

WM8982

Mono CODEC With Speaker Driver and Video Buffer

DESCRIPTION

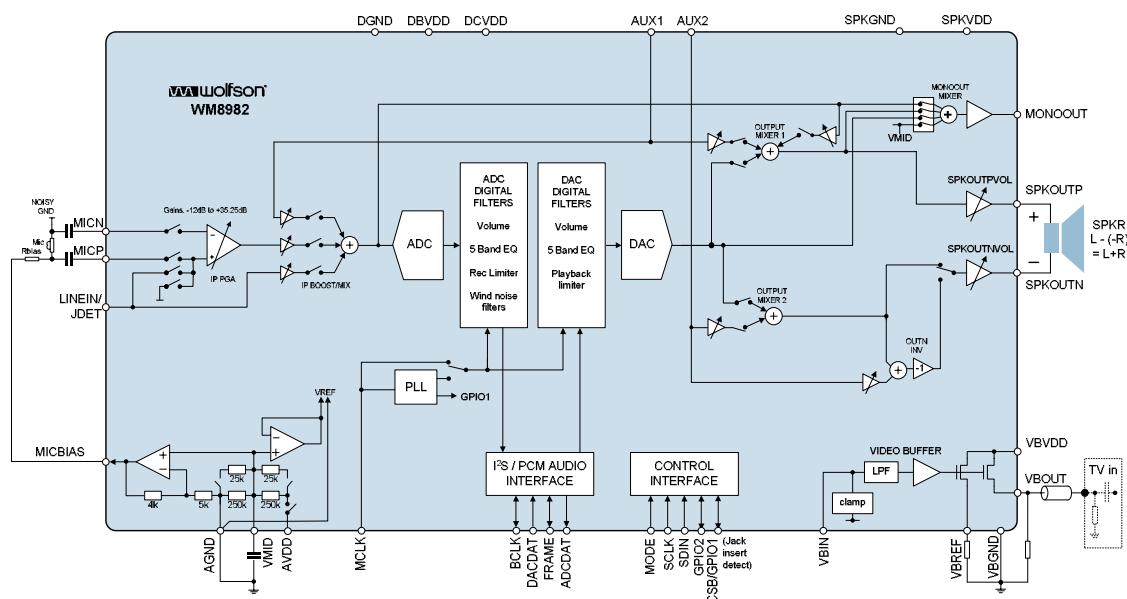
The WM8982 is a low power, high quality codec with integrated video buffer designed for portable applications such as Digital still camera or Digital Camcorder.

The device integrates a preamp for a differential mic, and includes drivers for speaker and line outputs. External component requirements are reduced as no separate microphone or headphone/speaker amplifiers are required.

An integrated video buffer is provided which has programmable gain from 0-6dB, sync-tip clamp and a 3rd order input low pass filter for signal re-construction.

Advanced on-chip digital signal processing includes a 5-band equaliser, a mixed signal Automatic Level Control for the microphone or line input through the ADC as well as a purely digital limiter function for record or playback. Additional digital filtering options are available in the ADC path, to cater for application filtering such as 'wind noise reduction'.

The WM8982 CODEC can operate as a master or a slave. An internal PLL can generate all required audio clocks for the Codec from common reference clock frequencies, such as 12MHz and 13MHz.


The WM8982 operates at analogue supply voltages from 2.5V to 3.3V, although the digital core can operate at voltages down to 1.62V to save power. The speaker outputs and mono line output can run from a 5V supply if increased output power is required. Individual sections of the chip can also be powered down under software control.

