MEIC
 MX93132
 MX93132 DATA SHEET CONTENT

1 INTRODUCTION
1．1 FEATURE 2
1．2 DIFFERENCE BETWEEN MX93011C AND MX93132 3
2 PIN
2．1 PIN OUT FOR 128 PIN PQFP MX93132 4
2．2 PIN DESCRIPTIONS 6
2．3 PIN TYPE ABBREVIATION 9
2．4 PINS SUMMARY BY PIN TYPE 9
2．5 MULTIPLEX PINS 10
2.6 I／O PORT INTERNAL CIRCUIT 10
3 ARCHITECTURE
3．1 DATA UNIT 13
3．2 MEMORY MAP AND ADDRESSING MODES 18
3．3 PROGRAM FLOW CONTROL UNIT 23
3．4 APPLICATION INTERFACE UNIT 29
4 REGISTERS
4．1 I／O MAPPED REGISTERS SUMMARY 34
4．2 NON I／O MAPPED REGISTER SUMMARY 35
4．3 I／O MAPPED REGISTERS DESCRIPTION 36
4．4 NON I／O MAPPED REGISTER DESCRIPTION 44
5 INSTRUCTIONS
5．1 INSTRUCTION SET SUMMARY 47
5．2 ACRONYMS AND NOTATIONS 49
5．3 INSTRUCTION SET DESCRIPTION 51
6 PCM CODEC
6．1 PCM CODEC OVERVIEW 85
6．2 FUNCTIONAL DESCRIPTION 88
6．3 CONTROL REGISTERS DEFINITION 94
7 CHARACTERISTICS
7．1 DC CHARACTERISTICS 98
7．2 AC TIMING AND CHARACTERISTICS 104
8 PACKAGE INFORMATION
8．0 ORDERING INFORMATION 120
8．1 PACKAGE INFORMATION FOR 128 PIN PQFP 120

MX93132

1.1 FEATURES

- aptimized for highly integrated digital answering machine application
- GBuilt in DRAM controller; interface with $x 1, x 4, x 8$ and $x 16$ configuration
- OOne 8 bits host interface
- Maximum 9 general input pins, 23 output pins and 8 programmable bi-directional I/O pins
- aOne external interrupt pins
- a 1 ms internal timer interrupt
- 64 K words program space, 64 K internal , in which control code and voice prompt can be built
- 64 K words data space , 2.5 K words data RAM internal
- 34 MHz running clock, provide 30 MIPs processing power with 40 mA active current
- Built in FLL with 4.096 MHz clock as clock source to achieve 2 mA consumption in power down mode operation
- ${ }^{1} 6 \times 16$ multiplication and 32 bit accumulation executed in one instruction cycle
- asingle cycle normalization instruction
- $\quad 32$ bit barrel shifter with left/right shift 15 bits capability
- 232 level hardware stack
- ab Auxiliary registers used in register indirect addressing.
- ZZero-overhead hardware looping, maximum 8 instruction words executed repeatedly 1024 times maximum
- Built-in two PCM CODECs
- Support Digital Speakerphone application
- EODECs support 16-bit format linear data
- Support switch paths for DAM (digital answering machine) related applications
- Support two comparators for power-low and battery -low detection
- Support external L..P.F. for D/A output path
- Support external volume control
- En-chip differential line driver
- En-chip ALC (automatic level control)
- En-chip digital volume control of CODEC
- En-chip programmable receive/transmit gain control of CODEC
- Easy interface to FAX or cordless Phone
- Fabricated in 0.5 um 5V CMOS process
- 928 pins PQFP package

1.2 DIFFERENCE between MX93011C and MX93132

	MX93011C	MX93132
INTERNAL RAM SIZE	2K Words Bank0 : 0x0000 ~ 0x03FF(1K) Bank1: 0x0400~0x07FF(1K)	$\begin{array}{\|l\|} \hline \text { 2.5K Words } \\ \text { Bank0 : 0x0000 ~0x03FF(1K) } \\ \text { Bank1: 0x0400 ~0x09FF(1.5K) } \\ \hline \end{array}$
EXTERNAL RAM STARTING ADDRESS	0X0800	0X1000
INTERNAL ROM SIZE	32k Words	64k Words
EXTERNAL ROM STARTING ADDRESS	0X8000	No external ROM
REPEAT COUNT REGISTER	7-BIT	10-BIT
AR MODULO REGISTER	7-BIT	10-BIT
INTERRUPT PENDING STATUS REGISTER	REG5 (R)	No
CONTINUOUS INSTRUCTION "SQRA"	Overflow problem	Fix continuous "SQRA"
EXTENDED OUTPUT PORT REGISTER	OPT21-OPT19	OPT22 -OPT19
CODEC COMMAND REGISTER	No	REG5(R/W)
CODEC RECEIVE/TRANSMIT REGISTERS	REG16(R) : CDRRO REG17(W) : CDXR0	REG16(R/W): CDDR0, CDXR0 REG17(R/W): CDDR1, CDXR1
CODEC INTERFACE	Single external codec interface	Two built-in internal codec
X'TAL source	32.256 MHz \& 32.768 KHz	4.096 MHz
FLL Multiplication Factor Register (FLLMR)	13-Bit (0-0x1FFF)	5-Bit (12-24)
FLL Control Register (FLLCONR)	12-Bit	No
FLL Status Register (FLLSR)	13-Bit	No
CMCK Divide Ratio Register (CMCKDIVR)	5-Bit	No

2.1 PIN OUT for 128 PIN PQFP MX93132

2.2 PIN DESCRIPTIONS

1. POWER/CLOCK/CONTROL PINS :			
Name	Pin Type	Pin Number	Description
VDD	Power	23,47,84	5 Volt power source pins
GND	Power	24,51,85,93	Ground pins
FLLEN	IS	128	1 : Test X' tal mode. 0 : Single low $\mathrm{X}^{\text {' tal }}$ mode. High clock will be generated from FLL
XI	X ${ }^{\text {tal }}$	48	4.096 MHz crystal oscillator's input
XO	X tal	49	4.096 MHz crystal oscillator's output
CP	I/O(A)	50	Output of internal PLL charge pump circuit.
RST\}	IS	126	Power on reset pin.Minium timing 50ms.
HOLD	IS	90	Level trigger. Hold down clock to DSP (X^{\prime} tal oscillator or FLL is still active) and related data ,address and control pins will go to high-impedance state.
EROM	IS	127	Map all program memory space to external
Pl64K	IS	17	Select Internal ROM size (High : 64K, Low : 48K)
NMIVTCLK	IS	46	Falling Edge-triggered non-maskable external interrupt / Test clock in
INT1\}	IS	45	Falling Edge-triggered maskable external interrupt
TEST0	ISH	91	Test pin for CODEC
TEST1	ISH	92	Test pin for CODEC

Note 1: FLLEN \backslash,HOLD
,EROM,GND,NMIVTCLK,INT1
,TESTO
,TEST1 1 pin output low when DSP is in reset state or in power down mode.

MX93132
2. CODEC INTERFACE PINS :

Name	Pin Type	Pin Number	Description
AVDD	Power	101,124	5 V power for analog circuit
SVDD1	Power	123	5 V power for speaker driver
SVDD2	Power	119	5V power for speaker driver
AGND	Power	102,125	Ground for analog circuit
SGND	Power	121	Ground for speaker driver
VCOMP	I(A)	94	Reference voltage for voltage comparator
CMP2O	$\mathrm{O}(\mathrm{A})$	95	Voltage comparator 2 output
CMP2I	I(A)	96	Non-inverting input of voltage comparator 2
CMP1O	$\mathrm{O}(\mathrm{A})$	97	Voltage comparator 1 output
CMP1I	$\mathrm{I}(\mathrm{A})$	98	Non-inverting input of voltage comparator 1
LOUTP	$\mathrm{O}(\mathrm{A})$	99	Non-inverting output of LIN-DRV with PGA; PGA from 0 to 22.5 dB ; $1.5 \mathrm{~dB} /$ step.
LOUTN	$\mathrm{O}(\mathrm{A})$	100	Inverting output of LIN-DRV with PGA; PGA from 0 to 22.5 dB ; $1.5 \mathrm{~dB} /$ step.
VBG	$\mathrm{O}(\mathrm{A})$	103	Band-gap reference; normal 1.25 V and should not be used to sink or source current
AG	$\mathrm{O}(\mathrm{A})$	104	Internal analog signal ground; normal 2.25V and should not be used to sink or source current.
VREF	$\mathrm{O}(\mathrm{A})$	105	Voltage reference; normal 2.25V and can sink 450uA
MIC	I(A)	106	Microphone input with PRE-PGA; PGA from -15 to 21 dB
LIN	$\mathrm{I}(\mathrm{A})$	107	Telephone line signal input with PRE-PGA; PGA from - 15 to 21 dB
AUX1	I/O(A)	108	Auxiliary signal input with PRE-PGA; PGA from -15 to 21 dB
PGAC1	$\mathrm{O}(\mathrm{A})$	109	programmable gain amplifier(PRE-PGA) compensate capacitor
ALCRC	$\mathrm{O}(\mathrm{A})$	110	Automatic level control (ALC) time constant
ALCC1	$\mathrm{O}(\mathrm{A})$	111	Automatic level control (ALC) DC blocking capacitor output
ALCC2	$\mathrm{O}(\mathrm{A})$	112	Automatic level control (ALC) DC blocking capacitor input
FILT	I/O(A)	113	1.anti-aliasing filter; 2. As an I/O port for AIN (A/D input)
PGAC2	$\mathrm{O}(\mathrm{A})$	114	Programmable Gain Amplifier Offset Capacitor
LPFC1	$\mathrm{O}(\mathrm{A})$	115	Option of external passive L.P.F (Low Pass Filter);
LPFC2	$\mathrm{O}(\mathrm{A})$	116	Option of external passive L.P.F (Low Pass Filter);
AUX2	I/O(A)	117	I/O port for SWK and SWH
VR	$\mathrm{O}(\mathrm{A})$	118	External speaker volume control; use a variable 10 K variable resistor.
SPKP	$\mathrm{O}(\mathrm{A})$	120	Inverting output of SPK-DRV with DA-PGA, ATT1 And ATT2; PGA from 0 to 9 dB ; Attenuator $1 \& 2$ from 0 to -45 dB .
SPKN	$\mathrm{O}(\mathrm{A})$	122	Non-inverting output of SPK-DRV with DA-PGA, ATT1 And ATT2; PGA from 0 to 9 dB ; Attenuator $1 \& 2$ from 0 to -45 dB .

3. MEMORY INTERFACE PINS :

Name	Pin Type	Pin Number	Description
EAD[15:0]	OA/Z	$29-44$	External memory address bus. Note 2
ED[15:0]	IT/OA/Z	$1-16$	External memory data bus. Note 2
EDCE \backslash	OA/Z	25	External data memory chip enable. Note 2
EPCE \backslash	OA/Z	26	External program memory chip enable. Note 2
ERD \backslash	OA/Z	27	External memory read enable. Note 2
EWR \backslash	OA/Z	28	External data memory write enable. Note 2
CAS \backslash	OA	19	DRAM column address select
RAS \backslash	OA/Z	22	DRAM row address select
DRD \backslash	OA	20	DRAM read enable
DWR \backslash	OA	21	DRAM write enable

Note 2: Placed in high-impedance state when DSP is in HOLD mode.

4. PARALLEL INTERFACE (HOST INTERFACE) PINS: When HOSTM bit in CTLR =0

Name	Pin Type	Pin Number	Description
HDB[7:0]	IS/OA/Z	$80-83,86-89$	Parallel data bus to external host controller
HILO	IS/OA/Z	76	High or low byte select. 1: select high byte 0 : select low byte
HRD \backslash	IS/OA/Z	78	Host read enable
HWR \backslash	IS/OA/Z	77	Host write enable
ACK \backslash	OA	79	Acknowledge to external host that there is response from DSP to be read by external host.

5. GENERAL PURPOSE I/O PORT PINS

Name	Pin Type	Pin Number	Description
IPT[3:0]	ISH	$68-71$	Input ports with internal pull high resister (R $\sim=150 \mathrm{~K}$ ohm)
IPT[7:4]	IS	$72-75$	Input ports
IPT8	IS	22	Input port
OPT[15:0]	OB	$52-67$	Output ports
BIO[7:0]	IS/OA	$80-83,86-89$	Programmable bi-directional I/O ports
OPT[18:16]	OA	$76-78$	Output ports
OPT[21:19]	OA	$19-21$	Output ports
OPT22	OB	18	Output ports
XF \backslash	OA	79	External flag. Can be changed directly by SXF/RXF instruction.

2.3 PIN TYPE ABBREVIATION :

Pin Type	Description	Pin Type	Description
IS	CMOS level schmidt trigger input buffer	OB	16 mA drive output buffer
ISH	CMOS level schmidt trigger input buffer with an internal pull high resistor built in	Z	High impedance state
OA	8 mA drive output buffer	X^{\prime} tal	Crystal oscillator input/output pin
I(A)	Analog input port	$\mathrm{O}(\mathrm{A})$	Analog output port
$\mathrm{I} / \mathrm{O}(\mathrm{A})$	Analog Bi-direction port		

2.4 PINS SUMMARY by PIN TYPE :

Pin Type	Signal Name	Pin Type	Description
IS	INT1		
, NMII , IPT[8:4], HILO, HWR HRD	OB	OPT[15:0],OPT22	
ISH	IPT[3:0], TEST0		
, TEST1	IS/OA	BIO[7:0], HDB[7:0] , OPT[18:16]	
OA	CAS,$~ D R D \backslash$, DWR		
, RAS \backslash, ACK \backslash	IS/OA/Z	ED[15:0]	
OA/Z	EAD[15:0] , EPCE , EDCE\} ERD	X' tal	XI,XO .
I(A)	VCOMP, CMP2I, CMP1I, MIC, LIN	$\mathrm{O}(\mathrm{A})$	CMP2O, CMP1O, LOUTP, LOUTN VBG, AG, VERF, PGAC1, ALCRC ALCC1, ALCC2, PGAC2, LPFC1 LPFC2, VR, SPKN, SPKP
I/O(A)	AUX1, FILT, AUX2,CP		

2.5 MULTIPLEX PINS :

	HOSTM = 0 (uP external)		HOSTM $=\mathbf{1}$ (uP inside)	
Pin Number	Signal Name	Description	Signal Name	Description
$80-83,86-89$	HDB[7:0]	Host data bus	BIO[7:0]	Host data bus
76	HILO	High low byte select	OPT18	Output port
78	HRD \backslash	Host read enable	OPT17	Output port
77	HWR \backslash	Host write enable	OPT16	Output port
79	ACK \backslash	Acknowledge to HOLD \backslash XF \backslash	External flag	

Note : HOSTM is bit 1 of CTLR, Its power-on reset default is $\mathbf{0}$.

	DFS = 0 (DRAM interface)		DFS = 1 (FLASH interface)	
Pin Number	Signal Name	Description	Signal Name	Description
19	CAS	Column address select	OPT21	Output port
20	DRD	DRAM read enable	OPT20	Output port
21	DWR \backslash	DRAM write enable	OPT19	Output port
22	RAS	Row address select	IPT8	Output port

Note : DFS is bit 1 of EXCTLR, Its power-on reset default is $\mathbf{0}$.

2.6 I/O PORT INTERNAL CIRCUIT :

2.6.1. Input port

Pull-high resistor : IPT0~IPT3, TEST0
, TEST1\

No pull-high resistor : INT1
, NMI
, IPT4~IPT7, HOLD

2.6.2. Output port

OPT0~OPT15

2.6.3. Bi-direction port

BIOO~BIO7,

3. ARCHITECTURE

3.1 DATA UNIT

3.1.1 ALU

3.1.2 ACCUMULATOR
3.1.3 MULTIPLIER
3.2 MEMORY MAP AND ADDRESSING UNIT
3.2.1 MEMORY MAP AND MEMORY INTERFACE
3.2.2 IMMEDIATE ADDRESSING MODE
3.2.3 PAGED MEMORY-DIRECT ADDRESSING
3.2.4 REGISTER INDIRECT ADDRESSING MODE
3.2.5 MODULO ADDRESSING
3.2.6 MISCELLANEOUS ADDRESSING MODE
3.3 PROGRAM FLOW CONTROL UNIT
3.3.1 CLOCK GENERATOR/FLL
3.3.2 RUNNING MODE/PIPE LINE / WAITSTATE
3.3.3 BRANCH/CALL/REPEAT/LOOP/STACK REGISTER
3.3.4 INTERRUPT

VECTOR
MASK
STATUS
INTERRUPTIBLE
NESTING
3.4 APPLICATION INTERFACE UNIT
3.4.1 CODEC INTERFACE
3.4.2 DRAM INTERFACE
3.4.3 I/O FUNCTION
3.4.4 HOST INTERFACE
3.4.5 TIMER

3.1 DATA UNIT

3.1.1 ALU

ARITHMETIC INSTRUCTIONS:

ABS	Absolute value of high accumulator
ADH/ADHK/ADHL	Add data (from memory) or constant to high accumulator
ADL/ADLK/ADLL	Add data (from memory) or constant to low accumulator
SBH/SBHK/SBHL	Subtract data (from memory) or constant from high accumulator
SBL/SBLK/SBLL	Subtract data (from memory) or constant from low accumulator

Execute ABS on 0×8000 will cause incorrect result, because absolute value of 0×8000 exceed the maximum positive number (0×7 FFF) which can be represented.

