

2-INPUT 3CHANNEL VIDEO SWITCH

■ GENERAL DESCRIPTION

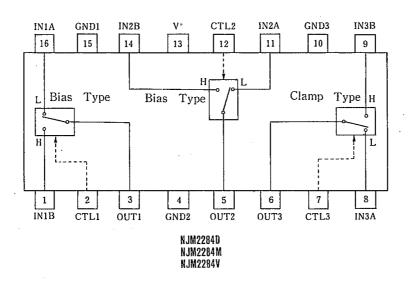
NJM2284 is a switching IC for switching over from one audio or video input signal to another. Internalizing 2 inputs, 1 output, and then each set of 3 can be operated independently. One of them is a Clamp type" and it can be operated while DC level fixed in position of the video signal. It is a higher efficiency video switch, featuring the operating supply voltage 4.75 to 13.0V, the frequency feature 10MHz, and then the Crosstalk 75dB (at 4.43MHz).

■ FEATURES

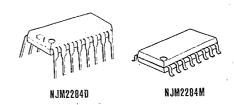
- 2 Input-1 Output Internalizing 3 Circuits (one of them is a Clamp type).
- Wide Operating Voltage
- Crosstalk 75dB(at 4.43MHz)
- Wide Bandwidth Frequency Feature 10MHz(2Vp-p Input)
- Package Outline DIP-16, DMP-16, SSOP-16

■ RECOMMENDED OPERATING CONDITION

Supply Voltage


V+

4.75~13.0V


■ APPLICATIONS

VCR, Video Camera, AV-TV, Video Disk Player.

BLOCK DIAGRAM

■ PACKAGE OUTLINE

NJM2284V

■ MAXIMUM RATINGS

(Ta=25℃)

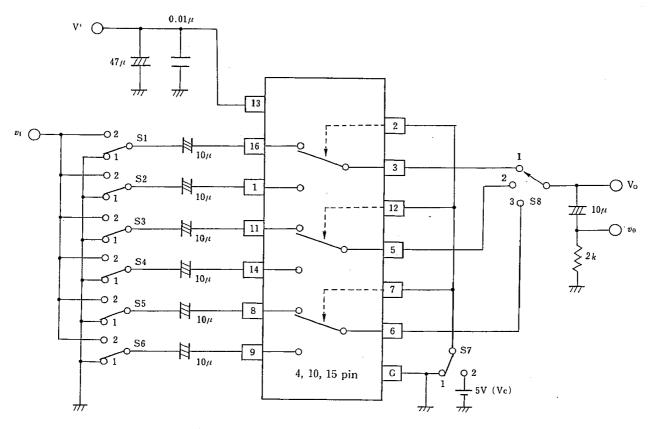
PARAMETER	SYMBOL	RATINGS	UNIT	
Supply Voltage	V+	14		
Power Dissipation	PD	(DIP16) 700	mW	
		(DMP16) 350	mW	
		(SSOP16) 300	mW	
Operating Temperature Range	Topr	-40~+85	°C	
Storage Temperature Range	Tstg	-40~+125	°C	

■ ELECTRICAL CHARACTERISTICS

(V⁺=5V, Ta=25℃)

PARAMETER	SYMBOL	TEST CONDITION		TYP.	MAX.	UNIT
Operating Current (1)	Icci	V+=5V (Notel)	8.1	11.6	15.1	mA
Operating Current (2)	I _{CC2}	V+=9V (Notel)	10.2	14.6	19.0	mΑ
Voltage Gain	Gv	$V_{i} = 100 \text{kHz}, 2V_{P-P}, V_{O}/V_{I}$	-0.6	-0.1	+0.4	dB
Frequency Gain	GF	$V_1 = 2V_{P-P}, V_O(10MHz)/V_O(100kHz)$	-1.0	0	+1.0	dB
Differential Gain	DG	V _I =2V _{P-P} , Standard Staircase Signal	—	0.3		%
Differential Phasa	DP	V _I =2V _{P-P} , Standard Staircase Signal	-	0.3	_	deg
Output Offset Voltage	Vos	(Note2)	-10	0	+10	mV
Crosstalk	СТ	$V_1 = 2V_{P-P}, 4.43MHz, V_O/V_1$	_	-75		dB
Switch Change Over Voltage	V _{CH}	All inside Switch ON	2.5		_	V
Switch Change Over Voltage	VCL	All inside Switch OFF	-	-	1.0	V