FEATURES

- Codec:**
 - DAC SNR 98dB, THD -84dB ('A' weighted @ 48kHz)
 - ADC SNR 90dB, THD -80dB ('A' weighted @ 48kHz)
 - 0.9W output power into 8Ω BTL speaker / 5V SPKVDD
 - Capable of driving piezo speakers
- Mic Preamp:**
 - Differential microphone Interface
 - Programmable preamp gain
 - Pseudo differential inputs with common mode rejection
 - Programmable ALC / Noise Gate in ADC path
 - Low-noise bias supplied for electret microphones
- Other features:**
 - Integrated 0-6dB video buffer with LPF filter and clamp.
 - Digital playback limiter
 - 5-band Equaliser (record or playback)
 - Programmable ADC High Pass Filter (wind noise reduction)
 - Programmable ADC Notch Filter
 - Aux inputs for analog input signals or 'beep'
 - On-chip PLL supporting 12, 13, 19.2MHz and other clocks
 - Low power, low voltage
 - 2.5V to 3.6V (digital core: 1.62V to 3.6V)
 - power consumption <30mW all-on with 2.5V supplies
 - 5x5mm 32-pin QFN package

APPLICATIONS

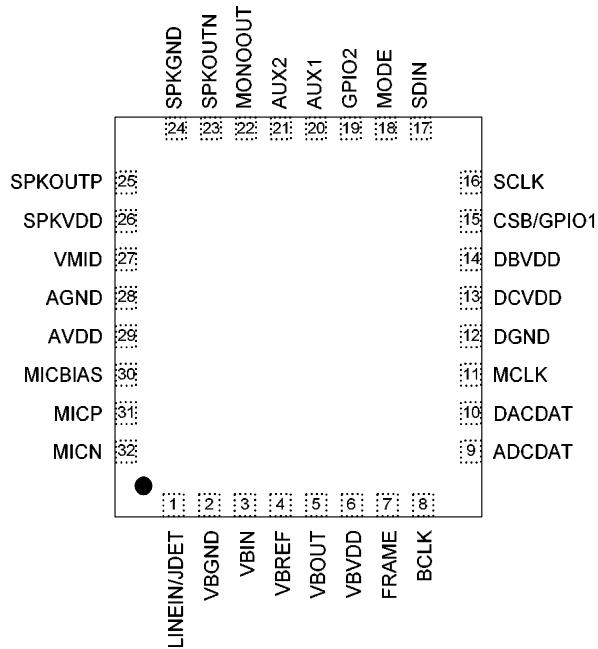

- Camcorder or DSC

TABLE OF CONTENTS

DESCRIPTION	1
FEATURES.....	1
APPLICATIONS	1
TABLE OF CONTENTS	2
PIN CONFIGURATION.....	3
ORDERING INFORMATION	3
PIN DESCRIPTION	4
RECOMMENDED OPERATING CONDITIONS	5
ELECTRICAL CHARACTERISTICS	6
TERMINOLOGY	9
POWER CONSUMPTION	10
SIGNAL TIMING REQUIREMENTS	11
SYSTEM CLOCK TIMING	11
AUDIO INTERFACE TIMING – MASTER MODE	11
AUDIO INTERFACE TIMING – SLAVE MODE.....	12
CONTROL INTERFACE TIMING – 3-WIRE MODE	13
CONTROL INTERFACE TIMING – 2-WIRE MODE	14
DEVICE DESCRIPTION.....	15
INTRODUCTION.....	15
INPUT SIGNAL PATH	16
ANALOGUE TO DIGITAL CONVERTER (ADC).....	21
INPUT LIMITER / AUTOMATIC LEVEL CONTROL (ALC)	24
OUTPUT SIGNAL PATH	28
ANALOGUE OUTPUTS.....	34
VIDEO BUFFER.....	45
DIGITAL AUDIO INTERFACES.....	46
AUDIO SAMPLE RATES	53
MASTER CLOCK AND PHASE LOCKED LOOP (PLL).....	53
GENERAL PURPOSE INPUT/OUTPUT	55
OUTPUT SWITCHING (JACK DETECT).....	56
CONTROL INTERFACE.....	58
RESETTING THE CHIP	59
POWER SUPPLIES	59
POWER MANAGEMENT	60
REGISTER MAP.....	62
DIGITAL FILTER CHARACTERISTICS	64
TERMINOLOGY	64
DAC FILTER RESPONSES.....	65
ADC FILTER RESPONSES.....	65
HIGHPASS FILTER.....	66
5-BAND EQUALISER	67
APPLICATION INFORMATION.....	71
RECOMMENDED EXTERNAL COMPONENTS	71
PACKAGE DIAGRAM	72
IMPORTANT NOTICE	73
ADDRESS:	73

