

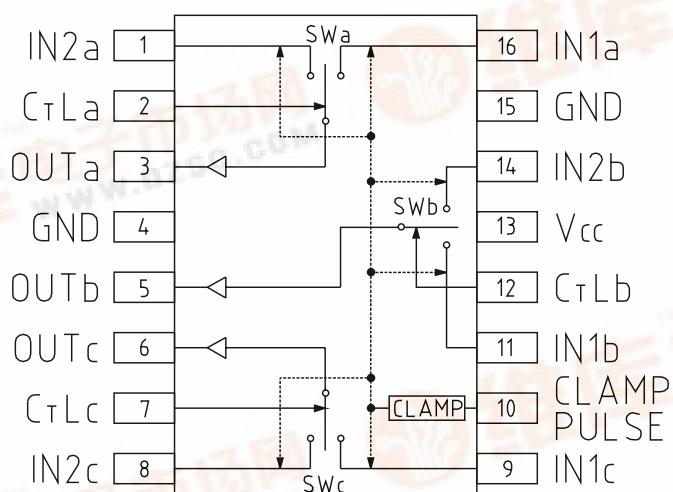
Pedestal Clamp 2-Input 1-Output 3-Circuit Video Switch Monolithic IC MM1389

Outline

This is a video switch IC developed for use in video cameras, with 2-input and 1-output circuits. It has pedestal clamp input, making it ideal for RGB and video signal switching,

Features

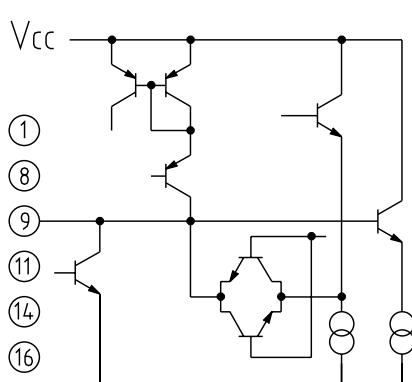
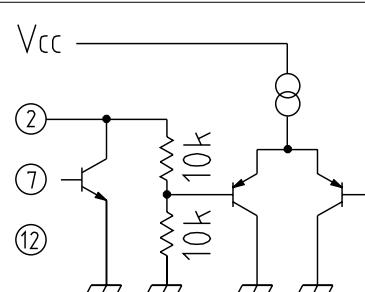
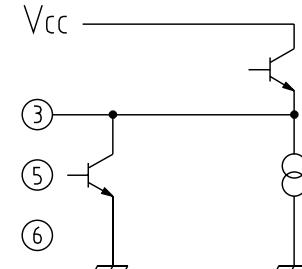
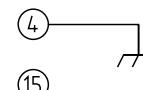
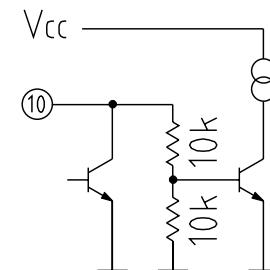
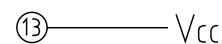
1. Pedestal clamp input	
2. Low current consumption	12mA typ.(Vcc5V)
3. Frequency response	10MHz typ. 0dB
4. Operating power supply voltage	4.5~12V


Package

SOP-16B (MM1389XF)

Applications

1. TV
2. VCR
3. Other video equipment







Block Diagram

Control input truth table

SW	OUT
L	IN2a
	IN2b
	IN2c
H	IN1a
	IN1b
	IN1c

Pin Description

Pin no.	Pin name	Function	Internal equivalent circuit diagram
1 8 9 11 14 16	IN2a IN2c IN1c IN1b IN2b IN1a	Input pin 2SWa Input pin 2SWc Input pin 1SWc Input pin 1SWb Input pin 2SWb Input pin 1SWa	
2 7 12	CrLa CrLb CrLc	Switching pin a Switching pin b Switching pin c	
3 5 6	OUTa OUTb OUTc	Output pin SWa Output pin SWb Output pin SWc	
4 15	GND GND	GND pin 1 GND pin 2	
10	CLAMP PULSE	Clamp pulse input pin	
13	Vcc	Power supply voltage pin	