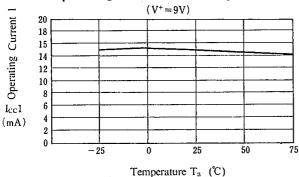
⁽Note1) S1=S2=S3=S4=S5=S6=S7=1

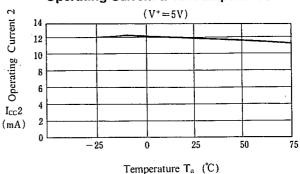

5

⁽Note2) S1=S2=S3=S4=S5=S6=1, $S7=1\rightarrow 2$ Measure the output DC voltage difference

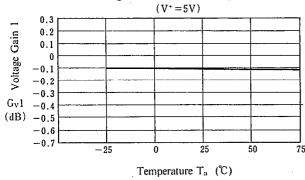
■ TERMINAL EXPLANATION

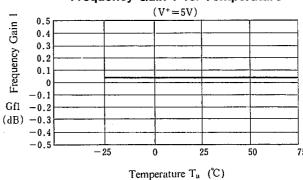
PIN No.	PIN NAME	VOLTAGE	. INSIDE EQUIVALENT CIRCUIT			
16 1 11 14	IN 1 A IN 1 B IN 2 A IN 2 B (Input)	2.5V	500 15k 2.5V			
8	IN3A	1.5V), , , , , , , , , , , , , , , , , , ,			
9	IN3B (Input)		500			
2 12 7	CTL 1 CTL 2 CTL 3 (Switching)		2.3V 1.9V 8k 20			
3	OUT 1	1.8V				
5	OUT 2					
6	OUT 3 (Output)	0.8 V	O OUT			
13	V+	5 V				
15 4 10	GND 1 GND 2 GND 3					


■ TEST CIRCUIT

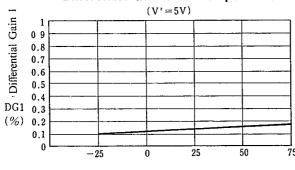

This IC requires $1M\Omega$ resistance between INPUT and GND pin for clamp type input since the minute current causes an unstable pin voltage.

Parameter	SI	S 2	. S3	S 4	S 5	S 6	S 7	S 8	Test Part
Iccı	1	1	1	1	1	1	1	1.	V+
I CC2	1	1	1	1	1	1	1	1	
G _{v1}	2	1	.1	1	1	1	1	1	v_0
Gf1	2	1	1	1	1	1	1	1	
DGı	2	1	1	1	1	1	1	1	
DP_1	2	1	1	1	1	1	1	1	
CT 1	2	1	1	1	1	1	2	1	· v ₀
CT 2	1	2	1	1	1	1	1	1	
CT 3	1	1	2	1	1	1	2	2	
CT 4	1	1	1	2	1	1	1	2	
CT 5	1	1	1	1	2	1	2	3	
CT 6	1	1	1	1	1	2	1	3	
Vosi	1	1	1	1	1	1	1/2	1	Vo
Vcı	1/2	2/1	1	1	1	1	Vc	1	Vc
THD	2	1	1	1	1	1	1	1	v_0