PIN CONFIGURATION

ORDERING INFORMATION

ORDER CODE	TEMPERATURE RANGE	PACKAGE	MOISTURE SENSITIVITY LEVEL	PEAK SOLDERING TEMPERATURE
WM8982GEFL/V	-25°C to +85°C	32-pin QFN (5 x 5 mm) (lead free)	MSL3	260°C
WM8982GEFL/RV	-25°C to +85°C	32-pin QFN (5 x 5 mm) (lead free, tape and reel)	MSL3	260°C

Note:

Reel quantity = 3,500

PIN DESCRIPTION

PIN	NAME	TYPE	DESCRIPTION
1	LINEIN/JDET	Analogue input	Line level input/secondary mic pre-amp input/jack detect pin
2	VBGND	Supply	Video buffer ground pin
3	VBIN	Analogue input	Video buffer signal input
4	VBREF	Analogue output	Video buffer reference resistor pin
5	VBOUT	Analogue output	Video buffer output
6	VBVDD	Supply	Video buffer analogue supply
7	FRAME	Digital Input / Output	DAC and ADC Sample Rate Clock
8	BCLK	Digital Input / Output	Digital Audio Port Clock
9	ADCDAT	Digital Input	ADC Digital Audio Data Output
10	DACDAT	Digital Input	DAC Digital Audio Data Input
11	MCLK	Digital Input	Master Clock Input
12	DGND	Supply	Digital ground
13	DCVDD	Supply	Digital core logic supply
14	DBVDD	Supply	Digital buffer (I/O) supply
15	CSB/GPIO1	Digital Input / Output	3-Wire MPU Chip Select / General purpose input/output 1
16	SCLK	Digital Input / Output	3-Wire MPU Clock Input / 2-Wire MPU Clock Input
17	SDIN	Digital Input / Output	3-Wire MPU Data Input / 2-Wire MPU Data Input
18	MODE	Digital Input	Control Interface Selection
19	GPIO2	Digital Input / Output	General purpose input/output 2
20	AUX1	Analogue input	Auxillary input 1
21	AUX2	Analogue input	Auxillary input 2
22	MONOOUT	Analogue Output	Buffered midrail pseudo-ground, or mono line output
23	SPKOUTN	Analogue Output	BTL speaker driver negative output
24	SPKGND	Supply	Speaker ground (feeds speaker amp and MONOOUT)
25	SPKOUTP	Analogue Output	BTL speaker driver positive output
26	SPKVDD	Supply	Speaker supply (feeds speaker amp only)
27	VMID	Reference	Decoupling for ADC and DAC reference voltage
28	AGND	Supply	Analogue ground (feeds ADC and DAC)
29	AVDD	Supply	Analogue supply (feeds ADC and DAC)
30	MICBIAS	Analogue Output	Microphone Bias
31	MICP	Analogue input	Mic Pre-amp positive input
32	MICN	Analogue input	Mic Pre-amp negative input

Note:

It is recommended that the QFN ground paddle should be connected to analogue ground on the application PCB.

ABSOLUTE MAXIMUM RATINGS

Absolute Maximum Ratings are stress ratings only. Permanent damage to the device may be caused by continuously operating at or beyond these limits. Device functional operating limits and guaranteed performance specifications are given under Electrical Characteristics at the test conditions specified.

ESD Sensitive Device. This device is manufactured on a CMOS process. It is therefore generically susceptible to damage from excessive static voltages. Proper ESD precautions must be taken during handling and storage of this device.

Wolfson tests its package types according to IPC/JEDEC J-STD-020B for Moisture Sensitivity to determine acceptable storage conditions prior to surface mount assembly. These levels are:

MSL1 = unlimited floor life at <30°C / 85% Relative Humidity. Not normally stored in moisture barrier bag.