- Data format for ALU is assumed to be signed two's complement. Short constant is treated as unsigned constant.

LOGIC INSTRUCTIONS:

OR/ORK/ORL
AND/ANDK/ANDL
XOR/XORK/XORL

OR data (from memory) or constant with high accumulator AND data (from memory) or constant with high accumulator Exclusive-OR data (from memory) or constant with high accumulator

DATA MOVEMENT INSTRUCTIONS:

LAC/LACK/LACL	Load data (from memory) or constant to high accumulator
SAH/SAL	Store contents of high or low accumulator to data memory
PAC	Load product register to accumulator
APAC/SPAC	Add/Subtract product register to/from accumulator
POPH/POPL	Pop top of stack to high/low accumulator
PSHH/PSHL	Push high/low accumulator onto stack

MX93132

3.1.2 ACCUMULATOR

SCALING INSTRUCTIONS :

SFL/SFR/SFRS \quad Shift contents of accumulator left/right/right with sign extended

OVERFLOW MODE SETTING :

SOVM/ROVM \quad Set/Reset overflow mode

When OVM bit being set, overflow mode protection is enabled. IF the results of data operation during add/subtract and shifting instructions execution exceed the maximum or minimum value that can be represented by the accumulator , we call this condition as overflow. If overflow mode is enable in this case, data in accumulator will be saturated to the largest positive or the negative smallest number that can be represented.(0x7FFF FFFF or 0x8000 0000)

NORMALIZE INSTRUCTIONS :

NOM

Normalize contents of accumulator

- This NOM instruction performs hardware normalization operation on signed two's complement numbers stored in the accumulator. The left shifted counts during normalization are stored in shift count register (SHFCR) . Note : SHFCR is 5 bit wide in this normalize case, the following scaling operation by "SFL 0" has up to 31 bit left shift capability

FLAG:

SIGN	MSB of high accumulator.
OV	Overflow flag for last ACCH operation. This flag will be cleared by any instructions which will generate result in accumulator.
ACZ	Accumulator zero flag. This bit reflects current accumulator status.

These flags are all stored in status register, and can be read out by SSS instruction.

3.2 MEMORY MAP AND ADDRESSING MODES

3.2.1 MEMORY MAP

PROGRAM MEMORY MAP

DATA MEMORY MAP

- Program memory map is selected by EROM pin. When EROM=1, all program memory space are mapped to external. When EROM $=0$, the 64 K words program memory space are totally mapped to internal contact-programming ROM and external program memory space does not exist.
- Program addresses $0 \times 0000 \sim 0 \times 000 B$ are reserved for interrupt vector, main program can start from $0 \times 000 \mathrm{C}$.
- Totally 2.5 K words internal RAM. Only first 2 K words can be accessed by short direct mode addressing. Refer to next section to see the details about data access.

3.2.2 IMMEDIATE ADDRESSING MODE

In immediate addressing ,the immediate operand is contained in the instruction words. This immediate operand is either a un-signed 7 bit short constant or a long 16 bit constant which may be un-signed or signed(ADLL and SBLL instructions).
Example : Short immediate Long immediate
ADHK 23 ADHL 0x1234
Add 23 or 0×1234 to high accumulator

MX93132

3.2.3 PAGED MEMORY DIRECT ADDRESSING

PAGED MEMORY DIRECT ADDRESSING

- In paged memory-direct addressing mode, data operand to be processed with is pointed by 11 bit address, which are composed of 4 bit data page pointer and 7 bit within-page address.
- 4 bit data page pointer DP[3:0] (part of status register) will select one of 16 pages of internal data RAM (only first two k words of internal RAM). 7 bit direct memory address is encoded in instruction word and will choose one of 128 memory location within the selected page.
- LDP or LDPK instruction can be used to modify data page pointer, SDP and SSS instructions can be used to save data page pointer in data memory.
Example : ADH 127 (if DP[3:0]=2)
Add data from memory (page 2, address within page is 127) to high accumulator

3.2.4 REGISTER INDIRECT

REGISTER-INDIRECT ADDRESSING MODE

- There are 8 auxiliary registers which are used as data memory pointer in register-indirect mode addressing. ARP[2:0] in status register will choose one of them as current ar , and this 16 bit-wide current ar will point to one of 64 k words data memory space in related instruction operation.
- A dedicated arithmetic unit is used to post modify the content of current ar parallel with instruction execution without introducing any extra instruction cycle. Up to seven kinds of post-modification can be made depending on what kind of operand specified in instruction word.
- ARP[2:0] also can be modified at the same time with new ARP for next following instructions use. Syntax : INST * [,narp] ; Details about operand " *" and " [,narp] " are described below

Operand	Operation
$*$	
+0	No operation
-AR0	(arp) -ar0 \rightarrow (arp)
+ AR0	(arp) + ar0 \rightarrow (arp)
+	$(\operatorname{arp})+1 \rightarrow$ (arp)
-	$(\operatorname{arp})-1 \rightarrow$ (arp)
++	(arp) $+2 \rightarrow$ (arp)
--	(arp) $-2 \rightarrow$ (arp)

Operand	Operation
[,narp]	
None	None
,narp	narp \rightarrow arp

Note : "[,narp]" is an optional operand.
(arp) is one of 8 auxiliary registers which is pointed by arp.
Before instruction : ARP[2:0] =5 AR5[15:0]=0×1234
Example : ADH +, 2 ; Add data from memory pointed by AR5[15:0] to high accumulator and increase AR5[15:0] by one as specified in operand " + " , ARP[2:0] are also updated with value " 2 " for following use.
After instruction : ARP[2:0]=2 AR5[15:0]=0x1235 Note: AR2[15:0] now becomes current ar .

- MAR instruction can execute auxiliary register operation stated above alone.
- LAR , LARK and LARL instructions will load the content of specified auxiliary register with the data from memory(addressed by short direct mode or register indirect mode) or immediate constant.
- SAR instruction will store the content of auxiliary register specially specified to data memory (pointed by short direct mode or register indirect mode).

Special syntax: LAR *, arps [,arp]
IN *, port_address [,narp]
OUT * , port_address [,narp]

3.2.5 REGISTER INDIRECT ADDRESSING WITH MODULO ADDRESS ARITHMETIC

- Writing a non-zero value to MODULO register(I/O mapped 13) will enable modulo arithmetic operation in register-indirect addressing mode. A circular buffer whose length is MOD[9:0]+1 will be formed. This buffer starts from M-word boundaries ($N^{*} M, N=0,1,2 \ldots 64 K / K-1$), where M is the smallest power of two that is equal to or greater than the size of circular buffer, and ends at buffer size location relative to start point.
- In register-indirect addressing mode operation, whenever the current auxiliary register points to the boundary of this circular buffer(either start or end boundary), it will be wrapped to the other side of the boundary for next address.
- This circular buffer must be formed in continuous memory space, that is only $+/$ - by one post ar operation is allowed.

Before instruction : ARP[2:0] = $5 \quad$ AR5[15:0]=0x1239 MOD[9:0]=25=0×19 $\mathrm{M}=32=0 \times 20$ AR5 just lies on the ending boundary(0x1220 ~ 0x1239)
Example : ADH +, ; Add data from memory pointed by AR5[15:0] to high accumulator
After instruction : AR5[15:0]=0x1220 (wrapped to starting boundary)

3.2.6 MISCELLANEOUS ADDRESSING MODE

- In MB ,MBA ,MBS multiplication instructions, the LSB of data address is decided by "R" or " I " operands. "R" points to the even address location, "I" points to the odd address location.
- In MPA array multiplication instructions, address of bank0 comes from current ar , and address of bank1 (offset address) comes from program counter which was originally stored in high accumulator before instruction execution.

3.3 PROGRAM FLOW CONTROL UNIT

3.3.1 CLOCK GENERATOR / FLL

CLOCK GENERATOR :

CLOCK GENERATOR FUNCTION BLOCK DIAGRAM

- In normal mode, clock of DSP is selected(by FLLEN 1 pin $=0$) directly from low x^{\prime} tal scillator. In test clock mode, clock of DSP is selected(by FLLEN $\operatorname{pin}=1$) from NMI pin which external test clock input.
- In power down mode , clock of DSP is selected (by PWDN bit =1) direct from low X' tal(divided by 256). FLL will be turn off to save the power.
- In hardware or software hold mode (issued by HOLD pin or SHOLD bit in CTLR), clock to DSP will be held down till hardware hold being deasserted by HOLD or SHOLD bit cleared by interrupt request. Hold mode does not save more power like power down mode does, because FLL or High X 'tal is not turn off, but it responds faster for DSP resumes normal running. Timer is also active in hold mode.
- EAD[15:0],ED[15:0],EDCE when DSP is in hold mode.
- Details about codec clocks and timer interrupt ,please refer to section 3.4.1 and 3.4.5.

FLL :

FREQUENCY LOCKED LOOP FUNCTION BLOCK DIAGRAM

- FLL ENABLE : FLL block is enabled by pin FLLEN $1=0$ and will be disabled when DSP is in power down mode.
- PROGRAMMABLE DIVIDER : Clock from 4.096 MHz X ' TAL will be divided by 2 before being fed into programmable divider. Programming FLLM[4:0] register (I/O mapped 21) will change the frequency of clock to DSP based on the following equation :

$$
\text { DSP_CLOCK = 4.096 MHz / } 2 \text { * FLLM[4:0] }
$$

Default : DSP_CLOCK = 4.096 MHz / 2 * $20=40.96 \mathrm{MHz}$

LOCK IN TIME : Whenever a new frequency specified in FLLM register or DSP just comes back from power down mode or just starts from power on reset ,the closed loop of FLL takes about 10 mili second to lock at the target frequency.

3.3.2 RUNNING MODE/PIPE LINE/WAITSTATE

DSP RUNNING MODE

PIPE LINE and INSTRUCTION CYCLE TIME

RUNNING MODE :

- When DSP starts running from power on reset state, or change FLLM[4:0] during normal running mode, it takes about 10 ms for PLL output clock to reach the target frequency.
- When DSP wakes up from power down mode by clearing PWDN bit, there will be 62.5 ms lead time for DSP to switch running clock from low speed to high speed. PWDNS bit in CTLR reflects this running speed status.
- When DSP runs into hold mode either by hardware HOLD \backslash pin asserted low or by setting SHOLD bit in CTLR high , clock to DSP will be hold down until HOLD pin asserted high again or SHOLD bit being cleared by external interrupt or internal timer interrupt request.

PIPE LINE /WAITSTATE:

- A complete operation of instruction execution is composed of there part :

PREFETCH : Fetch instruction code from program ROM (either internal or external)
DECODE : Decode instruction and fetch data operand or store data in some location if needed
EXECUTION : Execute data operation in data unit.

- There are three instructions executed in parallel, each one stays in different pipeline stage. Instruction cycle is only $1 / 3$ the time that one instruction execution really need.
- Instruction cycle time equals to the interval of one and half DSP clock for zero wait state case. Unit increase in waitstate number(for PROGWAIT and DATAWAIT), increase the instruction cycle time by one DSP clock.

3.3.3 BRANCH/CALL/REPEAT/LOOP/STACK REGISTER

BRANCH :

- BS/BZ instructions: Branch immediate if bit being tested equals one or zero Example : BS cnst3, pma16 ; "cnst3" will be used to select one of upper byte of status register and test if condition is true or not."pma16" is new program address which DSP will jump to if condition is true.
BACC instruction: Unconditional branch. After executing this instruction DSP will jump to address location specified in high accumulator.

CALL :

CALL instruction: Call subroutine directly . Example : CALL pma16

- CALA instruction: Call subroutine indirectly. Subroutine address is specified in high accumulator.
\checkmark Nesting CALL is permissible and has no limit before stack overflow occurs.

REPEAT :

RC : Repeat counter. Instructions TBR, MPA and SQRA and instructions within program loop will be executed RC[9:0]+1 times. This repeat counter can be read by IN instruction and written by instructions RPT(RC[9:0])/RPTK(RC[6:0]).

LOOP :

- LUP/LUPK instructions : Enable hardware looping operation, and the following words (maximum 8 words) instruction will be executed $\mathrm{RC}[9: 0]+1$ times.
- Branch and call instructions are not allowed within program loop.

STACK REGISTER :

- Stack register size : 32x16
- 5 bit stack pointer always points to the location within stack register where next data will be put.
- Nesting call can be formed by the help of stack register to store the return address.
- No pointer overflow or underflow protection built in, when such cases occur, the pointer will be wrapped to the other side of the stack

3.3.4 INTERRUPT

Interrupt Source	Vector Address	Priority	Maskable	Pending Status	Descriptions
RST \backslash	0×0000	1 st	No		Power-on reset or reset
NMI	0×0002	2 nd	No		Non-maskable interrupt
SS	0×0004	3th	Yes		Single step interrupt
INT1 \backslash	0×0006	4 th	Yes	Yes	External maskable interrupt
CODECINT	0×0008	5 th	Yes	Yes	Codec interrupt (8 KHz)
TMRINT	$0 \times 000 \mathrm{~A}$	6 th	Yes	Yes	Timer interrupt

- Interrupt Mask : Each bit in I/O mapped register 4 (IMR) enables or disables the servicing of an individual interrupt. Global interrupt mask bit INTM equals "1" will mask all interrupt requests except reset and non-maskable interrupt request. INTM bit is set or reset by DINT or EINT instruction.
- NMI\ and INT1\ are edge triggered interrupt which request DSP during high to low transition.
- Interruptible : State that INTM or individual interrupt mask bits are in reset state (" 0 ") and no higher priority interrupt being serviced or exist in pending status.
- Program flow within repeat loop such like LUP, TBR ,MPA and SQRA instructions, and at time during DRAM data movement are all not interruptible.
- When a maskable interrupt request occurs, if DSP is in interruptible state, this request is granted by DSP and following service routine will be executed, otherwise this request will be hold in pending status bit until the DSP enters interruptible state again

When DSP jumps into interrupt subroutine, INTM bit is automatically set high (After push status register onto stack) to prevent from nesting interrupt occurs. Execute EINT will change this situation and then make nesting interrupt permissible.

- Software hold state will be terminated and return to normal running if external interrupt or timer interrupt occurs and is granted by DSP.
- Single step(I/O mapped 7) provides an "always exist " interrupt condition. DSP will be interrupted after every instruction cycle.(DSP must be in interruptible state)
- No register will be automatically saved in stack register except status register during interrupt service routine. Cares should be taken with the current values stored in X-register, product register and accumulator, backup them at first in interrupt routine if needed.

MX93132

3.4 APPLICATION INTERFACE UNIT

3.4.1 CODEC INTERFACE

IMCK is directly from PLL output. IFS equals to IMCK/256.

- After CFS positive pulse DSP begins to exchange data with external codec through CDR0/CDR1 and CDX0/CDX1. DSP transmits data at CMCK rising edge and receives data at CMCK falling edge.
- First data received will be put into the MSB of codec receive registers(I/O mapped 16,17).
- First data transmitted will come from the MSB of codec transmit registers(I/O mapped 16,17).
- After LSB (16th) data transmitted or received, DSP will generate an internal codec interrupt request.

3.4.2 DRAM INTERFACE

- DRAM controller support data movement between DSP RAM bank1 and external DRAM
- Support FAST-PAGE and EDO-PAGE mode DRAMs
- Data movement starts from non-zero value written to DRAMCNT[5:0] (I/O mapped 9)
- DSP will be hold during this data movement
- RAMA[9:0] (I/O mapped 9) specifies the starting address where data movement begin
- DRAMCOL[14:0](//O mapped 10) and DARMROW[14:0](//O mapped 11) specify the column and row part of DRAM starting address where this data movement begin
- TOIRAM(I/O mapped 11) defines the direction of data movement

$$
0: D S P \circ \text { DRAM 1: DSP× ^DRAM }
$$

DRAMSIZE[1:0](I/O mapped 8) define the configuration of DRAM data width :
$0: x 1$ 1: x4 2: x8 3: x16
DRAMWAIT[2:0] (I/O mapped 8) are the wait state number during DRAM data access
Find the larger one of DRAMWAIT[2:0] below
TRAC $<73 \mathrm{~ns}+(12.2 \mathrm{~ns} \times$ DRAMWAIT[2:] $)$ or
TCAC < $11 \mathrm{~ns}+(12.2 \mathrm{~ns} \times$ DRAMWAIT[2:0]

- Refresh mode : CAS before RAS refresh

Refresh cycle time : every 15.258 us (64 KHz)

MX93132

3.4.3 I/O FUNCTION

- IN/OUT instructions transfer data between internal data RAM and I/O mapped registers
- Up to 9 input port pins, 24 output port pins and 8 programmable bi-directional I/O pins can be used in general I/O function
HOSTM is software bits in CTLR(I/O mapped 7).DFS is software bits in EXCTLR.
- IPT[3:0] built with internal pull high register($\mathrm{R} \sim=150 \mathrm{~K}$ ohm)
- XF\ can be used as general output pin which can be set or reset directly by RXF and SXF instruction

Application	HOSTM	DFS	Input Ports	Output ports	Bidirection I/O
External Host/DRAM	0	0	IPT[7:0]	OPT[15:0]	None
External Host/FLASH	0	1	IPT[8:0]	OPT[21:19;15:0]	None
No external Host/DRAM	1	0	IPT[7:0]	OPT[18:0]	BIO[7:0]
No external Host/FLASH	1	1	IPT[8:0]	OPT[21:0]	BIO[7:0]

BIT	15	14	13	12	11	10	9	8	7			5	4	3	2	1	0
REGO	OPT[15:0]																
REG1(W)	OPT[23:19]																
REG1(R)							IPT[8:0]										
REG2	BIO[15:8]							BIO[7:0]									
REG7	OPT[18:16]																

MX93132

3.4.4 HOST INTERFACE

- HOSTM (I/O mapped 7) define the HOST mode and multiplex some DSP I/O pins HOSTM : 0 : External host controller

1 : No external host controller

- External host can read or write byte-wide command from or to this COMMAND REGISTER through HDB[7:0] and HILO select pins. HILO pin=1 will select upper byte of this register.
- When external host writes command to high byte of this register, CMDRDY bit in CTLR will be set till this register being read by DSP.
- When DSP writes command to this register, ACK\ pin will go low till high byte of this register being read by external host.