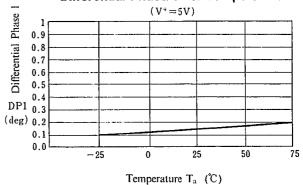

Operating Current 1 vs. Temperature


Operating Current 2 vs. Temperature

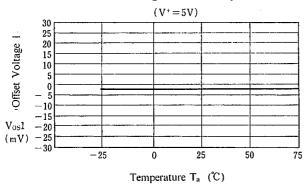
Voltage Gain 1 vs. Temperature

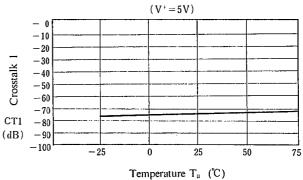


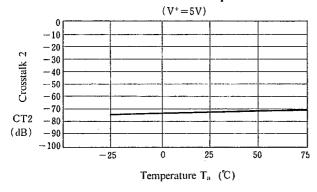
Frequency Gain 1 vs. Temperature

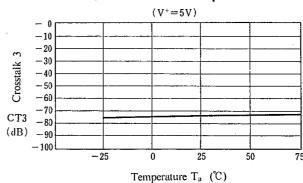


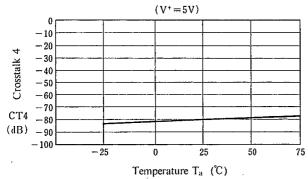
Differential Gain 1 vs. Temperature

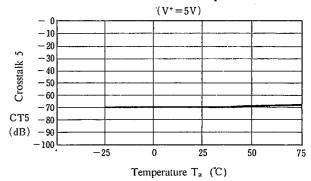

Temperature T_a (°C)