MSL2 = out of bag storage for 1 year at <30°C / 60% Relative Humidity. Supplied in moisture barrier bag.

MSL3 = out of bag storage for 168 hours at <30°C / 60% Relative Humidity. Supplied in moisture barrier bag.

The Moisture Sensitivity Level for each package type is specified in Ordering Information.

CONDITION	MIN	MAX
DBVDD, DCVDD, AVDD, VBVDD supply voltages	-0.3V	+3.63V
SPKVDD supply voltage	-0.3V	+7V
Voltage range digital inputs	DGND -0.3V	DVDD +0.3V
Voltage range analogue inputs	AGND -0.3V	AVDD +0.3V
Operating temperature range, T_A	-25°C	+85°C
Storage temperature after soldering	-65°C	+150°C

Notes

1. Analogue and digital grounds must always be within 0.3V of each other.
2. All digital and analogue supplies are completely independent from each other.

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Digital supply range (Core)	DCVDD		1.62		3.6	V
Digital supply range (Buffer)	DBVDD		1.8		3.6	V
Analogue core supply range	AVDD		2.5		3.6	V
Video buffer supply range	VBVDD		2.5		3.6	V
Analogue output supply range	SPKVDD		2.5		5.5	V
Ground	DGND,AGND, SPKGND,VBGND			0		V

ELECTRICAL CHARACTERISTICS

Test Conditions

DCVDD=1.8V, AVDD=DBVDD=SPKVDD=VBVDD = 3.3V, $T_A = +25^\circ\text{C}$, 1kHz signal, $fs = 48\text{kHz}$, 24-bit audio data unless otherwise stated.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Microphone Preamp Inputs (LIP, LIN, RIP, RIN, L2, R2)						
Full-scale Input Signal Level – note this changes with AVDD (Note 1)	V_{INFS}	PGABOOST = 0dB INPPGAVOL = 0dB		1.0 0		Vrms dBV
Mic PGA equivalent input noise	At 35.25dB gain			TBD		uV
Input resistance	R_{MICIN}	Gain set to 35.25dB		1.6		kΩ
	R_{MICIN}	Gain set to 0dB		47		kΩ
	R_{MICIN}	Gain set to -12dB		75		kΩ
	R_{MICIP}	MICP2INPPGA = 1		94		kΩ
	R_{MICIP}	MICP2INPPGA = 0		TBD		kΩ
	C_{MICIN}			10		pF
Recommended coupling cap	C_{COUP}		220			pF
MIC Programmable Gain Amplifier (PGA)						
Programmable Gain			-12		35.25	dB
Programmable Gain Step Size		Guaranteed monotonic		0.75		dB
Mute Attenuation				TBD		dB
Selectable Input Gain Boost (0/+20dB)						
Gain Boost on PGA input		Boost disabled		0		dB
		Boost enabled		20		dB
Gain range from AUX1/2 or LINEIN input to boost/mixer			-12		+6	dB
Gain step size to boost/mixer				3		dB
Auxilliary Analogue Inputs (AUX1, AUX2)						
Full-scale Input Signal Level (0dB) – note this changes with AVDD	V_{INFS}			AVDD/3.3 0		Vrms dBV
Input Resistance (Note 2)	$R_{AUXIN1MIN}$	Input boost and mixer enabled, at max gain		4.3		kΩ
	$R_{AUXIN1TYP}$	Input boost and mixer enabled, at 0dB gain		8.6		kΩ
	$R_{AUXIN1MAX}$	Input boost and mixer enabled, at min gain		39.1		kΩ
Input Capacitance	C_{MICIN}			10		pF

