# FM IF IC FOR PAGER

#### **■ GENERAL DESCRIPTION**

NJM2294 is a super low current FM IF IC for pagers. It includes almost all functions of the paging IF system. In those functions, the RSSI function can be used for automatic gain control. When the electric field strength is high, the RSSI output signal can control the attenuation of an RF amplifier to improve the received condition.

#### PACKAGE OUTLINE



NJM2294V

#### **FEATURES**

Super low Operating Current

 $(600 \,\mu\,A)$ 

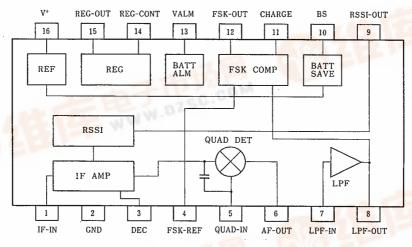
Low Operating Voltage

(1.1~4.0V)

RSSI (Received Signal Strength Indicator)

- FSK wave shaper
- Battery check alarm function (Alarm Voltage=1.1V typ.)
- Battery saving function
- A high output current voltage regurator with an external transistor (1.1V typ.)
- A ceramic discriminator is available.
- Package Outline

SSOP16


Bipolar Technology

#### RECOMMENDED OPERATIONAL CONDITION

Operating Voltage

1.1~4.0V

#### PIN CONFIGURATION

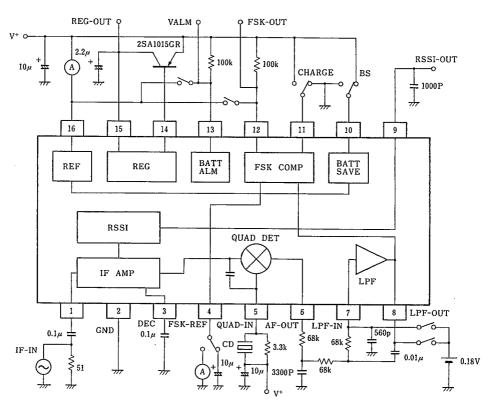


NJM2294V



## ■ MAXIMUM ABSOLUTE RATINGS

(Ta=25℃)


| PARAMETER                   | SYMBOL | RATINGS  | UNIT |
|-----------------------------|--------|----------|------|
| Supply Voltage              | V+     | 5        | V    |
| Power Dissipation           | Pd     | 300      | mW   |
| Operating Temperature Range | Topr   | -20~+75  | °C   |
| Storage Temperature Range   | Tstg   | -40~+125 | r    |

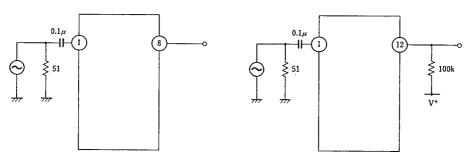
#### ■ ELECTRICAL CHARACTERISTICS

(V<sup>+</sup>=14V, fi=455kHz,  $f_{mod}$ =600Hz,  $f_{dev}$ = $\pm 4$ kHz, Ta=25°C)