MX93132

3.4.5 TIMER

PWDN	Timer Interrupt Period
0	1 mili second
1	$1 / 32$ second

Timer accuracy is determined by crystal' s character , R1,C1,C2 and stray capacitance on PCB.

4.1 I/O Mapped Registers Summary

Register Name	Bit Width	$1 / 0$ Address	Related Instructions	Descriptions
OPTR	16	0 (R/W)	IN/OUT	Output ports register
EXTOPTR	5	1 (R/W)	IN/OUT	Extended output ports register
IPTR	11	1 (R)	IN	Input ports register
BIOR/CMDR	16	2 (R/W)	IN/OUT	Bi-directional I/O ports / HOST command register
SHFCR	4	3 (R/W)	IN/OUT/SFL/SFR/SFRS	Shift count register
IMR	4	4 (R/W)	IN/OUT	Interrupt mask register
CDCMR	2	5 (R/W)	IN/OUT	Codec command register
CTLR	15	7 (R/W)	IN/OUT	Control register
WSTR	11	8 (R/W)	IN/OUT	Memory wait state and DRAM configuration register
DRAMACR	16	9 (R/W)	IN/OUT	DRAM access control register
DRAMCOLR	15	10 (R/W)	IN/OUT	DRAM column address register
DRAMROWR	16	11 (R/W)	IN/OUT	DRAM row address register
RCR	7	12 (R)	IN	Repeat counter
MODR	7	13(R)	IN/MOD/MODK	Modulo register for modulo addressing
XR	16	14 (R)	IN	X register (one of source registers to 16x16 multiplier)
SPR	5	15 (R)	IN/PSH/PSHH/PSHL POP/POPH/POPL	Stack pointer register
CDRR0	16	16 (R)	IN	Codec0 receive register
CDXR0	16	16 (W)	OUT	Codec0 transmit register
CDRR1	16	17 (R)	IN	Codec1 receive register
CDXR1	16	17 (W)	IOUT	Codec1 transmit register
PRODLR	15	18 (W)	OUT	Lower word of product register
PRODHR	16	19 (W)	OUT	Upper word of product register
TESTR	4	20 (W)	OUT	Testing register for internal use
PLLMR	5	21(R/W)	IN/OUT	PLL multiplication register
EXTCTLR	4	24(R/W)	IN/OUT	Extended Control register

Notes: (R) : This register is read only
(W) : This register is write only (R/W) : This register can be read or write

PAGED I/O MAPPED REGISTER ADDRESSING

- Address of I/O mapped registers are composed of 2 bit I/O page pointer which are stored in status register and 3 bit within page port_address.
- LIP or LIPK instruction can be used to modify I/O page pointer, SIP and SSS instructions can be used to save I/O page pointer in data memory.
- 3 bit port_address are directly specified in part of instruction.

4.2 Non I/O Mapped Registers Summary

Register Name	Bit Width	I/O Address	Related Instructions	Descriptions
ACCH	16		SAH/ADH/SBH/POPH PSHH/AND/OR/XOR ABS/LAC ...	High word of accumulator
ACCL	16		SAL/ADL/SBL/POPL PSHL ..	Low word of accumulator
ACC	32		SBL/ADL/SFL/SFR NOM/ Multiply ...	32 bits accumulator
PC	16	CALL/CALA/TRAP/BS BZ/BACC/RET/RETI Reset/Interrupt	Program counter. Acts as program memory pointer	
SSR	SSS/BS/BZ INTM : EINT/DINT TB : BIT OVM : ROVM/SOVM ARP : MAR IOP : LIP/SIP DP : LDP/SDP	Status register		
AR0 ~ AR7	16×8		LAR/SAR/MAR	Auxiliary registers. Used as data memory pointer in register-indirect mode addressing

4.3 I/O Mapped Registers Description

4.3.1 OPTR (I/O mapped $0:$ R/W) : Output Ports Register

Bit	Field	Default	Description
$15 \sim 0$	OPT[15:0]	0	Output ports register. Content of this register will be reflected to corresponding output pins.

4.3.2 EXTOPTR (I/O mapped 1 : W) : Extended Output Ports Register

Bit	$14 \sim 11$
Field	OPT[22:19]

Bit	Field	Default	Description
$14 \sim 11$	OPT[22:19]	0	Output ports register. Content of this register will be reflected to corresponding output pins.

4.3.3 IPTR (I/O mapped 1: R) : Input Ports Register

Bit	10	9	8	$7 \sim 0$
Field	ACK \backslash XF \backslash	EROM	IPT8 8	IPT $[7: 0]$

Bit	Field	Default	Description
10	ACK\/XF\} $&{1} &{$ Host acknowledge / External flag. Status bit, mapped from pin number $14 .$$} \\ {\hline 9} &{\text { EROM }} &{\mathrm{X}} &{\text { Status bit, mapped from pin number 97 }} \\ {\hline 8} &{\text { IPT8 }} &{\mathrm{X}} &{$ Input port, mapped from pin number 93 when DFS bit in EXTCTLR equals one $} \\ {\hline 7 \sim 0} &{\text { IPT[7:0] }} &{\mathrm{X}} &{\text { Input ports, mapped from } 15 \sim 22} \\ {\hline}$		

4.3.4 CMDR / BIOR (I/O mapped 2 : R/W) : Command or

 Bi-directional I/O ports Register| Bit | $15 \sim 0$ | Option |
| :--- | :---: | :---: |
| Field | $\mathrm{CMD}[15: 0]$ | If HOSTM bit in CTLR $=0$ |
| Field | $\mathrm{BIO}[15: 0]$ | If HOSTM bit in CTLR $=1$ |

4.3.4 CMDR / BIOR (I/O mapped 2 : R/W) : Command or Bi-directional I/O ports Register (Continued)

Bit	Field	Default	Description
15~0	CMD[15:0]	0	Parallel host command register. External Host can read or write bytewide command from or to this CMD register through HDB[7:0] and Hilo select pins. Hilo pin $=1$ will select upper byte of this CMD register. Related Flag: When external host writes command to high byte of this register, CMDRDY bit in CTLR will be set till this register being read by DSP. When DSP writes command to this register, ACK \backslash pin will go low till high byte of this register being read by external host.
15~0	BIO[15:0]	0	BIO[7:0] are programmable bi-directional I/O ports. Ports direction of $\mathrm{BIO}[7: 0]$ are programmed by $\mathrm{BIO}[15: 8]$ bits respectively. BIO15: $0 \rightarrow$ BIO7 Input port $1 \rightarrow \mathrm{BIO}$ output port

4.3.5 SHFCR (I/O mapped 3 : R/W) : Shift Count Register

Bit	Field	Default	Description
$4 \sim 0$	SHFC[4:0]	0	Shift Count of barrel shifter . If the value of operand specified in SFL/SFR/SFRS usage equal 0, left shift or right shift count of barrel shifter will be decided by this register.
In normalize operation by "NOM", left shift counts are also stored in			
this register, but with one more extra bit for 31-bit shifting. In this case,			
the 5-bit SHFC[4:0] can be read by "IN" instruction for later operation.			
But for "OUT" instruction, only SHFC[3:0] can be written, SHFC[4] is			
always forced to 0 for backward compatible issue.			

4.3.6 IMR (I/O mapped 4 : R/W) : Interrupt Mask Register

Bit	3	2	1	0
Field	SSM	TMRM	CODECM	INT1M

Bit	Field	Default	Description
			Interrupt mask bit will disable or enable individual interrupt $1:$ disable $\quad 0:$ enable
3	SSM	1	Single step interrupt mask bit
2	TMRM	1	Timer interrupt mask bit
1	CODECM	1	Codec interrupt mask bit
0	INT1M	1	External interrupt 1 mask bit

4.3.7 CDCMR (I/O mapped 5 : R or R/W) : Codec command register

Bit	9	8	2	1	0
Field	CDREADYX	ISDATA R	ICPDX	ISDENX	ISDATAW

Bit	Field	Default	R/W	Description
9	CDREADYX		R	If CDREADYX $=0$, CODEC is ready
8	ISDATAR		R	DSP read register from CODEC
2	ICPDX	0	R/W	Set CODEC powerdown
1	ISDENX	1	R/W	DSP read/write register enable
0	ISDATAW	0	R/W	DSP write register to CODEC

4.3.8 CTLR (I/O mapped 7 : R/W) : Control Register

Bit	$14 \sim 12$	11	10	9	8
Field	OPT[18:16]	PWDN	SWHOLD		

Bit	7	6	5	4	3	2	1	0
Field		CMDRDY	PWDNS	SS		SNSEL	HOSTM	

Bit	Field	Default	Description
$14 \sim 12$	OPT[18:16]	0	Output ports to pin when HOSTM in CTLR $=1$. Share pin location with HILO, HRD and HWR\.
11	PWDN	0	Power down mode enable. When power down mode being enabled by setting this bit DSP will switch running clock source to low x ' tal, and turn off high X' tal or FLL to save power. When DSP is waken up by clearing this bit, DSP will stay in slow speed running for 62.5 ms till PLL output stabilize or high X' tal startup and stabilize , then switch back to high speed running. $1=$ Power down.
10	SWHOLD	0	Software hold enable. When this bit being set, DSP will stop program execution, but high X' tal and PLL will not be turn off. Timer clock are still active during this mode. Software hold does not save more power like power down mode does, but responds faster for DSP resuming normal running from this mode when SHOLD bit is cleared by interrupt request. (Individual interrupt mask bit should be enabled first.) $1=$ Hold.

4.3.8 CTLR (I/O mapped 7 : R/W) : Control Register (Continued)

6	CMDRDY	0	Host command ready flag. This bit will be set if external host write command to high byte of CMDR , and will be cleared when DSP reads CMDR.
5	PWDNS	0	Power down status bit. This bit will be set if PWDN bit being set. But will be cleared late by 62.5 ms after PWDN being cleared. This bit indicates what kind of speed DSP running with currently.
4	SS	0	Single step interrupt enable. When this bit being set , DSP will enter single step interrupt vector 0x0004 at end of each instruction.
2	SNSEL	0	Sign extended mode select in ADL/ADLL SBL/SBLL instructions. 0 : Fill "0" in upper word of accumulator. 1 : Sign extended in upper word of accumulator.
1	HOSTM	0	Host mode select : 0 : External host controller. 1 : No external host controller. This bit also acts as pins multiplex select. 0 : HDB[7:0] HILO HRD HWR ACK (External host) 1: BIO[7:0] OPT18 OPT17 OPT16 XF

4.3.9 WSTR (I/O mapped 8 : R/W) : Memory Wait State Number and DRAM Configuration Register

Bit	$10 \sim 9$	$8 \sim 6$	$5 \sim 3$	$2 \sim 0$
Field	DRAMSIZE[1:0]	DATAWAIT[2:0]	DRAMWAIT[2:0]	PROGWAIT[2:0]

Bit	Field	Default	Description
10~9	DRAMSIZE[1:0]	1	DRAM configuration select. $0: x 11: x 42: \times 8 \quad 3: \times 16$
8~6	DATAWAIT[2:0]	7	External data memory wait state number. TAA or TCS < 26.5ns + (31 ns x DATAWAIT[2:0])
$5 \sim 3$	DRAMWAIT[2:0]	7	DRAM wait state number. Find the larger one below TRAC $<73 \mathrm{~ns}+(15.5 \mathrm{~ns} \times$ DRAMWAIT[2:0]) or TCAC < $11 \mathrm{~ns}+(15.5 \mathrm{~ns} \times$ DRAMWAIT[2:0])
$2 \sim 0$	PROGWAIT[2:0]	7	External program memory wait state number. TAA or TCS < $26.5 \mathrm{~ns}+(31 \mathrm{~ns} \times$ PROGWAIT[2:0])
			All calculation is based on the assumption that DSP is running with 40.48 MHz Clock. If FAST bit in EXTCTLR equals 0 , all wait state numbers should be increased by one to meet the timing requirement stated above .

4.3.10 DRAMACR (I/O mapped 9 : R/W) : DRAM Access Control Register

Bit	$15 \sim 10$	$9 \sim 0$
Field	DRAMCNT[5:0]	RAMA[9:0]

Bit	Field	Default	Description
$15 \sim 10$	DRAMCNT[5:0]	0	Write a non zero value to this register will start data movement between internal data RAM and external DRAM .At this moment , DSP will hold operation till this data movement complete and these bits (DRAMCNT[5:0]) will be clear . DRAMCNT[5:0] indicate how many DRAM address location will involved in this movement.
$9 \sim 0$	RAMA[9:0]	0	RAM bank 1 OFFSET address. This address points to starting location where data movement begin. Data in extended RAM bank1 (0x0800 $\sim 0 \times 09 F F)$ can t be moved.

4.3.11 DRAMCOLR (I/O mapped 10 : R/W) : DRAM Column Address Register

Bit	Field	Default	Description
$14 \sim 0$	DRAMCOL[14:0]	0	Column part of DRAM starting address where data movement begin

4.3.12 DRAMROWR (I/O mapped 11: R/W) : DRAM Row Address Register

Bit	15	$14 \sim 0$
Field	TOIRAM	DRAMROW[14:0]

Bit	Field	Default	Description
15	TOIRAM	0	Data movement direction. $0:$ Internal RAM of DSP \rightarrow External DRAM $1:$ External DRAM \rightarrow Internal RAM of DSP
$14 \sim 0$	DRAMROW[14:0]	0	Row part of DRAM starting address where data movement begin

4.3.13 RCR (I/O mapped 12 : R) : Repeat Counter Register

Bit	Field	Default	Description
$9 \sim 0$	RC[9:0]	0	Instruction execution repeat counter.
		Affected instructions: TBR MPA SQRA and instructions within program loop . Read only register, but can be written by RPT and RPTK instructions. Real repeat number is RC[9:0]+1.	

4.3.14 MODR (I/O mapped 13 : R) : Modulo Register

Bit	Field	Default	Description
$9 \sim 0$	MOD[9:0]	0	Modulo Register. Non zero value of this register will enable modulo arithmetic in register-indirect addressing mode. A circular buffer, whose length is MOD[9:0] +1 , will be formed. This circular buffer starts on K-word boundaries, where K is the smallest power of two that is equal to or greater than the size of the circular buffer. In register-indirect addressing mode operation, whenever the current auxiliary register points to the boundary of this circular buffer, it will be wrapped to the other side of the boundary for next address.

4.3.15 SPR (I/O mapped 15 : R)

: Stack Register Pointer

Bit	Field	Default	Description
$4 \sim 0$	SP[4:0]	0	Stack register pointer. This pointer always points to the location within stack register where next data will be put. No pointer overflow or underflow protection built in, when such cases occur, the pointer will be wrapped to the other side of the stack.

4.3.16 CDRR0 (I/O mapped 16 : R) : First Codec Receive Register

Bit	Field	Default	Description
$15 \sim 0$	CDRO[15:0]	Undefined	After Codec frame sync. goes high, DSP begins to receive data from external Codec when Codec master clock goes low. The first data received will be put into the MSB of this register. When DSP has received sixteen bits data, DSP will stop receiving operation and trigger internal Codec interrupt.

4.3.17 CDXR0 (I/O mapped 16 : W) : First Codec Transmit Register

Bit	Field	Default	Description
$15 \sim 0$	CDXO[15:0]	Undefined	After Codec frame sync. goes high, DSP begins to transmit data to external Codec when Codec master clock goes high. The first
data transmitted will come from the MSB of this register.			
When DSP has transmitted sixteen bits data, DSP will stop			
transmitting operation and trigger internal Codec interrupt.			

MX93132

4.3.18 CDRR1 (I/O mapped 17 : R) : Second Codec Receive Register

Bit	Field	Default	Description
$15 \sim 0$	CDR1[15:0]	Undefined	After Codec frame sync. Goes high, DSP begins to receive data from external Codec when Codec master clock goes low. The first data received will be put into the MSB of this register. When DSP has received sixteen bits data, DSP will stop receiving operation and trigger internal Codec interrupt.

4.3.19 CDXR1 (I/O mapped 17 : W) : Second Codec Transmit Register

Bit	Field	Default	Description
$15 \sim 0$	CDX1[15:0]	Undefined	After Codec frame sync. goes high, DSP begins to transmit data to external Codec when Codec master clock goes high. The first data transmitted will come from the MSB of this register. When DSP has transmitted sixteen bits data, DSP will stop transmitting operation and trigger internal Codec interrupt.