Test Conditions

DCVDD=1.8V, AVDD=DBVDD=SPKVDD=VBVDD = 3.3V, $T_A = +25^\circ\text{C}$, 1kHz signal, $fs = 48\text{kHz}$, 24-bit audio data unless otherwise stated.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Automatic Level Control (ALC)						
Target Record Level			-28.5		-6	dB
Programmable gain			-12		35.25	
Gain Hold Time (Note 3,5)	t_{HOLD}	MCLK = 12.288MHz (Note 3)	0, 2.67, 5.33, 10.67, ..., 43691 (time doubles with each step)			ms
Gain Ramp-Up (Decay) Time (Note 4,5)	t_{DCY}	ALCMODE=0 (ALC), MCLK=12.288MHz (Note 3)	3.3, 6.6, 13.1, ..., 3360 (time doubles with each step)			ms
		ALCMODE=1 (limiter), MCLK=12.288MHz (Note 3)	0.73, 1.45, 2.91, ..., 744 (time doubles with each step)			
Gain Ramp-Down (Attack) Time (Note 4,5)	t_{ATK}	ALCMODE=0 (ALC), MCLK=12.288MHz (Note 3)	0.83, 1.66, 3.33, ..., 852 (time doubles with each step)			ms
		ALCMODE=1 (limiter), MCLK=12.288MHz (Note 3)	0.18, 0.36, 0.73, ..., 186 (time doubles with each step)			
Mute Attenuation				TBD		dB
Analogue to Digital Converter (ADC)						
Signal to Noise Ratio (Note 6,7)		A-weighted, 0dB gain		90		dB
Total Harmonic Distortion (Note 8)		full-scale, 0dB gain		-80		dB
Digital to Analogue Converter (DAC) to Line-Out (MONOOUT with $10\text{k}\Omega$ / 50pF load)						
Full-scale output		PGA gains set to 0dB, SPK/MONOBOOST=0		AVDD/3.3		Vrms
		PGA gains set to 0dB, SPK/MONOBOOST=1		1.5x (AVDD/3.3)		
Signal to Noise Ratio (Note 6, 7)	SNR	A-weighted	TBD	98		dB
Total Harmonic Distortion (Note 8)	THD	$R_L = 10\text{k}\Omega$ full-scale signal		-84		dB
Output Mixers (MX1, MX2)						
PGA gain range into mixer			-15	0	+6	dB
PGA gain step into mixer				3		dB
Analogue Outputs (SPKOUTP, SPKOUTN)						
Programmable Gain range			-57	0	+6	dB
Programmable Gain step size		Monotonic		1		dB
Mute attenuation		1kHz, full scale signal		85		dB