Absolute Maximum Ratings (Ta=25°C)

Item	Symbol	Ratings	Units
Storage temperature	T _{STG}	-40~+125	°C
Operating temperature	T _{OPR}	-25~+75	°C
Power supply voltage	V _{CC} max.	15	V
Allowable loss	P _d	350	mW

Recommended Operating Conditions

Item	Symbol	Ratings	Units
Operating temperature	T _{OPR}	-25~+75	°C
Operating voltage	V _{OP}	4.5~12.0	V

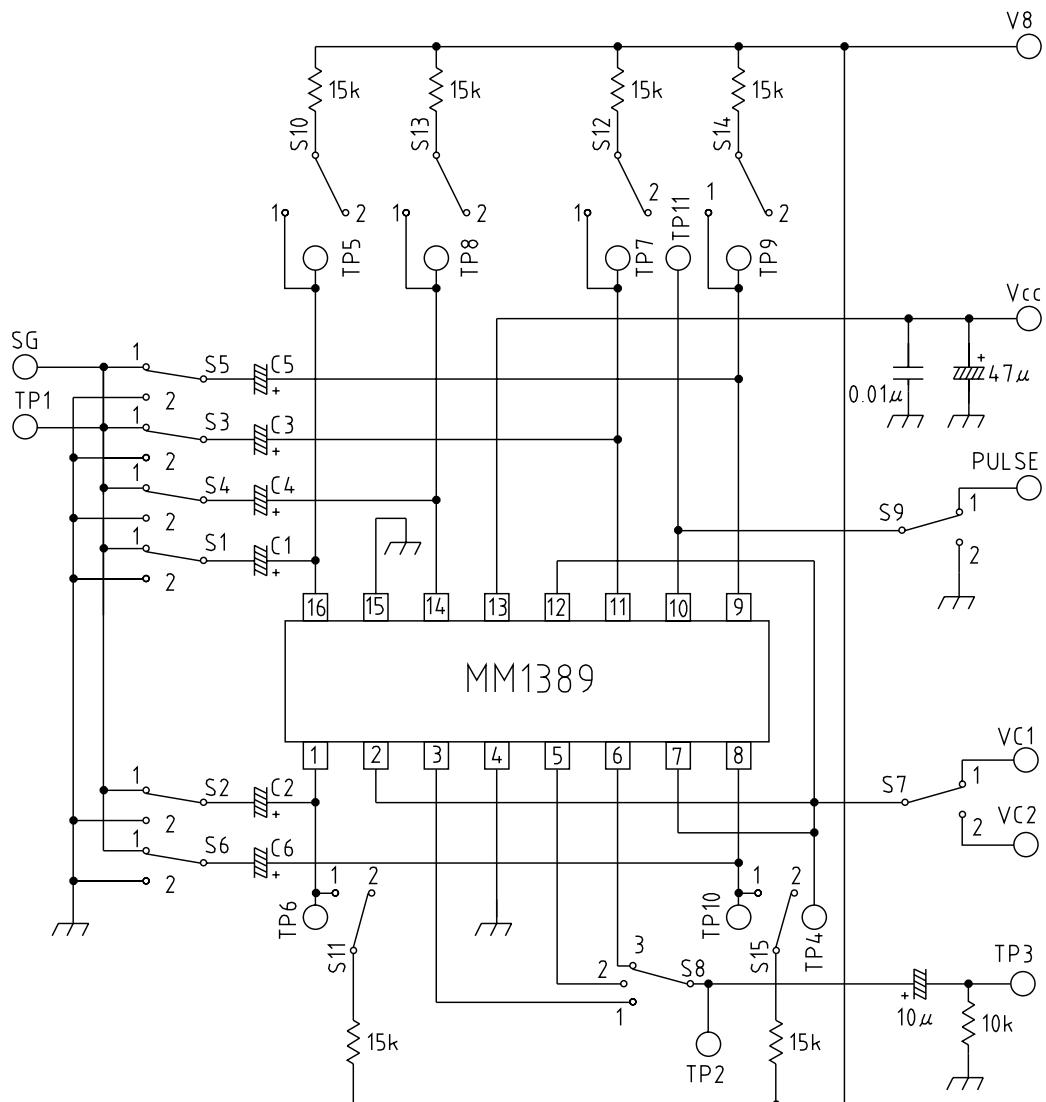
Electrical Characteristics (Except where noted otherwise, Ta=25°C, V_{CC}=5.0V)