4.3.20 TESTR (I/O mapped 20 : W) : Test Register

Bit	Field	Default	Description
$5 \sim 2$	TEST[5:2]	0	Test bits used in testing.

MX93132
4.3.21 PLLMR (I/O mapped 21 : W) : PLL Multiplication Factor Register

Bit	Field	Default	Description
$12 \sim 0$	FLLM[4:0]	0x14	PLL multiplication factor register. F_DSP $=4.096 \mathrm{MHz} / 2 *$ PLLM[4:0] Default: $\text { F_DSP }=4.096 \mathrm{MHz} / 2 * 20=40.96 \mathrm{MHz}$ Range: $\text { 24.5 MHz < F_DSP < } 49 \mathrm{MHz}$ Lock in time $\sim=10 \mathrm{~ms}$ Jitters : meet the requirement for digital answering machine application. For other applications ,care need to be taken.

4.3.22 EXTCTLR (I/O mapped 24 : R/W) : Extended Control Register

Bit	$15 \sim 2$	1	0
Field	Reserved	DFS	FAST

Bit	Field	Default	Description
$15 \sim 2$	Reserved	0	Output ports register. Content of this register will be reflected to
corresponding output pins.			

4.4 NON I/O mapped registers Description

4.4.1 ACCH : Upper Word of Accumulator

Bit	Field	Default	Description
$31 \sim 16$	ACC[31:16]	Undefined	Upper word of accumulator.

4.4.2 ACCL : Lower Word of Accumulator

Bit	Field	Default	Description
$15 \sim 0$	ACC[15:0]	Undefined	Lower word of accumulator.

4.4.3 ACC : Accumulator

Bit	Field	Default		Description
$31 \sim 0$	ACC[31:0]	Undefined	Accumulator.	

4.4.4 PC : Program Counter

Bit	Field	Default	Description
$15 \sim 0$	$\mathrm{PC}[15: 0]$	0×0000	Program counter. This counter is used as program memory pointer to control the DSP program flow. In MPA instruction, this counter is used as one of data memory pointer.

4.4.5 SSR : Status Register

Bit	15	14	13	12	11	10	9	$8 \sim 6$	$5 \sim 4$	$3 \sim 0$
Field	INTM	ARZ	SGN	OV	ACZ	TB	OVM	ARP[2:0]	IOP[1:0]	DP[3:0]

Bit	Field	Default	Description
15	INTM	1	This register will be saved automatically in stack register when interrupt service begins and will be restored back when interrupt service has completed. SSS instruction can store this register to data memory. Some other instructions can modify or store part of this register.
14	ARZ	1	Global interrupt mask bit. This bit can be set by DINT or reset by EINT instruction. Every time when DSP runs into interrupt service routine , this global mask bit will be set to disable any other interrupt. Clear this bit or execute EINT instruction can enable interrupt again and make nesting interrupt possible.
13	SGN	Undefined	This bit registers the last operated auxiliary register 's value equal zero.
12	OV	0	Overflow flag for last ACCH operation. This flag will be cleared by any instructions which will generate result in accumulator.
11	ACZ	1	Accumulator zero flag. This bit reflects current accumulator status.

4.4.5 SSR : Status Register (Continued)

10	TB	0	Tested bit. This bit is used to stored one bit from data memory by BIT instruction, and will be tested by following BZ or $\mathbf{B S}$ instruction.
9	OVM	0	Overflow mode select. 0 : Disable overflow mode 1 : Enable overflow protection during arithmetic and shift left operation. This bit can be reset/set by ROVM / SOVM instruction.
8 ~ 6	ARP[2:0]	0	Auxiliary register pointer. This pointer points to one of eight auxiliary registers as current ar in register-indirect addressing mode.
5~4	IOP[1:0]	0	I/O mapped register Page pointer. This DSP can access total 32 internal I/O ports address formed by 4 pages, each page contains eight ports address. Port address is specified as immediate operand in IN / OUT instruction. These bits can be modified by LIP/LIPK or saved by SIP instructions.
$3 \sim 0$	DP[3:0]	0	Internal data memory page pointer used in direct memory addressing mode. The DSP contains total 16 pages of internal RAM whose range is from 0×0000 to $0 \times 07 \mathrm{FF}$. Each page contain 128 words, the words address within page can be specified as immediate operand in related instructions. These bits can be modified by LDP/LDPK or saved by SDP instructions. Internal RAM located within (0x0800 ~ 0x09FF) can be accessed only by register-indirect mode.

4.4.6 STR : Stack Register

Bit	$15 \sim 0$
Field	$S T[31: 0][15: 0]$

Bit	Field	Default	Description
32×16	STACK REGISTER	Undefined	This register is used to stored return address from program counter in the case of interrupt service begin or CALL/CALA instruction execution.Or acts as data buffer for use in data exchange with ACCH, ACCL, SSR and data from memory

4.4.7 ARS : Auxiliary Registers

Bit	$15 \sim 0$							
Field	AR7 $[15: 0]$	AR6 $[15: 0]$	AR5 $[15: 0]$	AR4[15:0]	AR3 $315: 0]$	AR2[15:0]	AR1[15:0]	AR0[15:0]

These Auxiliary registers are used as data memory pointer in register-indirect mode addressing .
ARP[2:0] in status register will choose one of them as current AR, and the current AR acts as data memory pointer in related instruction operation.
Content of current ar can be modify as follow :

$$
\begin{array}{ll}
\mathrm{ar}+0 \rightarrow \text { ar } & \text { or } \\
\text { ar }+1 \rightarrow \text { ar } & \text { or ar }-1 \rightarrow \text { ar } \\
\text { ar }+2 \rightarrow \text { ar } & \text { or ar }-2 \rightarrow \text { ar } \\
\text { ar }+\operatorname{arO} \rightarrow \text { ar } & \text { or ar }-\operatorname{arO} \rightarrow \text { ar }
\end{array}
$$

ARP[2:0] can also be updated with new auxiliary register pointer : narp \rightarrow arp All operations stated above work in parallel with instruction execution.

5.1 INSTRUCTION SET SUMMARY :

DATA UNIT INSTRUCTIONS:1.Arithmetic 2.Logic/Shift 3.Data movement 4.Mode setting	
Mnemonic	Description
ADH/ADHK/ADHL	Add data (from memory) or constant to high accumulator
ADL/ADLK/ADLL	Add data (from memory) or constant to low accumulator
SBH/SBHK/SBHL	Subtract data (from memory) or constant from high accumulator
SBL/SBLK/SBLL	Subtract data (from memory) or constant from low accumulator
ABS	Absolute value of high accumulator
OR/ORK/ORL	OR data (from memory) or constant with high accumulator
AND/ANDK/ANDL	AND data (from memory) or constant with high accumulator
XOR/XORK/XORL	Exclusive-OR data (from memory) or constant with high accumulator
SFL/SFR/SFRS	Shift contents of accumulator left/right/right with sign extended
NOM	Normalize contents of accumulator
LAC/LACK/LACL	Load data (from memory) or constant to high accumulator
SAH/SAL	Store contents of high or low accumulator to data memory
POPH/POPL	Pop top of stack to high/low accumulator
PSHH/PSHL	Push high/low accumulator onto stack
SOVM/ROVM	Set/Reset overflow mode

AUXILIARY REGISTERS AND DATA/IO PAGE POINTER INSTRUCTIONS	
Mnemonic	Description
LAR/LARK/LARL	Load data (from memory) or constant to auxiliary register
SAR	Store auxiliary register to data memory
MAR	Modify auxiliary register pointer and update auxiliary register pointer
MOD/MODK	Load data (from memory) or constant to modulo register
LIP/LIPK	Load data (from memory) or constant to modify I/O page pointer in status register
SIP	Store I/O page pointer in status register to data memory
LDP/LDPK	Load data (from memory) or constant to modify data page pointer in status register
SDP	Store data page pointer in status register to data memory

5.1 INSTRUCTION SET SUMMARY : (Continued)

PROGRAM FLOW CONTROL INSTRUCTIONS	
Mnemonic	Description
RPT/RPTK	Load data (from memory) or constant to repeat counter
LUP/LUPK	Enable loop operation /Enable loop operation with short constant
BS/BZ	Branch immediate if bit being tested set or reset
CALA	Call subroutine indirectly specified by contents of high accumulator
CALL	Call subroutine
BACC	Branch to address specified by contents of high accumulator
DINT/EINT	Disable / Enable interrupt
RET/RETI	Return from subroutine / interrupt
NOP	No operation

DATA MOVEMENT AND MISCELLANEOUS INSTRUCTIONS	
Mnemonic	Description
OUT/OUTK/OUTL	Load data (from internal data memory) or constant to I/O mapped register
IN	Move data from I/O mapped register to internal data memory
BIT	Move data bit from memory to TB in status register
SSS	Store status register to data memory
POP/PSH	Pop top of stack to data memory/push data memory value onto stack
SXF/RXF	Set/reset external flag

5.2 ACRONYMS AND NOTATIONS :

\rightarrow	Data transfer
pc	Program counter
pma16	16 bit program memory address
(arp)	auxiliary register pointed by arp. also called current auxiliary register
ar	current Auxiliary register
ar0	the first Auxiliary register
(arps)	Auxiliary register pointed by arps
dma7	7 bit direct memory address within data page
dma	16 bit whole data memory address formed by $0 . \mathrm{dp}(3: 0)$.dma7 or by 16 bits current ar
(dma)	data memory pointed by dma
(dma)(3:0)	lowest nibble of (dma)
\#	bit location indicator
(dma)(\#cnst4)	bit data of (dma) which is pointed by cnst4
*	register indirect mode addressing operator, can be one of : $+0,+,++,-,--,+\operatorname{ar0} 0,-\operatorname{ar0}$
[,narp]	Next AR Pointer, narp is a 3 bit constant. "[" "]" means option, not real expression.
cnst2,cnst3,cnst4, cnst7,cnst16	2 bit , 3 bit, 4 bit , 7 bit , 16 bit constant
1(DI),2(DE)	one cycle for data memory internal , two cycles for data memory external
acc	accumulator
p	product register
sp	stack register pointer
(sp)	stack register pointed by sp
ss	status register
CTLR	control register
Ic(2:0)	loop counter
mr(6:0)	modulo register
rc	repeat counter
norm(4:0)	normalize register
x	multiplication operator
dp(3:0)	data page pointer
iop(1:0)	I/O page pointer
port_address	3 bit address within I/O page
io_address	5 bit I/O address formed by iop(1:0) and port_address
(io_address)	I/O mapped register pointed by io_address

NOTE 1 : Instruction Encoding For Register Indirect Addressing

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
OPCODE								1	E6	E5	E4	E3	E2	E1	E0

Operand	Encoding			Operation
$*$	E6	E5	E4	
+0	0	0	0	No operation
-AR0	0	0	1	(arp) -ar0 \rightarrow (arp)
+AR0	0	1	0	(arp) + ar0 \rightarrow (arp)
+	1	0	0	(arp) $+1 \rightarrow(\operatorname{arp})$
-	1	0	1	(arp) $-1 \rightarrow$ (arp)
++	1	1	0	(arp) $+2 \rightarrow$ (arp)
--	1	1	1	(arp) $-2 \rightarrow$ (arp)

Operand	Encoding	Encoding	Operation
[,narp]	E3	E2 E1 E0	
None	0		
, narp	1	narp	narp \rightarrow arp

NOTE II : Instruction Encoding For Register Indirect Addressing
For MB , MBA , MBS Instructions only

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
OPCODE													E2 E1		E0

Operand	Encoding			Operation
$*$	E2	E1	E0	
+0	0	0	0	No operation
-AR0	0	0	1	(arp) $-\operatorname{ar0} \rightarrow(\operatorname{arp})$
+ AR0	0	1	0	(arp) $+\operatorname{ar0} \rightarrow$ (arp)
+	1	0	0	(arp) $+1 \rightarrow(\operatorname{arp})$
-	1	0	1	(arp) $-1 \rightarrow(\operatorname{arp})$
++	1	1	0	(arp) $+2 \rightarrow$ (arp)
--	1	1	1	(arp) $-2 \rightarrow$ (arp)

5.3 INSTRUCTION SET DESCRIPTION

ABS

Syntax:
Operation:

Words:
Cycles:
Note:

Absolute value of high accumulator

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | ABS

$\mathrm{pc}+1 \rightarrow \mathrm{pc}$ $|\operatorname{acc}(31: 16)| \rightarrow \operatorname{acc}(31: 16)$
1
1
|0x8000| will exceed the maximum positive number which can be represented . and will cause incorrect result .

Add data from memory to high accumulator

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

ADH dma7
ADH *[,narp]
$\mathrm{pc}+1 \rightarrow \mathrm{pc}$ $\operatorname{acc}(31: 16)+(d m a) \rightarrow \operatorname{acc}(31: 16)$
Words:
Cycles:

ADHK

Syntax:
Operation:

Words:
Cycles:

ADHL

Syntax:
Operation:

Words:
Cycles:

Add immediate 16-bit long constant to high accumulator
$\begin{array}{llllllllllllllll}15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0\end{array}$
ADHL cnst16
$\mathrm{pc}+2 \rightarrow \mathrm{pc}$ $\operatorname{acc}(31: 16)+$ cnst16 $\rightarrow \operatorname{acc}(31: 16)$

2
2

MX93132

ADL

Syntax:

Operation:
Words:
Cycles:
Add data from memory to low accumulator

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

ADL dma7
ADL *[,narp]
$\mathrm{pc}+1 \rightarrow \mathrm{pc}$
$\operatorname{acc}(31: 0)+(\mathrm{dma}) \rightarrow \operatorname{acc}(31: 0)$

Note:

ADLK

Syntax:
Operation:
Words:
Cycles:

ADLL

Syntax:
Operation:

Words:
Cycles:
Note:

1
1(DI) , 2(DE)
Data operand is expanded into 32 bit long width with MSBs optionally sign extended or filled with " 0 " bits. This option is controlled by SNSEL bit in CTLR.

Add immediate 7-bit unsigned short constant to low accumulator

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

ADLK cnst7
$\mathrm{pc}+1 \rightarrow \mathrm{pc}$
acc(31:0) + cnst7 \rightarrow acc(31:0)
1
1

Add immediate 16 -bit long constant to low accumulator

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

ADLL cnst16
$\mathrm{pc}+2 \rightarrow \mathrm{pc}$
$\operatorname{acc}(31: 0)+\operatorname{cnst16} \rightarrow \operatorname{acc}(31: 0)$
2
2
Data operand is expanded into 32 bit long width with MSBs optionally sign extended or filled with "0" bits. This option is controlled by SNSEL bit in CTLR.

MX93132

AND	AND data from memory with high accumulator												
	$\begin{array}{llll}15 & 14 & 13 & 12\end{array}$	11	10	9	8	7	6	5	4	3	2	1	0
Syntax:	AND dma7												
	AND * [,narp]												
Operation:	$\mathrm{pc}+1 \rightarrow \mathrm{pc}$												
	$\operatorname{acc}(31: 16)$ AND (dma) $\rightarrow \operatorname{acc}(31: 16)$												
Words:	1												
Cycles:	1(DI) , 2(DE)												
ANDK	AND immediate 7-bit short constant with high accumulator												
	$\begin{array}{llll}15 & 14 & 13 & 12\end{array}$	11	10	9	8	7	6	5	4	3	2	1	0
Syntax:	ANDK cnst7												
Operation:	$\mathrm{pc}+1 \rightarrow \mathrm{pc}$												
	$\operatorname{acc}(22: 16)$ AND cnst7 \rightarrow acc(22:16)												
	$0 \rightarrow \operatorname{acc}(31: 23)$												
Words:	1												
Cycles:	1												
ANDL	AND immediate 16-bit long constant to high accumulator												
	$\begin{array}{llll}15 & 14 & 13 & 12\end{array}$	11	10	9	8	7	6	5	4	3	2	1	0
Syntax:	ADLL cnst16												
Operation:	$\mathrm{pc}+2 \rightarrow \mathrm{pc}$												
	$\operatorname{acc}(31: 16)$ AND cnst16 $\rightarrow \operatorname{acc}(31: 16)$												
Words:	2												
Cycles:	2												
APAC	Add product register to accumulator												
	$\begin{array}{llll}15 & 14 & 13 & 12\end{array}$	11	10	9	8	7	6	5	4	3	2	1	0
Syntax:	APAC												
Operation:	$\mathrm{pc}+1 \rightarrow \mathrm{pc}$												
	$\mathrm{acc}+\mathrm{p} \rightarrow \mathrm{acc}$												
Words:	1												
Cycles:	1												
BACC	Branch to address specified by high accumulator												
	$\begin{array}{llll}15 & 14 & 13 & 12\end{array}$	11	10	9	8	7	6	5	4	3	2	1	0
Syntax:	BACC												
Operation:	acc(31:16) \rightarrow pc												
Words:	1												
Cycles:	2												

BS Branch immediate if bit being tested equal one
$\begin{array}{llllllllllllllll}15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0\end{array}$
Syntax:
Operation:
BS cnst3, pma16
If $\mathrm{ss}(\#(\mathrm{cnst} 3+8))=1$ then pma16 $\rightarrow \mathrm{pc}$ else $\mathrm{pc}+2 \rightarrow \mathrm{pc}$
Words:
2
Cycles:
3
Note:
BS instruction will test one bit of status register's upper byte. Bit 15 is always one, and bit 8 is not defined in this test condition..