Test Conditions

DCVDD=1.8V, AVDD=DBVDD=SPKVDD=VBVDD = 3.3V, $T_A = +25^\circ\text{C}$, 1kHz signal, $fs = 48\text{kHz}$, 24-bit audio data unless otherwise stated.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Speaker Output (SPKOUTP, SPKOUTN with 8Ω bridge tied load, INVOUTN=1)						
Full scale output voltage, 0dB gain. (Note 10)		SPKRBOOST=0		SPKVDD/3.3		Vrms
		SPKRBOOST=1		(SPKVDD/3.3)*1.5		
Output Power	P_o	Output power is very closely correlated with THD; see below				
Total Harmonic Distortion	THD	$P_o = 180\text{mW}$, $R_L = 8\Omega$, SPKVDD=3.3V		0.3 -50		% dB
		$P_o = 400\text{mW}$, $R_L = 8\Omega$, SPKVDD=3.3V		1.0 -40		% dB
		$P_o = 360\text{mW}$, $R_L = 8\Omega$, SPKVDD=5V		0.3 -50		% dB
		$P_o = 800\text{mW}$, $R_L = 8\Omega$, SPKVDD=5V		1 -40		% dB
Signal to Noise Ratio	SNR	SPKVDD=3.3V, $R_L = 8\Omega$		90		dB
		SPKVDD=5V, $R_L = 8\Omega$		90		dB
Power Supply Rejection Ratio				50		dB
MONOOUT Output (with $10\text{k}\Omega$ / 50pF load)						
Full-scale output voltage, 0dB gain (Note 10)		MONOBOOST=0		SPKVDD/3.3		Vrms
		MONOBOOST=1		(SPKVDD/3.3)*1.5		Vrms
Signal to Noise Ratio (Note 6,7)	SNR	A-weighted	TBD	98		dB
Total Harmonic Distortion (Note 8)	THD	$R_L = 10\text{k}\Omega$ full-scale signal		-84		dB
Microphone Bias						
Bias Voltage	V_{MICBIAS}	MBVSEL=0		0.9*AVDD		V
		MBVSEL=1		0.75*AVDD		V
Bias Current Source	I_{MICBIAS}				3	mA
Output Noise Voltage	V_n	1K to 20kHz		15		nV/ $\sqrt{\text{Hz}}$
Video Buffer						
Low pass filter order			3 rd order			
LPF -3dB cutoff				10		MHz
LPF gain flat to within 0.1dB				5.3		MHz
Maximum output voltage swing	V_{om}	$f=100\text{kHz}$, THD=1%		1.25		Vp-p
Programmable Voltage Gain	A_v		0		6	dB
Differential gain	D_g	$V_{\text{in}}=1\text{Vp-p}$		1		%
Differential phase	D_p	$V_{\text{in}}=1\text{Vp-p}$		1		Deg
Signal to Noise Ratio	V_{SNR}			+60		dB
Digital Input / Output						
Input HIGH Level	V_{IH}		0.7 \times DBVDD			V
Input LOW Level	V_{IL}				0.3 \times DBVDD	V
Output HIGH Level	V_{OH}	$I_{\text{OL}}=1\text{mA}$	0.9 \times DBVDD			V
Output LOW Level	V_{OL}	$I_{\text{OH}}=1\text{mA}$			0.1 \times DBVDD	V
Input capacitance			TBD			pF
Input leakage			TBD			pA

TERMINOLOGY

1. Input level to MICP in pseudo-differential configuration is limited to a maximum of -3dB or THD+N performance will be reduced.
2. Note when BEEP path is not enabled then AUX1 and AUX2 have the same input impedances.
3. Hold Time is the length of time between a signal detected being too quiet and beginning to ramp up the gain. It does not apply to ramping down the gain when the signal is too loud, which happens without a delay.
4. Ramp-up and Ramp-Down times are defined as the time it takes for the PGA to sweep across 90% of its gain range.
5. All hold, ramp-up and ramp-down times scale proportionally with MCLK
6. Signal-to-noise ratio (dB) – SNR is a measure of the difference in level between the full scale output and the output with no signal applied. (No Auto-zero or Automute function is employed in achieving these results).
7. Dynamic range (dB) – DR is a measure of the difference between the highest and lowest portions of a signal. Normally a THD+N measurement at 60dB below full scale. The measured signal is then corrected by adding the 60dB to it. (e.g. THD+N @ -60dB= -32dB, DR= 92dB).
8. THD+N (dB) – THD+N is a ratio, of the rms values, of (Noise + Distortion)/Signal.
9. Channel Separation (dB) – Also known as Cross-Talk. This is a measure of the amount one channel is isolated from the other. Normally measured by sending a full scale signal down one channel and measuring the other.
10. The maximum output voltage can be limited by the speaker power supply. If MONOBOOST or SPKRBOOST is set then SPKVDD should be 1.5xAVDD to prevent clipping taking place in the output stage (when PGA gains are set to 0dB).

POWER CONSUMPTION

Estimated current consumption for typical scenarios are shown below.

For more information on current consumption of individual blocks, see "Estimated Supply Currents" section.

Unless otherwise specified, all supply voltages are 3.3V.

