gain 50 40 30 Gsag . (dB) 20 10 4 5 6 7 8 9 Operating Voltage V⁺ (V)

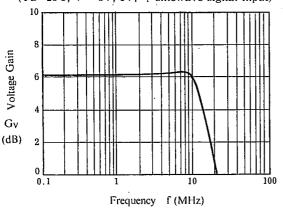


SAG Terminal Gain vs. Operating Voltage

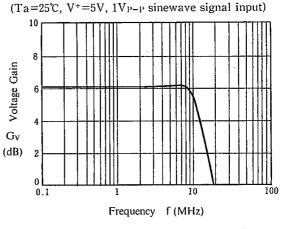
New Japan Radio Co., Ltd.

5-233

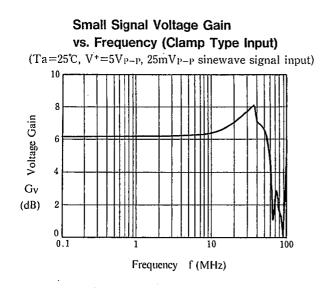



Differential Gain vs. Operating Voltage (Ta=25°C, IV_{P-P}, staircase signal input) 2 Diffrential Gain 0 - 2 DC -- 4 (%) 5 7 8 9 10 6 Operating Voltage V+ (V)

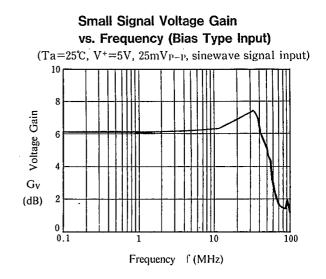
(Ta=25°C, 1V_{P-P}, staircase signal input) 2


Diffrential Phase vs. Operating Voltage

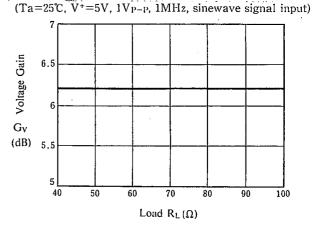
Voltage Gain vs. Frequency (Clamp Type Input) (Ta=25°C, V⁺=5V, $1V_{P-P}$ sinewave signal input)

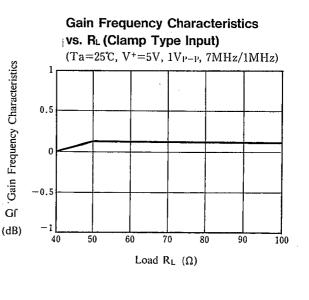


Voltage Gain vs. Frequency (Bias Type Input)

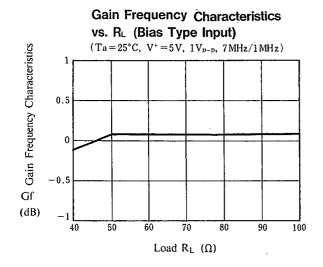

5-234

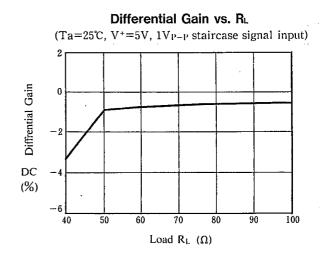
-New Japan Radio Co.,Ltd.

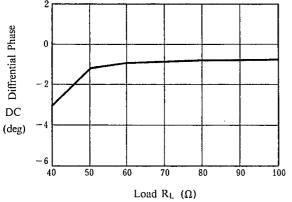



Cross Talk vs. Frequency (Ta=25°C, V⁺=5V, 1V_{P-P} sinewave signal input) $(Ta=25°C, V^+=5V, 1V_{P-P} sinewave signal input)$ $(Ta=25°C, V^+=5V, 1V_{P-P} sinewave signal input)$ (Ta=25

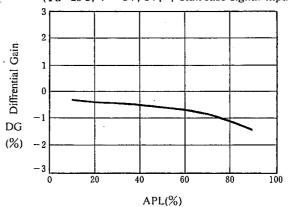
Voltage Gain vs. RL (Bias Type Input) (Ta=25°C, V+=5V, 1VP-P, 1MHz sinewave signal input) Voltage Gain 6.5 Gν (dB) 5.5 5 50 60 40 70 80 90 100 Load R_L (Ω)

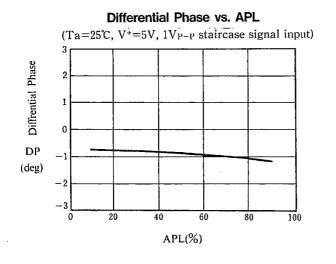

Voltage Gain vs. RL (Clamp Type Input)




New Japan Radio Co., Ltd.

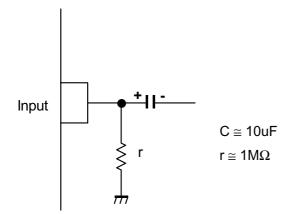
5-235





Differential Phase vs. RL (Ta=25°C, V*=5V, 1V_{P-P}staircase signal input)

Differential Gain vs. APL (Ta=25°C, V*=5V, 1V_{P-P} staircase signal input)


5-236

5

-New Japan Radio Co.,Ltd.—

■APPLICATION

This IC requires 1MΩ resistance between INPUT and GND pin for clamp type input since the minute current causes an unstable pin voltage.

[CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.