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | arz | sgn | ov | acz | tb | ovm | |

MX93132

BZ

Syntax:
Operation:

Branch immediate if bit being tested equal zero

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Words:
Cycles:
Note:

CALA

Syntax:
Operation:

Words:
Cycles:

Call subroutine indirectly

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

CALA
$\mathrm{pc}+1 \rightarrow$ (sp)
$\mathrm{sp}+1 \rightarrow \mathrm{sp}$
$\operatorname{acc}(31: 16) \rightarrow p c$
-
2

CALL

Call subroutine directly

$$
\begin{array}{lllllllllllllllll}
15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0
\end{array}
$$

Syntax:
CALL pma16
Operation:
$\mathrm{pc}+1 \rightarrow$ (sp)
$\mathrm{sp}+1 \rightarrow \mathrm{sp}$ pma16 \rightarrow pc
Words: 2

Cycles: 3

MX93132

IN Move data from I/O mapped register to internal data memory

Syntax:

Operation:

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

IN dma7, port_address
IN *, port_address [,narp]
Operation:
$\mathrm{pc}+1 \rightarrow \mathrm{pc}$
iop(1:0).port_address \rightarrow io_address
(io_address) \rightarrow (dma)
Words:
Cycles:
1
1

LAC Load data from memory to high accumulator
Syntax:
$\begin{array}{llllllllllllllll}15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0\end{array}$

Operation: $\quad \mathrm{pc}+1 \rightarrow \mathrm{pc}$
LAC dma7
LAC * [,narp]
(dma) $\rightarrow \operatorname{acc}(31: 16)$
$0 \rightarrow \operatorname{acc}(15: 0)$
Words:
Cycles:
1
1(DI) , 2(DE)

LARK Load immediate 7-bit short constant to auxiliary register specified

Syntax:
Operation:

Words:
Cycles:

LARL

Syntax:
Operation:

Words:
Cycles:

LDP

Syntax:

Operation:

Words:
Cycles:

Syntax:
Operation:

Words:
Cycles:

LDPK Load 4-bit short constant to modify data page pointer in status register $\begin{array}{llllllllllllllll}15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0\end{array}$

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

LARK cnst7, arps
$\mathrm{pc}+1 \rightarrow \mathrm{pc}$
cnst7 $\rightarrow(\operatorname{arps})(6: 0) \quad, \quad 0 \rightarrow(\operatorname{arps})(15: 7)$
1
1

Load immediate 16-bit long constant to auxiliary register specified $\begin{array}{lllllllllllllllll}15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0\end{array}$
LARL cnst16, arps
$\mathrm{pc}+2 \rightarrow \mathrm{pc}$
cnst16 \rightarrow (arps)
2
2

Load data from memory to modify data page pointer in status register
$\begin{array}{llllllllllllllll}15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0\end{array}$
LDP dma7
LDP * [,narp]
$\mathrm{pc}+1 \rightarrow \mathrm{pc}$
$(\mathrm{dma})(3: 0) \rightarrow \mathrm{dp}(3: 0)$
1
1(DI), 2(DE) LDPK cnst4
$\mathrm{pc}+1 \rightarrow \mathrm{pc}$ cnst4 $\rightarrow \mathrm{dp}(3: 0)$
1
1

MX93132

LIP Load data from memory to modify I/O page pointer in status register

Syntax:

Operation:
Words:
Cycles:

LIPK

Syntax:
Operation:

Words:
Cycles:
LUP

Syntax:
Operation:

Words:
Cycles:
Note:
$\begin{array}{llllllllllllllll}15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0\end{array}$
LIP dma7
LIP * [,narp]
$\mathrm{pc}+1 \rightarrow \mathrm{pc}$
(dma)(5:4) \rightarrow iop(1:0)
1
1(DI) , 2(DE)

Load 2-bit short constant to modify I/O page pointer in status register
$\begin{array}{llllllllllllllll}15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0\end{array}$
LIPK cnst2
$\mathrm{pc}+1 \rightarrow \mathrm{pc}$
cnst2 \rightarrow iop(1:0)
1
1
Enable loop operation
$\begin{array}{llllllllllllllll}15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0\end{array}$
LUP dma7, loop_number
LUP *, loop_number [,narp]
$\mathrm{pc}+1 \rightarrow \mathrm{pc}$
(dma)(9:0) \rightarrow rc(9:0)
loop_number \rightarrow Ic(2:0)
1
1(DI) , 2(DE)
This instruction will enable hardware loop operation, and the following (loop_number+1) words instruction(program loop) will be executed repeatedly ($\mathrm{rc}+1$) times.
Branch and call instructions are not allowed within program loop.

MOD	Load data from memory to modulo register											
	$\begin{array}{llllll}15 & 14 & 13 & 12 & 11\end{array}$	10	9	8	7	6	5	4	3	2	1	0
Syntax:	MOD dma7											
	MOD * [,narp]											
Operation:	$\mathrm{pc}+1 \rightarrow \mathrm{pc}$											
Words:	1											
Cycles:	1(DI) , 2(DE)											

$\left.\begin{array}{llllllllllll}\text { MODK } & \text { Load immediate } 7 \text {-bit short constant to modulo register } \\ & 15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 \\ & & 4 & 3 & 2 & 1 & 0\end{array}\right)$

MX93132

MX93132

ORL OR immediate 16-bit long constant with high accumulator

Syntax:
Operation:

Words:
Cycles:

OUT

Syntax:

Operation:

Words:
Cycles:

OUTK

Syntax:
Operation:

Words:
Cycles:

OUTL

Syntax:
Operation:

Words:
Cycles:

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

ORL cnst16
$\mathrm{pc}+2 \rightarrow \mathrm{pc}$ $\operatorname{acc}(31: 16)$ OR cnst16 $\rightarrow \operatorname{acc}(31: 16)$
2
2

Load data from internal data memory to I/O mapped register
$\begin{array}{llllllllllllllll}15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0\end{array}$
OUT dma7, port_address
OUT *, port_address [,narp]
$p c+1 \rightarrow p c$
iop(1:0).port_address \rightarrow io_address
(dma) \rightarrow (io_address)
1
1

Move 7-bit short constant to I/O mapped register

$\begin{array}{llllllllllllllll}15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0\end{array}$
OUTK cnst7, port_address
$\mathrm{pc}+1 \rightarrow \mathrm{pc}$
iop(1:0).port_address \rightarrow io_address
cnst7 \rightarrow (io_address)(6:0)
1
1

Move 16-bit long constant to I/O mapped register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

OUTL cnst16, port_address
$\mathrm{pc}+2 \rightarrow \mathrm{pc}$
iop(1:0).port_address \rightarrow io_address
cnst16 \rightarrow (io_address)
2
2

MX93132

POP	Pop top of stack to data memory													
	$\begin{array}{lll}15 & 14 & 13\end{array}$	12	11	10	9	8	7	6	5	4	3	2		0
Syntax:	POP dma7													
	POP * [,narp]													
Operation:	$\mathrm{pc}+1 \rightarrow \mathrm{pc}$													
	sp-1 \rightarrow sp													
	$(\mathrm{sp}) \rightarrow(\mathrm{dma})$													
Words:	1													
Cycles:	1(DI) , 2(DE)													

POPH Pop top of stack to high accumulator
$\begin{array}{llllllllllllllll}15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0\end{array}$
Syntax:
Operation:
POPH
$\mathrm{pc}+1 \rightarrow \mathrm{pc}$
$\mathrm{sp}-1 \rightarrow \mathrm{sp}$
$(\mathrm{sp}) \rightarrow \operatorname{acc}(31: 16)$
Words:
1
Cycles:
1

POPL
Syntax:
Operation:

Words:
Cycles:

Pop top of stack to low accumulator
$\begin{array}{llllllllllllllll}15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0\end{array}$
POPL
$\mathrm{pc}+1 \rightarrow \mathrm{pc}$
$\mathrm{sp}-1 \rightarrow \mathrm{sp}$
$(\mathrm{sp}) \rightarrow \mathrm{acc}(15: 0)$
1
1

MX93132

MX93132

MX93132

RXF
Reset external flag

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Syntax:
Operation:

Words:
Cycles:
Notes:

SAH

Syntax:

Operation:

Words:
Cycles:

SAL

Syntax:

Operation:

Words:
Cycles:

SAR

Syntax:

Operation:

Words:
Cycles:

Syntax:

Operation:

SBH Subtract data (from memory) from high accumulator
RXF
$\mathrm{pc}+1 \rightarrow \mathrm{pc}$
$0 \rightarrow X F$ but $1 \rightarrow X F \backslash$ pin
1
1
$X F \backslash$ is an inverted output of $X F$.

Store content of high accumulator to data memory

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

SAH dma7
SAH *[,narp]
$\mathrm{pc}+1 \rightarrow \mathrm{pc}$
$\operatorname{acc}(31: 16) \rightarrow(\mathrm{dma})$
1
1(DI) , 2(DE)

Store content of low accumulator to data memory
$\begin{array}{llllllllllllllll}15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0\end{array}$
SAL dma7
SAL * [,narp]
$\mathrm{pc}+1 \rightarrow \mathrm{pc}$
$\operatorname{acc}(15: 0) \rightarrow(\mathrm{dma})$
1
1(DI) , 2(DE)

Store content of auxiliary register specified to data memory

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

SAR dma7, arps
SAR *, arps [,narp]
$\mathrm{pc}+1 \rightarrow \mathrm{pc}$
(arps) \rightarrow (dma)
1
1(DI) , 2(DE)
$\begin{array}{llllllllllllllll}15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0\end{array}$
SBH dma7
SBH * [,narp]
$\mathrm{pc}+1 \rightarrow \mathrm{pc}$
$\operatorname{acc}(31: 16)-(d m a) \rightarrow \operatorname{acc}(31: 16)$

Words:
Cycles:
SBHK

Syntax:
Operation:
Words:
Cycles:
SBHL
Syntax:
Operation:
Words:
Cycles:
SBL

Syntax:
Operation:
Words:
Cycles:
Note:

SBLK

Syntax:
Operation:
Words:
Cycles:

Syntax:
Operation:

SBLL Subtract immediate 16-bit long constant from low accumulator
1
1(DI) , 2(DE)

Subtract immediate 7-bit unsigned short constant from high accumulator $\begin{array}{llllllllllllllll}15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0\end{array}$ SBHK cnst7
$\mathrm{pc}+1 \rightarrow \mathrm{pc}$ $\operatorname{acc}(31: 16)-\operatorname{cnst} 7 \rightarrow \operatorname{acc}(31: 16)$
1
1

Subtract immediate 16-bit long constant from high accumulator

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | SBHL cnst16

$\mathrm{pc}+2 \rightarrow \mathrm{pc}$ $\operatorname{acc}(31: 16)-$ cnst16 $\rightarrow \operatorname{acc}(31: 16)$
2
2

Subtract data (from memory) from low accumulator
$\begin{array}{llllllllllllllll}15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0\end{array}$
SBL dma7
SBL *[,narp]
$\mathrm{pc}+1 \rightarrow \mathrm{pc}$
acc(31:0) - (dma) $\rightarrow \operatorname{acc}(31: 0)$
1
1(DI) , 2(DE)
Data operand is expanded into 32 bit long width with MSBs optionally sign extended or filled with " 0 " bits. This option is controlled by SNSEL bit in CTLR.

Subtract immediate 7-bit unsigned short constant from low accumulator $\begin{array}{llllllllllllllll}15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0\end{array}$ SBLK cnst7
$\mathrm{pc}+1 \rightarrow \mathrm{pc}$
$\operatorname{acc}(31: 0)-\mathrm{cnst7} \rightarrow \operatorname{acc}(31: 0)$
1
1

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | SBLL cnst16

$\mathrm{pc}+2 \rightarrow \mathrm{pc}$
$\operatorname{acc}(31: 0)-$ cnst16 $\rightarrow \operatorname{acc}(31: 0)$

MX93132

MX93132

SFL Shift content of accumulator left (LSBs filled with zero)

Syntax:
Operation:

Words:
Cycles:
Notes:

SFR

Syntax:
Operation:

Words:
Cycles:
Notes:

SFRS

Syntax:
Operation:

Notes:
Words:

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

$\mathrm{pc}+1 \rightarrow \mathrm{pc}$
If (cnst4! $=0$)
then
$\operatorname{acc}(31: 0)$ will be shifted left by cnst4 bits
else
$\operatorname{acc}(31: 0)$ will be shifted left by shfc[3:0] bits

1
shfc[3:0] is the content stored in SHFC register (I/O mapped 3).

Shift content of accumulator right (MSBs filled with zero)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

SFR cnst4
$\mathrm{pc}+1 \rightarrow \mathrm{pc}$
If (cnst4! $=0$)
then
acc(31:0) will be shifted right by cnst4 bits
else $\operatorname{acc}(31: 0)$ will be shifted right by shfc[3:0] bits
shfc[3:0] is the content stored in SHFC register (I/O mapped 3).

Shift content of accumulator right (MSBs filled with sign extended bit)

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | SFRS cnst4

$\mathrm{pc}+1 \rightarrow \mathrm{pc}$
If (cnst4! $=0$)
then
$\operatorname{acc}(31: 0)$ will be shifted right by cnst4 bits
else
$\operatorname{acc}(31: 0)$ will be shifted right by shfc[3:0] bits
1
1
$\mathbf{s h f c}[3: 0]$ is the content stored in SHFC register (I/O mapped 3).

MX93132
$\left.\begin{array}{llllllllll}\text { SIP } & \text { Store I/O page pointer in status register to data memory } \\ & 15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 \\ & & 6 & 5 & 4 & 3 & 2 & 1 & 0\end{array}\right)$

SOVM Set overflow mode (Enable overflow mode protection)
Syntax:
$\begin{array}{llllllllllllllll}15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0\end{array}$

Operation:

Words:
Cycles:
Note:
品

SOVM
$\mathrm{pc}+1 \rightarrow \mathrm{pc}$
$1 \rightarrow$ OVM bit in status register

1

1
When OVM bit being set, overflow mode protection is enabled. IF result of data operation during add/subtract and shifting instructions execution exceed the maximum or minimum value that can be represented by the accumulator, data in accumulator will be saturated to the largest positive or negative number that can be represented. (0×7 FFFF FFFF or 0×80000000)

SSS

Syntax:
Operation:
Words:
Cycles:
SXF
Syntax:
Operation:
Words:
Cycles:
Notes:

Store content of status register to data memory

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

SSS dma7
SSS * [,narp]
$\mathrm{pc}+1 \rightarrow \mathrm{pc}$ $\mathrm{ss}(15: 0) \rightarrow$ (dma)
1
1(DI) , 2(DE)

Set external flag

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | SXF

$\mathrm{pc}+1 \rightarrow \mathrm{pc}$ $\mathbf{1} \rightarrow \mathbf{X F}$ but $\mathbf{0} \rightarrow \mathbf{X F} \backslash$ pin

1
1
$X F \backslash$ is an inverted output of $X F$.

XOR XOR data from memory with high accumulator

Syntax:

Operation:

Words:
Cycles:

XORK

Syntax:
Operation:

Words:
Cycles:

XORL

Syntax:
Operation:

Words:
Cycles:
$\begin{array}{llllllllllllllll}15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0\end{array}$
XOR dma7
XOR * [,narp]
$\mathrm{pc}+1 \rightarrow \mathrm{pc}$
$\operatorname{acc}(31: 16)$ XOR (dma) $\rightarrow \operatorname{acc}(31: 16)$
1
1(DI) , 2(DE)

XOR immediate 7-bit short constant with high accumulator $\begin{array}{llllllllllllllll}15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0\end{array}$ XORK cnst7
$\mathrm{pc}+1 \rightarrow \mathrm{pc}$
$\operatorname{acc}(22: 16)$ XOR cnst7 $\rightarrow \operatorname{acc}(22: 16)$
$\operatorname{acc}(31: 23) \rightarrow \operatorname{acc}(31: 23)$
1
1

XOR immediate 16-bit long constant with high accumulator
$\begin{array}{llllllllllllllll}15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0\end{array}$
XORL cnst16
$\mathrm{pc}+2 \rightarrow \mathrm{pc}$
$\operatorname{acc}(31: 16)$ XORL cnst16 $\rightarrow \operatorname{acc}(31: 16)$
2
2

6 PCM CODEC

6.1 CODEC OVERVIEW

The PCM CODEC integrates key functions of the analog-front-end of DAM (with Digital Speakerphone) related products into an integrated circuit. The PCM CODEC is especially powerful when applied to some DAM models which are intended to meet different countries' specifications in the same system hardware. User can achieve this goal by simply setting control firmware. This benefit will help DAM system makers to save developing time and R\&D resources.

The built-in CODEC has two $A / D, D / A$ converters so as to meet the requirement of the digital speakerphone application. The on-chip digital filters, which are carried out with 16-bit and 2's complement format, are used to get required frequency response of a PCM CODEC. PCM CODEC is 16-bit format with 14-bit resolution.