Item	Symbol	Measurement conditions	Min.	Typ.	Max.	Units
Consumption current	I _D	Refer to Measuring Circuit		12.0	17.0	mA
Voltage gain	G _V	Refer to Measuring Circuit	-0.5	0	+0.5	dB
Frequency characteristic	F _C	Refer to Measuring Circuit	-1	0	+1	dB
Dynamic range 1	V _{D1}	Refer to Measuring Circuit	1.40	1.65		V _{P-P}
Dynamic range 2	V _{D2}	Refer to Measuring Circuit	0.80	0.95		V _{P-P}
Crosstalk	C _T	Refer to Measuring Circuit		-70	-60	dB
Switch input voltage H	V _{IH}	Refer to Measuring Circuit	2.1			V
Switch input voltage L	V _{IL}	Refer to Measuring Circuit			0.7	V
Clamp pin input voltage H	V _{CTH}	Refer to Measuring Circuit	2.1			V
Clamp pin input voltage L	V _{CTL}	Refer to Measuring Circuit			0.7	V

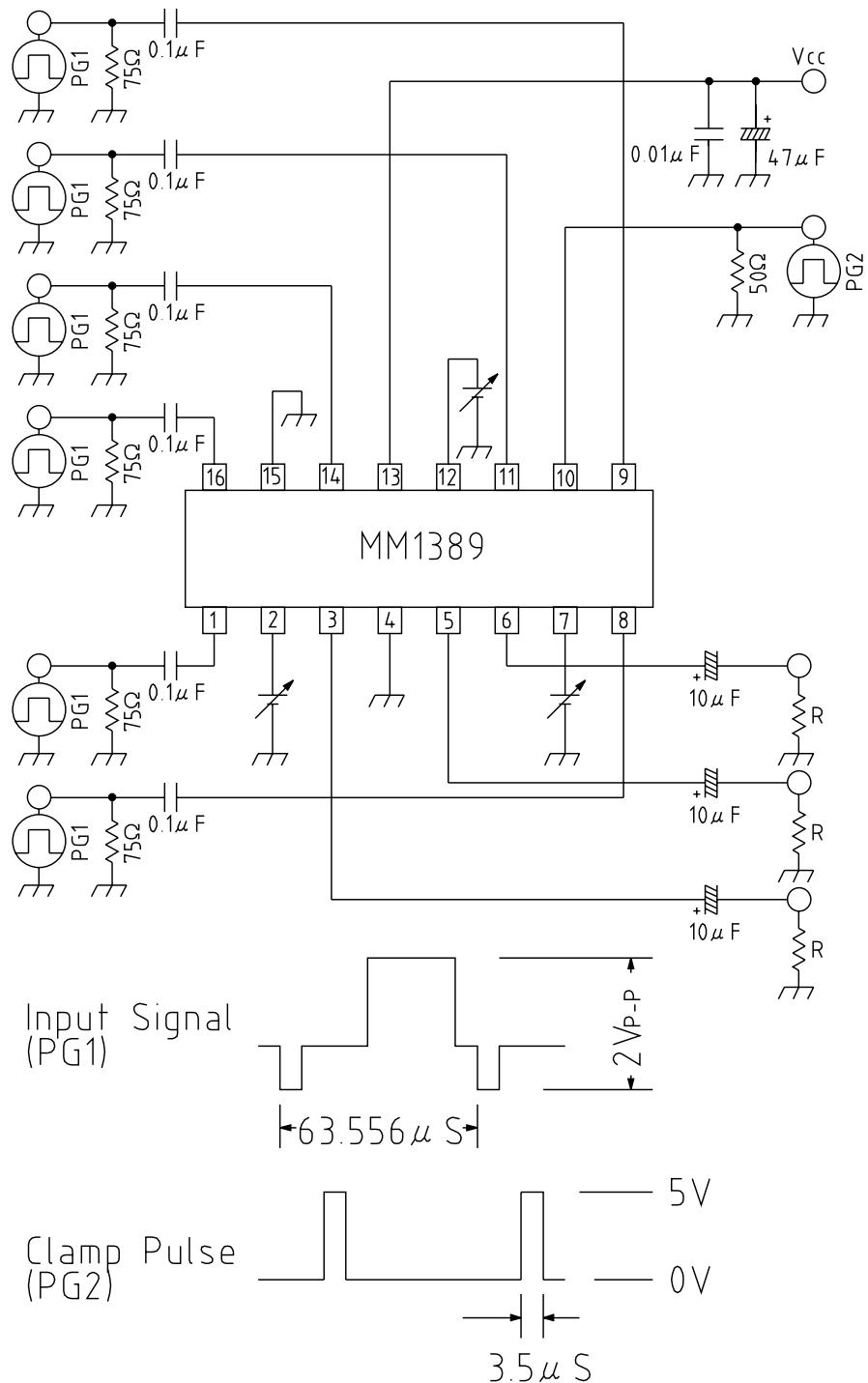
V_{D1} : Positive dynamic range (from clamp level)