MODE	AVDD	DCVDD	VBVDD	UNITS
Off	0	0	0	mA
Sleep (VREF maintained)	0.1	0	0	mA
Record (8kHz, PLL enabled)	6.1	0.8	0	mA
Playback to BTL speaker (8kHz, PLL enabled)	6.3	0.8	0	mA
Playback to BTL speaker (8kHz, PLL enabled, Video Buffer enabled)	6.3	0.8	1.0	mA

Table 1 Power Consumption

Notes:

1. DBVDD Supply current is not shown, as this is determined by loading on the digital I/O pins.

SIGNAL TIMING REQUIREMENTS

SYSTEM CLOCK TIMING

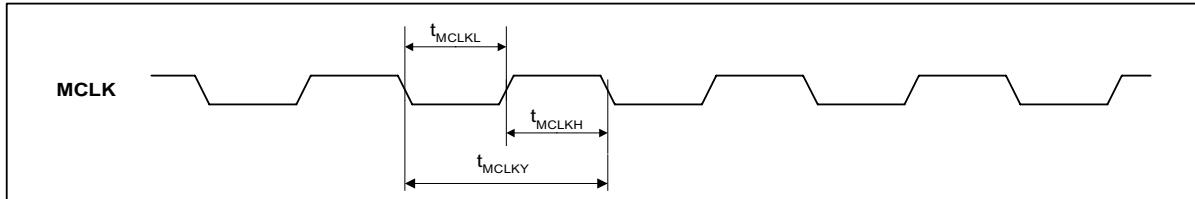


Figure 1 System Clock Timing Requirements

Test Conditions

DCVDD=1.8V, DBVDD=AVDD=SPKVDD=3.3V, DGND=AGND=SPKGND=0V, $T_A = +25^\circ\text{C}$, Slave Mode $fs = 48\text{kHz}$, MCLK = 256fs, 24-bit data, unless otherwise stated.

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
System Clock Timing Information					
MCLK System clock cycle time	T_{MCLKY}	Tbd			ns
MCLK duty cycle	T_{MCLKDS}	60:40		40:60	

AUDIO INTERFACE TIMING – MASTER MODE

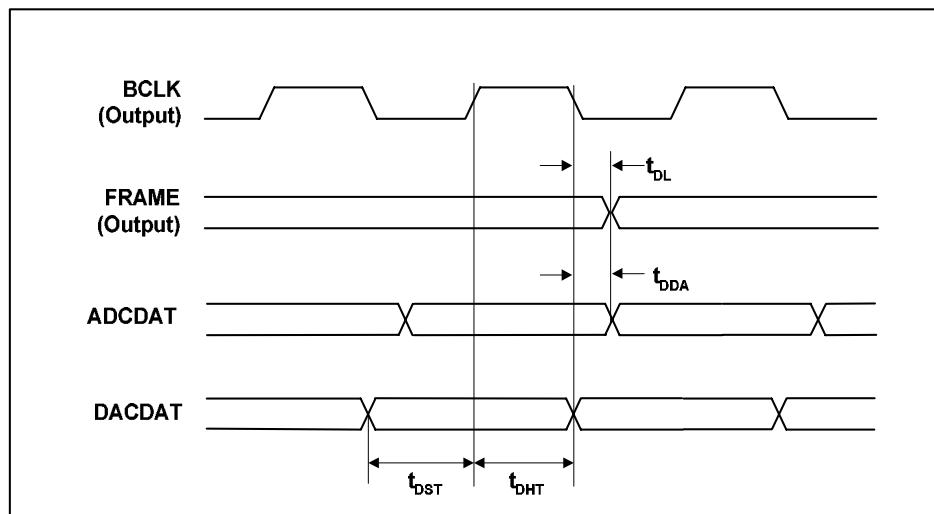


Figure 2 Digital Audio Data Timing – Master Mode (see Control Interface)

Test Conditions

DCVDD=1.8V, DBVDD=AVDD=SPKVDD=3.3V, DGND=AGND=SPKGND=0V, $T_A=+25^\circ\text{C}$, Slave Mode, $fs=48\text{kHz}$, MCLK=256fs, 24-bit data, unless otherwise stated.