Before the A/D digitizing the voice-band analog signal into digital format, the analog signal can be processed by a built-in Automatic Level Control (ALC) and PRE-Programmable Gain Amplifier (PREPGA). The $\boldsymbol{A L C}$ circuit controls the signal level about 1.2 Vpp and $\boldsymbol{A D 1}$-PGA can provide $0 \sim 18 \mathrm{~dB}$ gain to get more larger signal. The PRE-PGA circuit is used to control the gain of different sources like MIC, AUX1 or LIN input.

After the digital data is converted into analog signal by D/A converter, a fully differential line driver and speaker driver are supported to drive the telephone line and 8Ω speaker directly without needing any external amplifiers. Besides, the analog signal can be monitored by passing the on-chip volume control or external volume control.

The MX93132 supports many switches as well. User can program the control registers of the PCM CODEC to accomplish all specific operations of DAM (with digital speakerphone function) related products.

BLOCK DIAGRAM (PCM CODEC)

BASIC COMPONENTS REQUIRED

REFERANCE	PART	DESCRIPTION
*R1	$68 \mathrm{~K} \Omega$	the resistor for internal PLL charge pump circuits
R2	$2 \mathrm{~K} \Omega$	current limit resistor; to limit MIC bias current, please follow MIC specification
R3	$560 \mathrm{~K} \Omega$	ALC release time constant; see FIG. 10
R4, R5		to scale down DC power supply (CMP1I) for reference to VCOMP to check power low
R6, R7		to scale down battery power (CMP2I) for reference to VCOMP to check battery low
*C1	100pF	the capacitor for internal PLL charge pump circuits
*C2	6 pF	the capacitor for internal PLL charge pump circuits
C8, C17	0.1 uF	DC blocking capacitor (0.1~10uF)
C11	0.22uF	DC blocking capacitor (0.1~10uF); H.P.F. 3 dB point : fc ${ }^{\circ}<1 / 2 £ \quad \mathrm{k} 4.4 \mathrm{~K} \Omega * \mathrm{C} 6(0.22 \mathrm{uF})=164 \mathrm{~Hz}$
C6	10uF	DC offset canceling compensative capacitor (4.7~10uF, the larger the better)
C9	0.1uF	DC offset canceling compensative capacitor (0.1~1uF, the larger the better)
$\begin{gathered} \text { C3, C4, C5, } \\ \text { C12, C16 } \end{gathered}$	$0.1 u F$	De-couple capacitor (0.1~10uF)
C15	0.1uF	De-couple capacitor (0.01~10uF); see FUNCTIONAL DESCRIPTION
C10	10uF	ALC attack time constant; see FIG. 9
*C7	5000pF	anti-aliasing capacitor
C13, C14		passive L.P.F.; 3dB point : fc ${ }^{\circ}<1 / 2 £$ ¢ $3 \mathrm{~K} \Omega * \mathrm{C} 13$ (where C13 = C14)
*VR1	$10 \mathrm{~K} \Omega$	to attenuate the input signal from $\boldsymbol{S W H}$ or $\boldsymbol{S W F}$, if use digital volume control, then do not need a resistor between VR and SPKP

@ where : " *" mark shows the requirement of the component can not be changed.

6.2 FUNCTIONAL DESCRIPTION

. PCM CODEC

. The block includes $\boldsymbol{A} / \boldsymbol{D} \& D / \boldsymbol{A}$ converters and all digital filters;

1. $A / D \& D / A$ Converters

A/D Channel :
A. Input Range : $0 \sim 3 \mathrm{Vpp}$ (3Vpp as A/D 0dB full swing (0dBFS));
B. Digital Filters : For the purpose of out-of-band noise filtering, IIR digital filters are implemented on the same chip ($>26 \mathrm{~dB} / 60 \mathrm{~Hz} ;<1 \mathrm{~dB} / 300 \mathrm{~Hz} \sim 3.4 \mathrm{KHz} ;>14 \mathrm{~dB} / 3.6 \mathrm{KHz} \sim 4.6 \mathrm{KHz} ;>32 \mathrm{~dB} /$ 4.6KHz);

D/A Channel :
A. Output swing : $0 \sim 3 \mathrm{Vpp}$ (3Vpp as D/A 0dB full swing (0dBFS));
B. Digital Filters :
a. The digital input applied to D/A converter can not be a DC signal other than idle (bits all zero), as limit cycles in the embodiment method at a level of -70 dBm will present at the analog output.
2. Data format: Linear format
@ Linear 16-bit format : 14-bit resolution with 2 LSB $=0$

SIGN \backslash SCALE	MIN	MAX
POSITIVE	0000000000000000	0111111111111100
NEGATIVE	1111111111111100	1000000000000000

MX93132

.Power Down Mode

The CODEC will recover from power-down mode when ICPDX keeps high;
. Support system power (Adapter and Battery) detection. The function will work well even under 3V power Supply;
. Support power-down control when ICPDX keeps low;
. Support 4 power-down modes for special applications:

MODE	REG 6 (7,6) (SLEEPA,SLEEP) $(0,0)$	REG 6 (7,6) $($ SLEEPA,SLEEP $)$ $(0,1)$	REG $6(7,6)$ $($ SLEEPA,SLEEP $)=$ $(1,0)$	REG 6 (7,6) (SLEEPA,SLEEP) $(1,1)$
FUNCTION	on	off	off	on
VBG reference	on	off	on	on
POW \& BAT	off	off	off	on
all analog blocks	off	off	off	off
A/D and D/A				

Table 1

* Power down procedure

1. Keep $($ SLEEPA, SLEEP $)=(0,0)$ in stand by mode.
2. Setup (SLEEPA, SLEEP) to system required mode.
3. Trigger CODEC power down. Clear CDCMR ICPDX (bit 2) $=0$.
4. Trigger DSP power down. Set CTLR PWDN bit (bit 11) $=1$.

* Wake up procedure

1. Trigger DSP wake up. Clear CTLR PWDN bit (bit 11) $=0$.
2. Wait DSP stable. Wait CTLR PWDNS bit (bit 5) $=0$.
3. $\operatorname{Setup}($ SLEEPA, $\operatorname{SLEEP})=(0,0)$.
4. Trigger CODEC wake up. Set CDCMR ICPDX (bit 2) $=1$.
5. Wait CODEC ready. Wait CDCMR CDREADYX (bit 9) $=0$.

.3-Channel Input (MIC,AUX1,LIN) with PRE-PGA (Pre-Programmable Gain Control)

. Input Range : 0 ~ AVDD-2Vpp;
. PRE-PGA gain step from 21 dB to $-15 \mathrm{~dB}(21,18,15,12,9,7.5,6,4.5,3,0,-3,-6,-9,-12,-15 \mathrm{~dB})$;
Driving Capacity : more than 400uA at FILT and AUX2 output;
. Input Impedance : more than $25 \mathrm{~K} \Omega$;
. THD : less than 70dB at FILT output;
. There is just one path which can be selected at the same time;
. The gain setting of the path will be mapped to the PRE-PGA when user changes the path of Input.

. ALC (Automatic Level Control)

. Input Range : $0 \sim 1.2 \mathrm{Vpp}$ (Loop Gain : 30dB);
. Output Characteristic : see FIG. 5 ~ FIG. 7;
. Loop Gain : 37dB max (with external RC time constant);
. Driving Capacity : more than 400uA at FILT and AUX2 output;
. THD : less than 40dB at FILT output (Loop Gain : 40dB).

. AD1 PGA

. Input Range : 0 ~ AVDD-2Vpp;
. AD1-PGA can support gain step from 0 dB to $18 \mathrm{~dB}(0,4,8,18 \mathrm{~dB})$;

AD2 PGA

. Input Range : 0 ~ AVDD-2Vpp;
AD2-PGA can support gain step from -6dB to $39 \mathrm{~dB}(-6,-3,0,3,6,9,12,15,18,21,24,27,30,33,36$, 39dB);

. FILT as I/O Port

. Input Range : 0 ~ AVDD-2Vpp;
. Input Impedance : more than $1 \mathrm{~K} \Omega$;
. Output Impedance : less than $1 \mathrm{~K} \Omega$;
. Load Capacitance : 5000pF;

. AUX1 \& AUX2 as I/O Port

. Input Range : 0 ~ AVDD-2Vpp;
. Input Impedance : more than $15 \mathrm{~K} \Omega$;
. Output Impedance : less than $15 \mathrm{~K} \Omega$;

. External passive L.P.F. (Low Pass Filter)

External capacitors (LPFC1 and LPFC2) can be changed to attenuate high frequency noise at SPKP and SPKN output;
. When external capacitors (LPFC1 and LPFC2) are NC (no connection), then passive L.P.F. will be by-passed;

Output of the Line Driver (LOUTP and LOUTN) can be chosen to pass or by-pass the L.P.F.;
LPFC1/LPFC2 can be a D/A output pin and output impedance is around $3 \mathrm{~K} \Omega / 6 \mathrm{~K} \Omega$;

D/A PGA

Input Range : 0 ~ AVDD-2Vpp;
DA-PGA can support gain step from 0 dB to $6 \mathrm{~dB}(2 \mathrm{~dB} /$ step $)$;

. Line Driver (LIN-DRV)

. Not only support the programmable gain from 0 to 22.5 dB , but also fully differentially drive 6 Vpp over 600』;
If switches SWE, SWJ, SWK and SWL are opened, then the line driver will be muted to -70 dB and power-down automatically;

1. output swing : Single Ended (only use LOUTP or LOUTN) : $0 \sim 3 \mathrm{Vpp}$ (over 600Ω load, at LINDRV = 0dB); Fully differential (use LOUTP + LOUTN) : $0 \sim 6 \mathrm{Vpp}$ (over 600 l load, at LIN-DRV = 0dB);
2. LIN-DRV gain step from 0 dB to $22.5 \mathrm{~dB}(1.5 \mathrm{~dB} /$ step $)$;
3. THD : less than 70 dB at 6 Vpp output over 600Ω load;

. Attenuator (ATT1 \& ATT2)

Speaker output signal can be attenuated either by internal register or external resistor; . If switches SWF and SWH are opened, then attenuator will be muted to -70 dB automatically;

1. ATT1 (internal register) : 16 steps programmable, from -45 dB to $0 \mathrm{~dB}(-45,-39,-33,-27,-24,-21,-$ 18, -15, -12, -9, -7.5, -6, -4.5, $-3,-1.5,0 \mathrm{~dB}$);
2. ATT2 (external variable resistor) : from $-45 \sim 0 \mathrm{~dB}$ (determined by external $10 \mathrm{~K} \Omega$ potentiometer);
3. THD : less than 70dB;
4. input range for AUX2 : $0 \sim$ AVDD-2Vpp;
5. input impedance for AUX2 : more than $15 \mathrm{~K} \Omega$;

. Speaker Driver (SPK-DRV)

. If switches SWF and SWH are opened, then SPK-DRV will be power-down automatically;

1. Maximum output swing : 6 Vpp with 8Ω load at fully differential output (SPKP + SPKN);
2. THD : less than 60 dB (at $6 \mathrm{Vpp} / 8 \Omega$ load);

. Voltage Reference (VREF \& VAG)

. Two 2.25 V 申 voltage references are on-chip generated, where VREF is for external circuit use and VAG is for internal circuit use;
. VREF can be used to bias the microphone, the level shift circuit or other applications;

1. VREF driving capacity : more than 400uA;
2. User can use the VREF to provide DC bias to external components;

. Bandgap Reference (VBG)

A bandgap circuit generates a voltage source (VBG) which is around $1.2 \mathrm{~V} \oplus$. It is with low temperature coefficient and good power supply rejection;
If user changes VBG bypass capacitor (C15) then the MX93002 warm-up time will be changed; see The Timing Diagram of CODEC Function;

. Serial Control Interface

. Use IFS for synchronization with ISDATAW/ISDATAR to read/write the internal control registers;
. All registers will keep original setting when the CODECs returns from power-down or sleep mode;

1. When ISDENX (serial data enable) signal active low, the CODECs starts to receive(transmit) serial control data ISDATAW (ISDATAR);
2. Set ISDENX from low to high when transmitting / receiving ISDATAW / ISDATAR is complete;
3. ISDATA(R/w) format : 3 addresses from A2 to A0, 8 data from D7 to D0 (A2 is MSB and D0 is LSB);

. Two Comparators for AC power and battery power

. To detect AC power and battery power or other applications;

1. input range : $0 \sim$ AVDD-2Vpp (with 7V surge protection);
2. input impedance : more than $10^{\wedge} 12 \Omega$;
3. input offset voltage : less than 10 mV ;
4. output impedance : less than $10 \mathrm{~K} \Omega$;
5. slew rate : 3V/us max.;

. Switches

. There are three registers (REG0, REG3 and REG6) which are used to control all of the switches so that user can direct many different signal paths, for examples:

1. Record signal from MIC and play signal to SPKP/N or play signal to LOUTP/N:
A. Record signal from MIC or Record signal from LIN:
a. System initialization [set MIC gain (REG2 bit(3~0)), set LIN gain (REG1 bit(7~4), set ALC gain 0/6dB (REG5 bit(1)) and set $\boldsymbol{A} / \boldsymbol{D}$-PGA gain (REG6 bit(1,0))]
b. Record signal from MIC : set REGO $=0 \times 0048$

MIC $\Rightarrow S W A \Rightarrow P R E-P G A \Rightarrow S W C(A L C$ on $) \Rightarrow S W D \Rightarrow A D 1-P G A \Rightarrow P C M$ CODEC AIN1
c. Record signal from LIN : set REG0 $=0 \times 00 \mathrm{C} 8$

LIN $\Rightarrow S W A \Rightarrow P R E-P G A \Rightarrow S W C(A L C$ on $) \Rightarrow S W D \Rightarrow A D 1-P G A \Rightarrow P C M$ CODEC AIN1
B. Play signal to SPKP/N or play signal to LOUTP/N:
a. System initialization [fix the value of L.P.F. , set (REG6 bit(5)), set D/A-PGA gain (REG6 bit(3,2), set ATT1 gain (REG3 bit(3~0)) and LIN-DRV gain (REG1 bit(3~0))]
b. Play signal to SPKP/N (use digital volume control) : set REG $0=0 \times 0003$

PCM CODEC AOUT1 \Rightarrow L.P.F. $\Rightarrow S W F \Rightarrow D A-P G A \Rightarrow S W G(A T T 1) \Rightarrow S P K-D R V \Rightarrow$ SPKP/N
c. Play signal to LOUTP/N : set REG $0=0 \times 0004$
i. PCM CODEC AOUT1 \Rightarrow L.P.F. \Rightarrow SWL \Rightarrow LIN-DRV \Rightarrow LOUTP/N
ii. PCM CODEC AOUT2 \Rightarrow SWE \Rightarrow LIN-DRV \Rightarrow LOUTP/N
d. Play signal to SPKP/N (use digital volume control) and LOUTP/N : set REG $0=0 \times 0007$

$$
\begin{aligned}
& \text { i. PCM CODEC AOUT1 } \Rightarrow \text { L.P.F. } \Rightarrow \text { SWF } \Rightarrow D A-P G A \Rightarrow \text { SWG }(A T T 1) \Rightarrow \text { SPK-DRV } \Rightarrow \\
& \text { SPKP/N } \\
& \text { PCM CODEC AOUT2 } \Rightarrow \text { SWE } \Rightarrow L I N-D R V \Rightarrow \text { LOUTP/N } \\
& \text { ii. PCM CODEC AOUT1 } \Rightarrow L . P . F . \\
& \begin{aligned}
& \Rightarrow S W F \Rightarrow D A-P G A \Rightarrow S W G(A T T 1) \Rightarrow S P K-D R V \Rightarrow \\
\text { SPKP/N } & \Rightarrow S W L \Rightarrow L I N-D R V \Rightarrow \text { LOUTP/N }
\end{aligned}
\end{aligned}
$$

2. Room Monitoring:
A. System initialization [set MIC gain (REG2 bit(3~0)), set ALC gain 0/+6dB (REG5 bit(1)), set LIN-DRV gain (REG1 bit(3~0)), set REG3 bit(6,5) and set REG6 bit(1,0)]
B. Switches path:
a. Remote Monitoring:

$$
\mathrm{MIC} \Rightarrow S W A \Rightarrow P R E-P G A \Rightarrow S W C(A L C \text { on }) \Rightarrow S W J \Rightarrow \text { LIN-DRV } \Rightarrow \text { LOUTP } / \mathrm{N}
$$

b. Local Detecting DTMF:

LIN \Rightarrow SWI \Rightarrow AD1-PGA \Rightarrow PCM CODEC AIN1
3. Digital Speakerphone:
A. System Initialization [set MIC gain (REG2 bit(3~0)), set AD1-PGA gain (REG6 bit(1,0)), fix the value of L.P.F., set DA-PGA gain (REG6 bit(3,2)), set ATT1 gain (REG3 bit(3~0)), set LIN gain (REG1 bit(7~4)), set SWM REG4 bit(4), set LIN-DRV gain (REG1 bit(3~0))]
B. Switches path : set REG0 $=0 \times 00 A F$
a. CODEC 1 : Record signal from MIC and Play signal to SPKP/N (use digital volume control) MIC $\Rightarrow S W A \Rightarrow$ PRE-PGA $\Rightarrow S W C(A L C$ off $) \Rightarrow S W D \Rightarrow A D 1-P G A \Rightarrow$ PCM CODEC AIN1 $P C M$ CODEC AOUT1 \Rightarrow L.P.F. \Rightarrow SWF \Rightarrow SWG $(A T T 1) \Rightarrow S P K-D R V \Rightarrow$ SPKP/N
b. CODEC 2 : Record signal from LIN and Play signal to LOUTP/N