V_{D2} : Negative dynamic range (from clamp level)

Measuring Procedures


(Except where noted otherwise, $V_{CC}=5.0V$, $V_{C1}=V_{CC}$, $V_{C2}=0V$,
 $PULSE=V_{CC}$, $C1 \sim C6=0.1\mu F$, impress $V_B=3.5V$ when $S9$ is 2)

Item	Symbol	Switch state										Notes
		S1	S2	S3	S4	S5	S6	S7	S8	S9	S10~S15	
Consumption current	I_D	2	2	2	2	2	2	2	2	1	2	
Voltage gain	G_V	1	2	2	2	2	2	1	1	2	1	
		2	1	2	2	2	2	2	1	2	1	
		2	2	1	2	2	2	1	2	2	1	
		2	2	2	1	2	2	2	2	2	1	
		2	2	2	2	1	2	1	3	2	1	
		2	2	2	2	2	1	2	3	2	1	
Frequency characteristic	F_C	1	2	2	2	2	2	1	1	2	1	
		2	1	2	2	2	2	2	1	2	1	
		2	2	1	2	2	2	1	2	2	1	
		2	2	2	1	2	2	2	2	2	1	
		2	2	2	2	1	2	1	3	2	1	
		2	2	2	2	2	1	2	3	2	1	
Dynamic range 1, 2	V_{D1}	1	2	2	2	2	2	1	1	1	2	VD1: Positive dynamic range (from clamp level)
		2	1	2	2	2	2	2	1	1	2	
		2	2	1	2	2	2	1	2	1	2	
	V_{D2}	2	2	2	1	2	2	2	2	1	2	VD2: Negative dynamic range (from clamp level)
		2	2	2	2	1	2	1	3	1	2	
		2	2	2	2	2	1	2	3	1	2	
Crosstalk	C_T	1	2	2	2	2	2	1	1	2	1	
		2	1	2	2	2	2	2	1	2	1	
		2	2	1	2	2	2	1	2	2	1	
		2	2	2	1	2	2	2	2	2	1	
		2	2	2	2	1	2	1	3	2	1	
		2	2	2	2	2	1	2	3	2	1	
Switch input voltage H, L	V_{IH}	1	2	2	2	2	2	1	1	2	1,2	
		2	2	1	2	2	2	1	2	2	1,2	
		2	2	2	2	1	2	1	3	2	1,2	
	V_{IL}	2	1	2	2	2	2	1	1	2	1,2	
		2	2	2	1	2	2	1	2	2	1,2	
		2	2	2	2	2	1	1	3	2	1,2	
Clamp pin input voltage H, L	V_{CTH}	2	2	2	2	2	2	1	1	2	1	
		2	2	2	2	2	2	1	2	2	1	
		2	2	2	2	2	1	1	3	2	1	