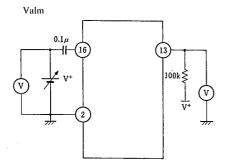
| PARAMETER                                     | SYMBOL   | TEST<br>CIRCUIT | TEST CONDITION               | MIN. | TYP. | MAX. | UNIT                |
|-----------------------------------------------|----------|-----------------|------------------------------|------|------|------|---------------------|
| No signal Operating Current                   | Iccq     | 11              | V <sub>i</sub> =0, 10pin=V+  | _    | 600  | 900  | μА                  |
| Battery saving Operating Current              | Iccs     | 12              | V <sub>i</sub> =0, 10pin=GND | _    | 0    | 5    | μΑ                  |
| IF amplifier input resistance                 | Rin      | _               |                              | _    | 2    |      | kΩ                  |
| S/N I                                         | S/N1     | 1               | Vi=60dB <sub>μ</sub> EMF     | T —  | 62   | _    | dB                  |
| S/N 2                                         | S/N2     | 1               | Vi=25dBμEMF                  |      | 35   |      | dB                  |
| —3dB limiting sensitivity                     | Vin(lim) | 1               |                              | _    | 22   | 27   | dB <sub>µ</sub> EMF |
| Demodulated output level                      | Vod      | 1               | Vi=60dB <sub>μ</sub> EMF     | 30   | 46   | 65   | mVrms               |
| AM rejection ratio                            | AMR      | 1               | Vi=60dBμEMF, AM=30%          |      | 50   |      | dB                  |
| Duty ratio of wave shaped output              | DR       | 2               | Vi=60dBμEMF                  | 40   | 50   | 60   | %                   |
| RSSI output voltage                           | Vrssi    | 10              | Vi=80dBμEMF                  | 0.48 | 0.62 | 0.76 | V                   |
| RSSI output resistance                        | Rrssi    |                 |                              |      | 62   |      | kΩ                  |
| Quick charge/discharge current                | 1ch      | 13              | 4pin=GND, 8pin=0.18V         | 35   | 65   | 110  | μА                  |
| Alarm voltage                                 | Valm     | 3               |                              | 1.05 | 1.10 | 1.15 | V                   |
| Regulator output voltage                      | Vreg     | 8               | RL=430Ω                      | 0.95 | 1.00 | 1.05 | V                   |
| Low level output voltage of VALM terminal     | ValmL    | 4               | IL=100μA                     |      | 0.1  | 0.4  | V                   |
| High level leak current of VALM terminal      | lalmH    | 5               |                              |      | 0    | 2    | μΑ                  |
| Low level output voltage of FSK-OUT terminal  | VfskL    | 6               | IL=100μA                     | _    | 0.1  | 0.4  | v                   |
| High level leak current of FSK-OUT terminal   | lfskH    | 7               |                              | _    | 0    | 2    | μА                  |
| Low level output voltage of REG-CONT terminal | VregL    | 9               | IL=100µA                     | _    |      | 0.6  | V                   |

#### **■ TEST CIRCUIT**



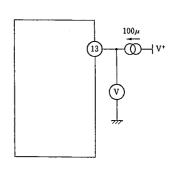

CD:CDBC455CX (MURATA MFG.)