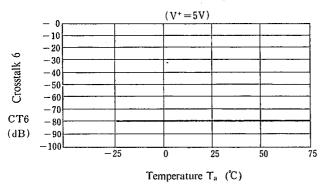

Differential Phase 1 vs. Temperature

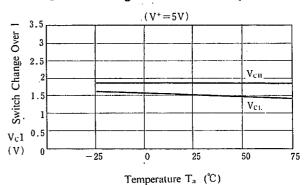

Offset Voltage 1 vs. Temperature

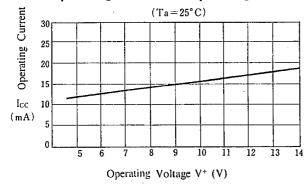

Crosstalk 1 vs. Temperature

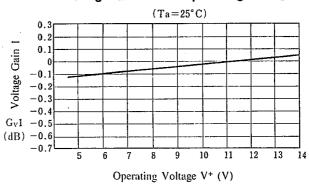

Crosstalk 2 vs. Temperature

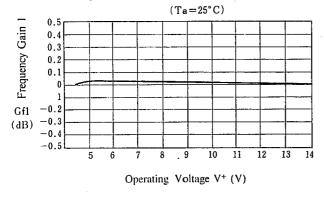

Crosstalk 3 vs. Temperature

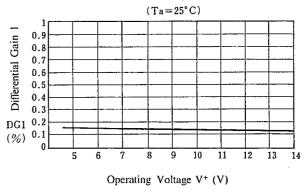

Crosstalk 4 vs. Temperature

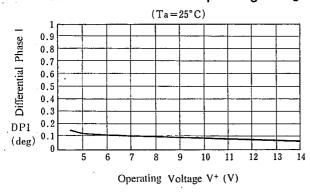

Crosstalk 5 vs. Temperature

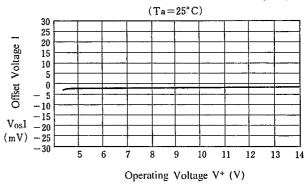

Crosstalk 6 vs. Temperature

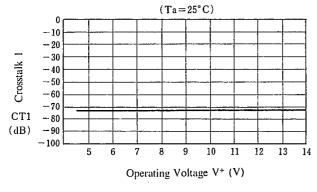

Switch Change Over 1 vs. Temperature

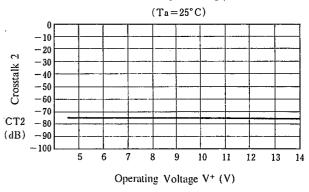

Operating Current vs. Operating Voltage

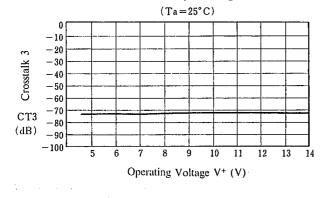

Voltage Gain 1 vs. Operating Voltage

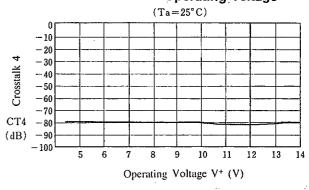

Frequency Gain 1 vs. Operating Voltage

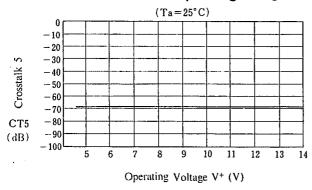

Differential Gain 1 vs. Operating Voltage


Differential Phase 1 vs. Operating Voltage

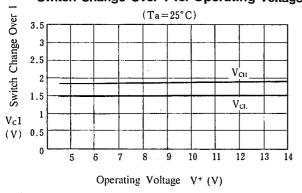

Offset Voltage 1 vs. Operating Voltage

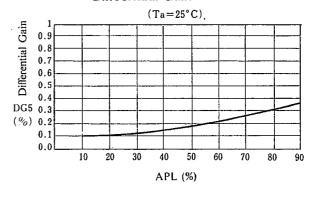

Crosstalk 1 vs. Operating Voltage

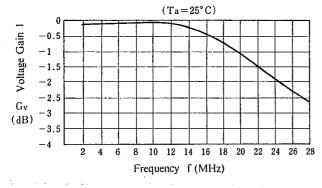

Crosstalk 2 vs. Operating Voltage

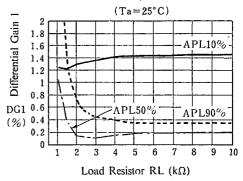

Crosstalk 3 vs. Operating Voltage

Crosstalk 4 vs. Operating Voltage

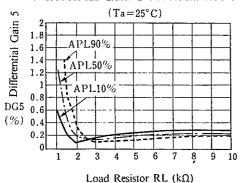

Crosstalk 5 vs. Operating Voltage

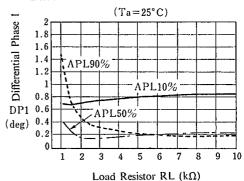

Crosstalk 6 vs. Operating Voltage


Switch Change Over 1 vs. Operating Voltage

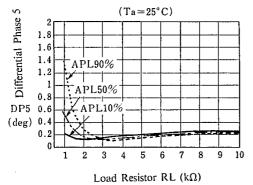

Diffeerntial Gain vs. APL

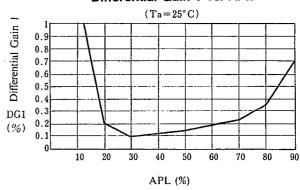
Voltage Gain 1 vs. Frequency Feature

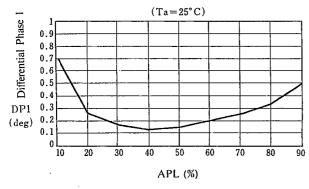

Differential Gain 1 vs. Load Resistor

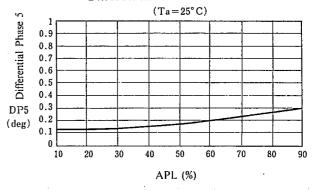

5

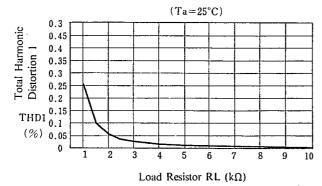
■ TYPICAL CHARACTERISTICS


Differential Gain 5 vs. Load Resistor

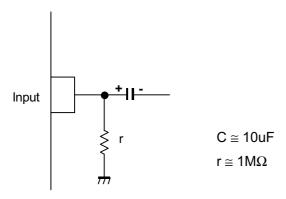

Differential Phase 1 vs. Load Resistor


Differential Phase 5 vs. Load Resistor

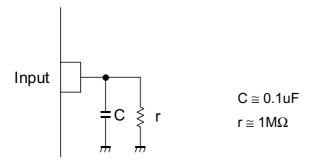

Differential Gain 1 vs. APL


Differential Phase 1 vs. APL

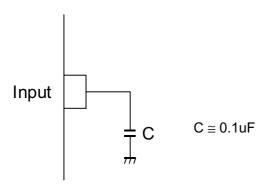
Differential Phase 5 vs. APL



Total Harmonic Distortion 1 vs. Load Resistor



■APPLICATION


This IC requires $1M\Omega$ resistance between INPUT and GND pin for clamp type input since the minute current causes an unstable pin voltage.

This IC requires 0.1uF capacitor between INPUT and GND, 1MΩ resistance between INPUT and GND for clamp type input at mute mode.

This IC requires 0.1uF capacitor between INPUT and GND for bias type input at mute mode.

[CAUTION]

The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.