LIN \Rightarrow SWM \Rightarrow AD2-PGA \Rightarrow PCM CODEC AIN2
PCM CODEC AOUT2 \Rightarrow SWE \Rightarrow LIN-DRV \Rightarrow LOUTP/N

. Power Consumption of CODEC (with 600Ω line load and 8Ω speaker load)

Max. Power Consumption	LIN-DRV Dis/Enable	SPK-DRV Dis/Enable	Analog circuits	Unit
Operation	Disable	Disable	20	mA
Stand-by	Disable	Disable	20	mA
Operating	Enable	Disable	31	
	Disable	Enable	217	
Power-down	Enable	Enable	217	
Power-down with SLEEP $=1$	Disable	Disable	120	uA

@ Test condition : 1. at LIN-DRV (with 600Ω load) / SPK-DRV (with 8Ω load) full swing output
2. see LIN-DRV and SPK-DRV Descriptions

6.3 CONTROL REGISTERS DEFINITION

REGISTER 0

ADDRESS BIT	A2	A11	A0
DATA	0	0	0

DATA BIT	D7	D6	D5	D4	D3	D2	D1	D0
POWER-ON	0	1	0	1	1	1	0	0
DESCRIPTION	SWA		SWB	SWC	SWD	SWE	SWF	SWG

(SWA) $\mathrm{D}(7,6)=(1,1):$ path of $\boldsymbol{S W A}$ is " $c \Rightarrow A$ ", PRE-PGA setting follows LIN GAIN SETTING $=(1,0)$: path of SWA is " $\mathrm{b} \Rightarrow \mathrm{A}^{\prime}$, PRE-PGA setting follows AUX1 GAIN SETTING
$=(0,1)$: path of SWA is "a $\Rightarrow A^{\prime \prime}$, PRE-PGA setting follows MIC GAIN SETTING
$=(0,0)$: path of $\boldsymbol{S W A}$ is " $d \Rightarrow A^{\prime \prime}$, (GROUNDING to $\mathbf{A G}$)
$(\boldsymbol{S W B}) \mathrm{D}(5)=(1)$: path of $\boldsymbol{S W B}$ is "CLOSE", $\mathrm{D}(5)=(0)$: path of $\boldsymbol{S W B}$ is "OPEN"
$(\boldsymbol{S W C}) \mathrm{D}(4)=(1):$ path of $\boldsymbol{S W C}$ is $" b \Rightarrow A ", D(4)=(0):$ path of $\boldsymbol{S W C}$ is "a $\Rightarrow A "$
$(\boldsymbol{S W D}) \mathrm{D}(3)=(1)$: path of $\boldsymbol{S W D}$ is "CLOSE", $\mathrm{D}(3)=(0)$: path of $\boldsymbol{S W D}$ is "OPEN"
(SWE) $D(2)=(1):$ path of SWE is "CLOSE", $\mathrm{D}(2)=(0):$ path of SWE is "OPEN";
$(\boldsymbol{S W F}) \mathrm{D}(1)=(1):$ path of SWF is "CLOSE ", $\mathrm{D}(1)=(0)$: path of SWF is "OPEN "
(SWG) $\mathrm{D}(0)=(1)$: path of $\boldsymbol{S W G}$ is "a $\Rightarrow \mathrm{A} "$, ATTENUATOR 1 (ATT1)
$=(0)$: path of $\boldsymbol{S W G}$ is " $\mathrm{a} \Rightarrow \mathrm{B}$ ", ATTENUATOR 2 (ATT2)

REGISTER 1

ADDRESS BIT	A2	A1	A0
DATA	0	0	1

DATA BIT	D7	D6	D5	D4	D3	D2	D1	D0
POWER-ON	0	0	0	0	0	0	0	0
DESCRIPTION	LIN GAIN SETTING (PRE-PGA)				LIN-DRV GAIN SETTING			

(LIN GAIN SETTING) D(7~4) $=(\mathrm{F}) \sim(0): 21 \mathrm{~dB} \sim-15 \mathrm{~dB}$; see NOTE 1
(LIN-DRV GAIN SETTING) $D(3 \sim 0)=(F) \sim(0): 22.5 d B \sim 0 d B 1.5 d B / s t e p ;$ see NOTE 4

REGISTER 2

ADDRESS BIT	A2	A1	A0
DATA	0	1	0

DATA BIT	D7	D6	D5	D4	D3	D2	D1	D0		
POWER-ON	0	0	0	0	0	1	0	1		
DESCRIPTION	AUX1 GAIN SETTING (PRE-PGA)					MIC GAIN SETTING (PRE-PGA)				

(AUX1 GAIN SETTING) $D(7 \sim 4)=(F) \sim(0): 21 \mathrm{~dB} \sim-15 \mathrm{~dB}$; see NOTE 1
(MIC GAIN SETTING) $D(3 \sim 0)=(F) \sim(0): 21 \mathrm{~dB} \sim-15 \mathrm{~dB}$; see NOTE 1

REGISTER 3

ADDRESS BIT	A2	A1	A0
DATA	0	1	1

DATA BIT	D7	D6	D5	D4	D3	D2	D1	D0
POWER-ON	0	0	0	0	1	1	1	1
DESCRIPTION	SWH	SWI	SWJ	SWK	ATT1 GAIN SETTING			

(SWH) D(7) = (1) : path of $\boldsymbol{S W H}$ is "CLOSE", $\mathrm{D}(7)=(0)$: path of $\boldsymbol{S W H}$ is "OPEN"
(SWI) D(6) = (1) : path of $\boldsymbol{S W I}$ is "CLOSE", $\mathrm{D}(6)=(0)$: path of $\boldsymbol{S W I}$ is "OPEN"
$(\boldsymbol{S W J}) \mathrm{D}(5)=(1):$ path of $\boldsymbol{S W J}$ is "CLOSE", $\mathrm{D}(5)=(0):$ path of $\boldsymbol{S W J}$ is "OPEN"
$(\boldsymbol{S W K}) \mathrm{D}(4)=(1):$ path of $\boldsymbol{S W K}$ is "CLOSE", $\mathrm{D}(4)=(0):$ path of $\boldsymbol{S W K}$ is "OPEN"
(ATT1 GAIN SETTING) D(3~0) = (F)~(0) :-45dB~0dB; see NOTE 3

REGISTER 4

ADDRESS BIT	A2	A1	A0
DATA	1	0	0

DATA BIT	D7	D6	D5	D4	D3	D2	D1	D0
POWER_ON	0	0	1	0	1	0	0	0
DESCRIPTION	AD2-PGA GAIN SETTING							SWM

(AD2-PGA GAIN SETTING) D $(7 \sim 4)=(0) \sim(F):-6 d B \sim 39 d B ;$ see NOTE 3
$(\boldsymbol{S W M}) \mathrm{D}(3)=(1)$: path of $\boldsymbol{S W M}$ is "CLOSE", $\mathrm{D}(3)=(0)$: path of $\boldsymbol{S W M}$ is "OPEN"
REGISTER 5

ADDRESS BIT	A2	A1	A0
DATA	1	0	1

DATA BIT	D7	D6	D5	D4	D3	D2	D1	D0
POWER_ON	0	0	0	0	0	0	0	0
DESCRIPTION	ALC1	SPKHI	REV	REV	REV	REV	ALC0	REV

D (5 ~ 2 and 0) : reserved
(SPKHI) $\mathrm{D}(6)=(0): \mathbf{S P K P / N}$ can drive 8Ω load when $\boldsymbol{S P K}$-DRV turns on
$D(6)=(1): S P K P / \mathbf{N}$ appears high impedance ($10 \mathrm{~K} \Omega$) and $\boldsymbol{S P K}$ - $\boldsymbol{D R} \boldsymbol{V}$ will keep a quiescent current when $\boldsymbol{S P K}$ - DRV turns on (ALC1, ALC0) D $(7,1)=(0,0): \boldsymbol{A L C}$ open loop gain is 38 dB
$(\operatorname{ALC} 1, \operatorname{ALC} 0)=(0,1): A L C$ open loop gain is 36 dB
$=(1,0)$: reserved
$=(1,1)$: external $\boldsymbol{A L C}$ option (PRE-PGA Output : ALCC1, SWC path "a" Input : ALCC2)

REGISTER 6

ADDRESS BIT	A2	A1	A0
DATA	1	1	0

DATA BIT	D7	D6	D5	D4	D3	D2	D1	D0
POWER_ON	0	0	0	0	0	0	0	0
DESCRIPTION	SLEEPA	SLEEP	SWL	SPK- MUTE	SPK-DRV GAIN SETTING	AD1-PGA GAIN SETTING		

(SLEEPA , SLEEP) $D(7,6)=(0,0)$: when the CODEC gets into power down mode, all the blocks of the
CODEC will be disabled except the VBG reference and 2
comparators (POW, BAT)
$D(7,6)=(0,1)$: when the CODEC gets into power down mode, all the blocks of the
CODEC will be disabled
$D(7,6)=(1,0)$: when the CODEC gets into power down mode, all the blocks of the
CODEC will be disabled except 2 comparators (POW, BAT)
$D(7,6)=(1,1)$: when the CODEC gets into power down mode, all the analog blocks
of the CODEC will be still functional and can be programmed by control registers
$(\boldsymbol{S W L}) \mathrm{D}(5)=(1):$ path of $\boldsymbol{S W L}$ is "CLOSE", $\mathrm{D}(5)=(0):$ path of $\boldsymbol{S W L}$ is "OPEN"; see NOTE 7
(SPK-MUTE) $D(4)=1$: force SPK-DRV mute to $-70 \mathrm{~dB}, \mathrm{D}(4)=0$: force $\boldsymbol{S P K}$-DRV un-mute
(SPK-DRV GAIN SETTING) $\mathrm{D}(3,2)=(0,0) \sim(1,1): 0 \mathrm{~dB} \sim 8 \mathrm{~dB}$; $2 \mathrm{~dB} /$ step; see NOTE 5
(AD1-PGA GAIN SETTING) $D(1,0)=(0,0) \sim(1,1): 0 \mathrm{~dB} \sim 18 \mathrm{~dB}$; see NOTE 2

REGISTER 7

ADDRESS BIT	A2	A1	A0
DATA	1	1	1

DATA BIT	D7	D6	D5	D4	D3	D2	D1	D0
POWER_ON	0	0	0	0	0	0	0	0
DESCRIPTIN			SWO	SWN	READ	REGISTER ADDRESS		

(SWO) $\mathrm{D}(5)=(1)$: path of SWO is "CLOSE", $\mathrm{D}(5)=(0)$: path of SWO is "OPEN"
$(S W N) D(4)=(1):$ path of $S W N$ is "CLOSE", $D(5)=(0):$ path of $S W N$ is "OPEN"; see NOTE 7
(READ) $D(3)=1$: read data from Register $0 \sim 7, D(3)=0$: write data to Register $0 \sim 7$
(REGISTER ADDRESS) $\mathrm{D}(2 \sim 0)$: When READ = 1, then
a. READ will be cleared automatically;
b. if next DSP ISDENX signal active low, the content of REGISTER ADDRESS will be dumped out through CODEC ISDATAR interface;

NOTE 1 : PRE-PGA gain step; from -15 dB to 22 dB

1111	1110	1101	1100	1011	1010	1001	1000
21 dB	18 dB	15 dB	12 dB	9 dB	7.5 dB	6 dB	4.5 dB

0111	0110	0101	0100	0011	0010	0001	0000
3.0 dB	1.5 dB	0 dB	-3 dB	-6 dB	-9 dB	-12 dB	-15 dB

NOTE 2 : AD1-PGA gain step; from 0dB to 18 dB

00	01	10	11
0 dB	4 dB	8 dB	18 dB

NOTE 3 : AD2-PGA gain step; from -6 dB to 39 dB ; $3 \mathrm{~dB} /$ step

1111	1110	1101	1100	1011	1010	1001	1000
39 dB	36 dB	33 dB	30 dB	27 dB	24 dB	21 dB	18 dB

0111	0110	0101	0100	0011	0010	0001	0000
15 dB	12 dB	9 dB	6 dB	3 dB	0 dB	-3 dB	-6 dB

NOTE 4 : LIN-DRV gain step; from 0 dB to $22.5 \mathrm{~dB} ; 1.5 \mathrm{~dB} /$ step

1111	1110	1101	1100	1011	1010	1001	1000
22.5 dB	21 dB	19.5 dB	18 dB	16.5 dB	15 dB	13.5 dB	12 dB

0111	0110	0101	0100	0011	0010	0001	0000
10.5 dB	9 dB	7.5 dB	6 dB	4.5 dB	3 dB	1.5 dB	0 dB

NOTE 5 : SPK-DRV gain step; from 0dB to 6dB; 2dB/step

00	01	10	11
0 dB	2 dB	4 dB	6 dB

NOTE 6 : ATT1 (Attenuator 1) gain step; from 0dB to -45 dB

1111	1110	1101	1100	1011	1010	1001	1000
-45 dB	-39 dB	-33 dB	-27 dB	-24 dB	-21 dB	-18 dB	-15 dB

0111	0110	0101	0100	0011	0010	0001	0000
-12 dB	-9 dB	-7.5 dB	-6 dB	-4.5 dB	-3 dB	-1.5 dB	0 dB

MX93132

NOTE 7 : 1. SWE, SWJ and SWL can not be turned on at the same time;
2. SWJ and SWN can not be turned on at the same time;
3. If $\boldsymbol{S W E}$, $\boldsymbol{S W J}$ or $\boldsymbol{S W L}$ is turned on, then $\boldsymbol{S W K}$ will be taken as an output port;
4. If $\boldsymbol{S W K}$ is taken as an input port, $\boldsymbol{S W K}, \mathbf{S W E}, \mathbf{S W J}$ and $\boldsymbol{S W L}$ cannot be turned on at the same time;

7.1 DC CHARACTERISTICS:

SYMBOL	PARAMETER	CONDITION	MIN	TYP	MAX	UNIT
	Operation temperature		0		70	${ }^{\circ} \mathrm{C}$
	Storage temperature		-55		150	${ }^{\circ} \mathrm{C}$
	Operation Frequency			40.96		MHz
VCC	Supply Voltage		4.5	5	5.5	Volt
GND	Ground			0		Volt
VIH	Input high voltage	Schmidt trigger input(IS)	0.7^{*} VCC		Volt	
VIL	Input low voltage	Schmidt trigger input(IS)			0.3^{*} VCC	Volt
RH	Pull high register	for IPT[3:0] pins		150 K		ohm
IOL(OA)	Output low current	@VOL $=0.4$	8		mA	
IOL(OB)	Output low current	@VOL $=0.4$	16	mA		

Absolute Maximum Rating

PARAMETER	MIN	TYP	MAX	UNIT
AVDD to AGND	-0.3		6.0	V
VDD to DGND	-0.3		6.0	V
Voltage at any Digital Input or Output	DGND-0.3		VDD+0.3	V
Current at any Digital Input or Output			8	mA
Operating Ambient Temperature Range	0		70	Φ
Storage Temperature Range	-65		150	$\$$
Lead Temperature (Soldering, 10 seconds)			J	

MX93132

Power Supply

PARAMETER	MIN	TYP	MAX	UNIT
Power Supply Voltage	4.5	5.0	5.5	V
Digital and Analog				
Power Supply Current				
Stand-by :				
Digital		10	12	mA
Analog		20		mA
Operating :				
Digital		60	70	mA
Analog (see Page 77)				mA
Power-Down:				
Digital			2	mA
Analog (at REG4 bit 6 SLEEP $=0$)			120	uA
Analog (at REG4 bit 6 SLEEP = 1)			20	uA

Electrical Characteristics (BOLD characters are guaranteed for AVDD $=$ VDD $=5 \mathrm{~V} \pm 5 \%$,

Temperature $=0 \sim 70 \$ \mathrm{~J}$ Typical specified at $\mathrm{AVDD}=\mathrm{VDD}=5 \mathrm{~V}$, temperature $=25 ¢ \mathrm{~J}$ "*" mark : guaranteed by design)

Analog Input Ports

PARAMETER	MIN	TYP	MAX	UNIT S
MIC / LIN / AUX1 :				
Input Voltage			3.0	Vpp
* Input Capacitance				
* Input Impedance	20		15	pF

MX93132

Analog Output Ports

PARAMETER	MIN	TYP	MAX	$\begin{gathered} \hline \text { UNIT } \\ \mathrm{S} \end{gathered}$
Line Driver				
Gain Range	0		22.5	dB
Step Variation		0.3		dB
Fully Differential (LOUTP+LOUTN) Full Swing /		6.0		Vpp
with 600Ω load				
Single Ended (LOUTP) Full Swing / with 600Ω		3.0		Vpp
load				
External Load Capacitance			200	pF
* Output Loading	600			Ω
Speaker Driver				
Fully Differential (SPKP+SPKN) Full Swing / with		6.0		Vpp
8Ω load				
Single Ended (SPKP) Full Swing / with 8Ω load		3.0		Vpp
* External Load Capacitance			100	pF
* Output Loading	8			Ω
the Quiescent current (when REG5 bit(6) SPKHI =			4	mA