SNI, SN2, Vi (LIM), Vod, AMR

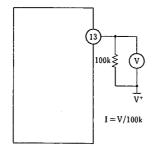
#### Test Circuit 2

DR



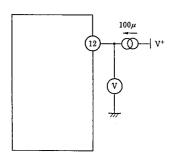

## Test Circuit 3




# Test Circuit 4

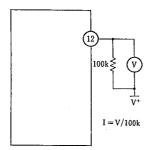
ValmL




## Test Circuit 5

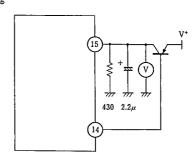
lalmH




#### **Test Circuit 6**

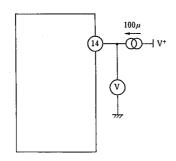
VfskL



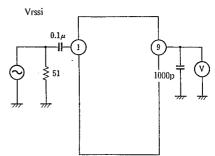

## Test Circuit 7

lfskH



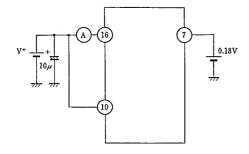

# Test Circuit 8

Vreg



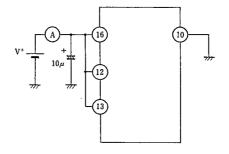

## Test Circuit 9

VregL



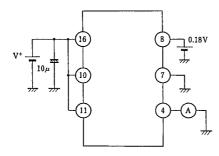

## Test Circuit 10




## Test Circuit 11

Iccq




# Test Circuit 12

Iccs



# Test Circuit 13

lch



# ■ TERMINAL FUNCTION

| PIN NO. | SYMBOL      | FUNCTION                                                                                                         | EQUIVARENT CIRCUIT       |
|---------|-------------|------------------------------------------------------------------------------------------------------------------|--------------------------|
| 1       | IF-IN       | An IF amplifier input. Typical input impedance is 2kΩ.                                                           | V+ \$51k \$ 1k 400       |
| 3       | DEC         | A Decoupling terminal which is connected with a decoupling capacitor.                                            | 3 400                    |
| 2       | GND         | Ground                                                                                                           |                          |
| 5       | QUAD-IN     | An input terminal of a quadrature detection circuit. This terminal will be connect with a ceramic discriminator. | V+ 20p 400 400 400       |
| 9       | RSSI<br>OUT | An RSSI Output. This voltage level is in logarithmic proportion to the input signal level.                       | 300<br>300<br>9<br>\$62k |
| 6       | AF-OUT      | An FM demodulated signal output.                                                                                 | ₩ V+ V+ W G G            |

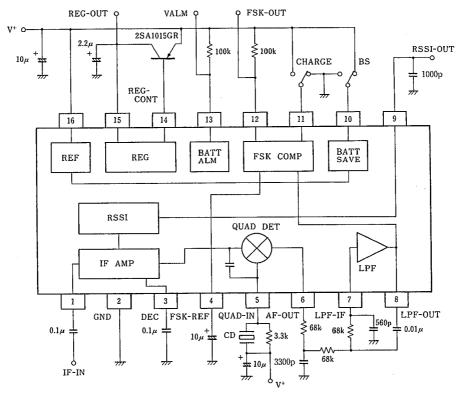
# **■ TERMINAL FUNCTION**

| PIN NO. | SYMBOL  | FUNCTION                                                                                                                       | EQUIVARENT CIRCUIT   |
|---------|---------|--------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 7       | LPF-IN  | An input terminal of a low pass filter. This terminal is biased from the AF-OUT terminal (6pin) through an external RC filter. | 7 300 V+             |
| 8       | LPF-OUT | An output terminal of a low pass filter.                                                                                       | 8 300 300k           |
| 4 .     | FSK-REF | A Reference input terminal of a wave shaping comparator.  This terminal is connected with an external capacitor.               | 4 300 W 300k \$ \$ W |
| 12      | FSK-OUT | An output terminal of a wave shaping circuit. The Wave shaped signal inverted for the LPF output comes out.                    | 300<br>W             |
| 10      | BS      | A Control terminal of a battery saving circuit. H:This circuit is OFF. L:This circuit is ON.                                   | 10 26k               |

# ■ TERMINAL FUNCTION

| PIN NO. | SYMBOL      | FUNCTION                                                                                             | EQUIVARENT CIRCUIT |
|---------|-------------|------------------------------------------------------------------------------------------------------|--------------------|
| 11      | CHARGE      | A Control terminal of a quick charge/discharge circuit. H:This circuit is ON. L:This circuit is OFF. | 300k               |
| 13      | VALM        | An output terminal of the alarm signal.  When V+ drops down to 1.1V, this output becomes high.       | 13                 |
| 14      | REG<br>CONT | A Control terminal of an external PNP transistor used for the regulator.                             | 1k V+              |
| 15      | REG-OUT     | A Monitering terminal of the regulator.                                                              | 300<br>5p 60k      |
| 16      | V+          | Supply voltage.                                                                                      | ·                  |

#### **■ FSK WAVE SHAPING FUNCTION**


When the demodulated FSK signal is weak or noisy, the micro computer may fail to read data. The wave shaping circuit (comparator) will change those signals to the correct logical signal to prevent the readerror.

# ■ QUICK CHARGE/DISCHARGE FUNCTION

The DC voltage of the FSK-REF terminal is equal to that of the demodulated FSK signal. When the battery saving state turns into the ordinary state, the FSK-REF terminal voltage will be late to come up to the reference voltage by the time constant of an external capacitor and an internal resistor, and the wave shaped data may be failed. This circuit will charge/discharge the external capacitor quickly to prevent the error.

When the DC level of the FM demudulated output changes in the operation mode of this function, the FSK-REF terminal voltage follows to the FSK demodulated output DC voltage, and the FSK output duty ratio can be constant.

#### **■ APPLICATION CIRCUIT**



CD: CDBC455CX (MURATA MFG.)

# NJM2294

# **MEMO**

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.