(Except where noted otherwise, $V_{CC}=5.0V$, $V_{C1}=V_{CC}$, $V_{C2}=0V$, $PULSE=V_{CC}$, $C1 \sim C6=0.1\mu F$, impress $V_B=3.5V$ when S9 is 2)

Item	Symbol	Measurement conditions	Notes
Consumption current	I_D	Connect a DC ammeter to the V_{CC} pin and measure. The ammeter is shorted for subsequent measurements.	
Voltage gain	G_V	Input a $2.0V_{P-P}$, $100kHz$ sine wave to SG, and obtain G_V from the following formula given TP1 voltage as V_1 and TP3 voltage as V_2 . $G_V=20\log(V_2/V_1) \text{ dB}$	$f=100kHz$ $V=2.0V_{P-P}$
Frequency characteristic	F_C	For the above G_V measurement, given TP3 voltage for $10MHz$ as V_3 , F_C is obtained from the following formula. $F_C=20\log(V_3/V_2) \text{ dB}$	$10MHz/100kHz$ $V=2.0V_{P-P}$
Dynamic range 1, 2	V_{D1} V_{D2}	Input a video signal to SG and a $5V_{P-P}$ clamp pulse to PULSE. Given input amplitude on the positive side of clamp level V_C as V_{D1IN} , and output amplitude as V_{D1OUT} and negative side input amplitude as V_{D2IN} , and output amplitude as V_{D2OUT} , V_{D2} is obtained from the following formula. $V_{D1} : 20\log(V_{D1OUT}/V_{D1IN}) \leq V_{D1IN} \text{ for } -1dB$ $V_{D2} : 20\log(V_{D2OUT}/V_{D2IN}) \leq V_{D2IN} \text{ for } -1dB$	
Crosstalk	C_T	Input a $2.0V_{P-P}$, $4.43MHz$ sine wave to SG, and given TP1 voltage as V_4 and TP3 voltage as V_5 , C_T is obtained from the following formula. $C_T=20\log(V_5/V_4) \text{ dB}$	$f=4.43MHz$ $V=2.0V_{P-P}$
Switch input voltage H, L	V_{IH} V_{IL}	Make S10, S12 and S14 1, and S11, S13 and S15 2. Input a $2.0V_{P-P}$, $100kHz$ sine wave to SG, and raise gradually from $V_{C1}=0V$. TP4 voltage when the SG signal appears on TP2 is V_{IN} . Next, reverse S10-S15 settings and lower gradually from $V_{C1}=V_{CC}$. TP4 voltage when the SG signal appears on TP2 is V_{IL} .	
Clamp pin input voltage H, L	V_{CTH} V_{CTL}	Impress $4V$ on V_B and raise gradually from $PULSE=0V$. TP11 voltage when less than $2.0V$ appears on TP2 is V_{CTH} . Lower from $PULSE=V_{CC}$, and TP11 voltage when more than $2.2V$ appears on TP2 is V_{CTL} .	

Measuring Circuit

Application Circuits