Analog I/O Ports

PARAMETER	MIN	TYP	MAX	UNITS
FILT				
as Input Port :				
* Input Capacitance	5000			pF
* Input Impedance	1			$\mathrm{K} \Omega$
as Output Port :				
External Load Capacitance			5000	pF
* Output Impedance			1	$\mathrm{K} \Omega$
AUX2 :				
as Input Port				
* Input Capacitance	15			pF
* Input Impedance	15			$\mathrm{K} \Omega$
as Output Port :				
External Load Capacitance			15	pF
* Output Impedance			15	$\mathrm{K} \Omega$

MX93132

Gain Variation

PARAMETER	MIN	TYP	MAX	UNITS
PRE-PGA : Gain Range Step Size Step Variation	-15	$\begin{gathered} \pm 1.5, \pm 3 \\ \pm 0.3 \\ \hline \end{gathered}$	22.5	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
$A D-P G A:$ Gain Range Step Size Step Variation	0	$\begin{gathered} +3 \\ \pm 0.3 \\ \hline \end{gathered}$	9	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \hline \end{aligned}$
DA-PGA : Gain Range Step Size Step Variation	0	$\begin{gathered} +3 \\ \pm 0.3 \\ \hline \end{gathered}$	9	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$

Attenuator

PARAMETER	MIN	TYP	MAX	$\begin{gathered} \text { UNIT } \\ \mathrm{S} \end{gathered}$
Attenuator 1 (Digital Volume): Gain Range Step Size Step Variation * Mute Attenuation	-45	$\begin{gathered} -6,-3,-1.5 \\ \pm 0.3 \\ -70 \\ \hline \end{gathered}$	0	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
Attenuator 2 (External Volume) : Gain Range the Requirement of External Resistor (from SPKP to VR) * Mute Attenuation	-45	10 -70	0	dB $\mathrm{K} \Omega$ dB

Voltage Reference (VREF pin)

PARAMETER	MIN	TYP	MAX	UNITS
Output Voltage	2.0	2.25	2.5	V
* Output Current		450		uA

Two Comparators (POW, BAT)

PARAMETER	MIN	TYP	MAX	UNITS
Input Voltage (VCOMP, VPOW, VBAT)			AVDD	V
* Hysteresis		15		mV
* Output Impedance of POWB and BATB pins	10			$\mathrm{~K} \Omega$

7.2 AC TIMING and CHARACTERISTICS:

7.2.1 RESET TIMING

NOTE : PLL output clock will be reset to a lower frequency (around $24 \sim 25 \mathrm{MHz}$) during power on reset or at the starting point when DSP just comes back from power down mode. It takes about 10 ms for FLL to lock at the target frequency specified in PLLMR(//O mapped 21) when RST pin going high or PWDN bit being cleared.

7.2.2 EXTERNAL PROGRAM and DATA READ TIMING

SYMBOL	PARAMETER	CONDITION	MIN TYP MAX	UNIT
Tw_epce	Program read cycle time	see Note1	$\mathrm{Tm}^{*}(1.5+\mathrm{Wp})$	ns
Tw_edce	Data read cycle time	see Note1	$\mathrm{Tm}^{*}(1.5+\mathrm{Wd})$	ns
Tw_ead	Read address cycle time		Same as Tw_epcel and Tw_edce	ns
Td_erdl	Read enable delay time		Tm*0.5	ns
Ts_read	Data read setup time	see Note2	20 or 40	ns
Th_read	Data read hold time		$0 \quad 10$	15

NOTE1: Wp is PROGWAIT[2:0] in WSTR , Wd is DATAWAIT[2:0] in WSTR
NOTE2: Ts_read : 20 ns when FAST (in EXTCTLR) $=1,40 \mathrm{~ns}$ when FAST $($ in EXTCTLR $)=0$

7.2.3 EXTERNAL DATA WRITE TIMING

SYMBOL	PARAMETER	CONDITION	MIN	TYP	MAX
UNIT					
Tas	Address set-up time			Tm*0.5 *	ns
Twr	Write recovery time		0		ns
Tdw	Data set-up time		10	ns	
Tdh	Data hold time		0	ns	

7.2.4 HOST INTERFACE TIMING

SYMBOL	PARAMETER	CONDITION	MIN	TYP
Taa_hostr	Host read access time			50
Udh_hostr	Host read data hold time		5	ns
Tds_hostw	Data setup time at host write		40	ns
Tdh_hostw	Data hold time at host write		10	ns

7.2.5 DRAM CAS BEFORE RAS REFRESH TIMING

SYMBOL	PARAMETER	CONDITION	MIN	TYP	MAX
UNIT					
Trp	RAS \backslash precharge time	$@ 40.96 \mathrm{MHz}$	61	ns	
Trpc	RAS \backslash to CAS \backslash precharge time	$"$	48.8	ns	
Tcsr	CAS setup time	$"$		12.2	ns
Tras	RAS \backslash pulse width	$"$	85.4	ns	
Tcp	CAS \backslash precharge time	$"$	24.4	ns	
Tchr	CAS hold time	$"$	48.8		ns
T_refresh	Refresh cycle time	see NOTE	15.258	us	

NOTE : DSP will generate CAS before RAS \backslash self refresh every 15.258 us(32768 Hzx 2$)$.

MX93132

7.2.6 DRAM READ/WRITE TIMING

SYMBOL	PARAMETER	CONDITION	MIN	TYP
Mrp	RAS \backslash precharge time		61	UNIT
Tcp	CAS \backslash precharge time		24.4	ns
Tcas	CAS \backslash low pulse width	see Note1	$\mathrm{Tm}^{*}(2+W) / 2$	
Trcd	RAS to CAS delay time		ns	
Tasr	Row address set-up time		0	ns
Trah	Row address hold time			ns
Tasc	Column address set-up time		0	ns
Tcah	Column address hold time		24.4	ns
Trcs	Read command set-up time		0	ns
Ts_dramr	DRAM read data set-up time	see Note2	20 or 40	ns
Th_dramr	DRAM read data hold time		0	ns
Twcs	Write command set-up time		0	ns
Ts_dramw	DRAM write data set-up time		0	ns
Th_dramw	DRAM write data hold time		36.6	ns

NOTE1: W is DRAMWAIT[2:0] in WSTR

NOTE2: Ts_dramr : 20 ns when FAST (in EXTCTLR) $=1$
40 ns when FAST (in EXTCTLR) $=0$

7.2.7 CODEC TIMING DESCRIPTION

TIMING	DESCRIPTION	MIN	TYP	MAX	UNIT
1/Tmck	frequency of master clock (from Vmckh1 to next Vmckh1) at RATE $=0$	1.638	2.048	2.560	MHz
Trmck	rise time of master clock			50	ns
Tfmck	fall time of master clock			50	ns
Tfs	from Vmckh1 to Vfsh1	0			ns
Tfsh	holding time for frame sync. From Vfsh1 to Vfsh2	MCLK			ns
Tdxs	setting time for CODEC transmit data from Vmckh1(n) to IDX(n) data ready	110			ns
Tdrh1	holding time for CODEC received data from IDR(n) data ready to Vmckh2(n)	0			ns
Tdrh2	holding time for CODEC received data from Vmckl(n) to DR(n) ending	150			ns
Tupen1	from Vsclkh1 to Venl	40		IFS	ns
Tupen2	from Vsclkh1 to Venh	40		IFS	ns
Tups1	setting time for DSP transmitting ISDATAW from Vupenl to DSP ISDATAW(n) ready (@ where Tupen1+Tups1 must < IFS)	40		IFS	ns
Tups2	setting time for DSP transmitting ISDATAW from Vsclkh1($n+1$) to DSP SDATA($\mathrm{n}+1$) ready	40		IFS	ns
Tuph	holding time for DSP transmitting ISDATAW from Vsclkh1($n+1$) to DSP ISDATAW(n) ending	40		$\begin{gathered} \hline \text { Tups } \\ 2 \end{gathered}$	ns
Tcdrd	from Vsclkh1($\mathrm{n}+1$) to CODEC reading ISDATAW(n)			20	ns
Tcds1	setting time for CODEC transmitting ISDATAR from Vcdi2o to ISDATAR(n) ready			20	ns
Tcds2	setting time for CODEC transmitting ISDATAR from Vsclkh1 $(\mathrm{n}+2)$ to ISDATAR(n+1) ready			20	ns
Tcdh	holding time for CODEC transmitting ISDATAR from ISDATAR(n) ready to Vsclkh1 ($\mathrm{n}+2$)			IFS	ns
Tcdo2i	from Venh to CODEC changing its ISDATAR interface to input port			20	ns
Tuprd	from Vsclkh1 $(\mathrm{n}+1)$ to DSP reading ISDATAR(n)	40		IFS	ns
Tupi2o	from Vsclkh1 to DSP changing its ISDATAR interface to output port	40		IFS	ns
Vmckh1	logic high when CODEC IMCLK rising				
Vmckh2	logic high when CODEC IMCLK falling				
Vmckl	logic low when CODEC IMCLK falling				
Vfsh1	logic high when CODEC IFS rising				
Vsclkh1	logic high when IFS rising				
Venh	logic high when uP SDENB rising				
Venl	logic low when uP SDENB falling				

MX93132

TIMING DIAGRAM

Master Clock, Frame Sync. \& Data Timing Diagram
\square
IMTIK $2 \square{ }^{3}$ $5 \square$ 7 8 $9 \square$, i ! [1 ! 1 IRS

Control Registers R/W Timing Diagram CODEC READ

interface
CODEC WRITE

The Timing Diagram of CODEC Function (SLEEPA,SLEEP) $=(0,0)$ or $(1,1)$

@ Analog Paths: Analog I/O, Switches, PGA and Attenuator
@
: Stable
$($ SLEEPA,SLEEP $)=(\mathbf{0 , 1})$ or $(\mathbf{1 , 0})$

@ Analog Paths: Analog I/O, Switches, PGA and Attenuator
@
: Stable

MX93132

The Timing Description of CODEC Function

TIMING	DESCRIPTION	MIN	TYP	MAX	UNIT
tA	VDD / AVDD ${ }^{\circ}$ <3.0VDC				
tC	ICPDX started				
tC \Rightarrow th	ICPDX keeps				
tH	Power-down started (ICPDX keeps low)				
tJ	Power-down ended (ICPDX keeps high)				
$\mathbf{t H} \Rightarrow \mathbf{t J}$	ICPDX keeps low				
$t A \Rightarrow t B$	the charge time of VBG (where VBG bypass cap. $=0.1 \mathrm{uF}$)	140	190	290	ms
tD \Rightarrow tE	the lock-in time of PLL (C1=100pF, $\mathrm{C} 2=6 \mathrm{pF}, \mathrm{R} 1=68 \mathrm{~K} \Omega$)	50	110	160	us
$\begin{aligned} & \mathbf{t F} \Rightarrow \mathbf{t G} \\ & \mathbf{t J} \Rightarrow \mathbf{t K} \end{aligned}$	the charge time of VAG (where VAG bypass cap. $=0.1 \mathrm{uF}$)	1.5	2	2.5	ms
$\mathbf{t H} \Rightarrow \mathbf{t I}$	the discharge time of VAG (where VAG bypass cap. $=0.1 \mathrm{uF}$)	0.3	0.5	0.7	ms
$\mathbf{t h} \Rightarrow \mathbf{t i}$	the delay time of VBG disable (where VBG bypass cap. $=0.1 \mathrm{uF}$)	6	10	15	ms

@ when change VBG bypass capacitor (C15) :
i. from $0.1 u F$ to $1 u F:(\mathbf{t} \mathbf{A} \Rightarrow \mathbf{t B})^{\circ} \quad<10 *(\mathbf{t} \mathbf{A} \Rightarrow \mathbf{t B})$
ii. from $0.1 u F$ to $0.01 u F:(\mathbf{t A} \Rightarrow \mathbf{t B})^{\prime}{ }^{\circ}<1 / 10 *(\mathbf{t} \mathbf{A} \Rightarrow \mathbf{t B})$

MX93132

A/D Path Characteristics (OdBFS : reference to Fin $=1.02 \mathrm{KHz}$ and A / D Input is Full Swing)

PARAMETER	MIN	TYP	MAX	UNITS
Dynamic Range (at -51dBFS)	76	77	78	dB
THD +N (at Vin $=-6 \mathrm{dBFS}$)	-58	-62	-64	dB
Interchannel Isolation of LIN/MIC/AUX1 (at Vin =		76		dBFS
0dBFS)	-0.3		0.3	dBFS
Gain Variation (at Vin $=-6 \mathrm{dBFS}$)		3.0		Vpp
Max. Overload Level				
Frequency Response (Measure Respone from				
60 Hz to		-23	-26	dB
4000 Hz , see FIG. 3) :		-7	-8	dB
60 Hz		-3	-4	dB
150 Hz	-0.8		+0.8	dB
200 Hz		-1.6		dB
$300 \sim 3200 \mathrm{~Hz}$		-4.5		dB
3400 Hz		-10		dB
3600 Hz		-45		dB
3800 Hz				
4000 Hz and Up				

D/A Path Characteristics (OdBFS : reference to Fout $=1.02 \mathrm{KHz}$ and D/A Output is Full Swing)

PARAMETER	MIN	TYP	MAX	UNITS
Dynamic Range (at -51dBFS)	76	77	78	dB
THD $+\mathrm{N}($ at Vin $=-6 \mathrm{dBFS}$)		46		dB
Gain Variation (at Vin $=-6 \mathrm{dBFS}$)		± 0.1		dBFS
Out of Band Energy (with 1.02KHz Image) :				
$3.8 \mathrm{KHz} \sim 20 \mathrm{KHz}$		-50		dBFS
Output Level (at AUX2)		3.0		Vpp
Frequency Response (Measure Respone from				
60 Hz to				
3800 Hz , see FIG. 4):		-0.1		dB
$60 \mathrm{~Hz} \sim 300 \mathrm{~Hz}$	- 0.6		+ 0.1	dB
$300 \mathrm{~Hz} \sim 2800 \mathrm{~Hz}$		-1.1		dB
3000 Hz		-2.1		dB
3200 Hz		-3.7		dB
3400 Hz		-6.3		dB
3600 Hz		-10		dB
3800 Hz				

MX93132

Noise (Test Condition : 1. A/D 1 or 2 Input Signal is $1.02 \mathrm{KHz} / 0 \mathrm{~dB}$ (Full Swing)
2. D/A 1 or 2 Output Signal is $1.02 \mathrm{KHz} / 0 \mathrm{~dB}$ (Full Swing))

D/A 2 to A/D 2 (Test Condition 2)		-94	dB
D/A 2 to D/A 1 (Test Condition 2)		-86	dB

FIG. 1

FIG. 2

MX93132

FIG. 3

FIG. 4

FIG. 5

FIG. 6

FIG. 7

8.0 ORDERING INFORMATION

PART NO	PACKAGE TYPE
MX93132	PQFP

8.1 PACKAGE INFORMATION for 128 PIN PQFP

128-Pin Plastic Quad Flat Pack

ITEM	MILLIMETERS	INCHES
a	$14.00 \pm .05$	$5.512 \pm .002$
b	$.20[$ Typ.]	$.08[$ Typ.]
c	$20.00 \pm .05$	$7.87 \pm .002$
d	1.346	.530
e	$.50[$ Typ.]	$.20[$ Typ.]
L1	$1.60 \pm .1$	$.63 \pm .04$
L	$.80 \pm .1$	$.31 \pm .04$
ZE	$.75[$ Typ.]	$.30[$ Typ.]
E3	$12.50[$ Typ.]	$4.92[$ Typ.]
E	$17.20 \pm .2$	$6.77 \pm .08$
ZD	$.75[$ Typ.]	$.30[$ Typ.]
D3	$18.50[$ Typ.]	$7.28[$ Typ.]
D	$23.20 \pm .2$	$9.13 \pm .08$
A1	$.25 \pm .1$ min.	$.01 \pm .04$ min.
A	$3.40 \pm .1$ max.	$1.34 \pm .04$ max.
Note	Short Lead	Short Lead

NOTE: Each lead centerline is located within $.25 \mathrm{~mm}[.01$
inch] of its true position [TP] at maximum material condition.

MX93132

Macronix International Co., Ltd.

HEADQUARTERS:

No. 3, Creation Road III, Science-Based Industrial Park, Hsin Chu, Taiwan, R.O.C.
TEL:+886-3-578-8888
FAX:+886-3-578-8887

TAIPEI OFFICE:

12F, No. 4, Min-Chuan E.Rd., Sec 3, Taipei, Taiwan, R.O.C.
TEL:+886-2-2509-3300
FAX:+886-2-2509-2200

EUROPE OFFICE:
Grote Winkellaan 95, Bus 11853 Strombeek, Belgium
TEL:+32-2-267-7050
FAX:+32-2-267-9700

SINGAPORE OFFICE:
5 Jalan Masjid Kembangan Court \#01-12 Singapore 418924
TEL:+65-747-2309
FAX:+65-748-4090

Macronix America, Inc.

1338 Ridder Park Drive, San Jose, CA95131 U.S.A.
TEL:+1-408-453-8088
FAX:+1-408-453-8488

JAPAN OFFICE:

NFK Kawasaki Building, 8F, 1-2 Higashida-cho, Kawasaki-ku
Kawasaki-shi, Kawasaki-ken 210, Japan
TEL:+81-44-246-9100
FAX:+81-44-246-9105