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Audio Data Input Timing Information					
FRAME propagation delay from BCLK falling edge	t_{DL}			10	ns
ADCDAT propagation delay from BCLK falling edge	t_{DDA}			10	ns
DACDAT setup time to BCLK rising edge	t_{DST}	10			ns
DACDAT hold time from BCLK rising edge	t_{DHT}	10			ns

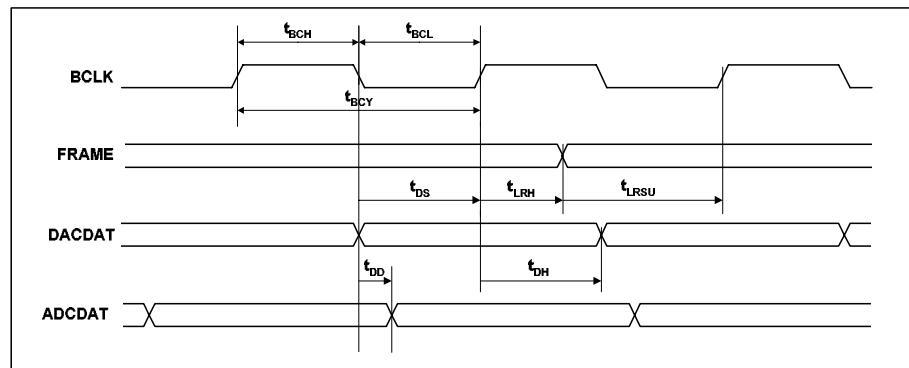

AUDIO INTERFACE TIMING – SLAVE MODE

Figure 3 Digital Audio Data Timing – Slave Mode

Test Conditions

DCVDD=1.8V, DBVDD=AVDD=SPKVDD=3.3V, DGND=AGND=SPKGND=0V, $T_A=+25^\circ\text{C}$, Slave Mode, $fs=48\text{kHz}$, MCLK= 256fs, 24-bit data, unless otherwise stated.

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Audio Data Input Timing Information					
BCLK cycle time	t_{BCY}	50			ns
BCLK pulse width high	t_{BCH}	20			ns
BCLK pulse width low	t_{BCL}	20			ns
FRAME set-up time to BCLK rising edge	t_{LRSU}	10			ns
FRAME hold time from BCLK rising edge	t_{LRH}	10			ns
DACDAT hold time from BCLK rising edge	t_{DH}	10			ns
ADCDAT propagation delay from BCLK falling edge	t_{DD}			10	ns

Note:

BCLK period should always be greater than or equal to MCLK period.

CONTROL INTERFACE TIMING – 3-WIRE MODE

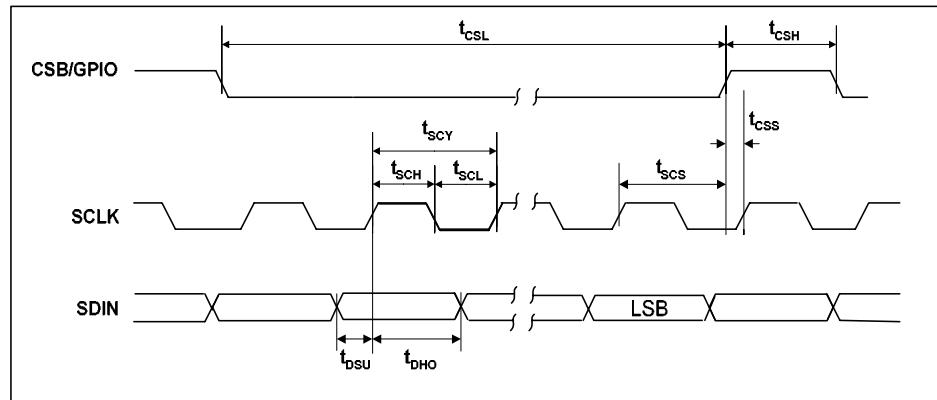


Figure 4 Control Interface Timing – 3-Wire Serial Control Mode

Test Conditions

DCVDD = 1.8V, DBVDD = AVDD = SPKVDD = 3.3V, DGND = AGND = SPKGND = 0V, $T_A=+25^\circ\text{C}$, Slave Mode, $f_s=48\text{kHz}$, MCLK = 256fs, 24-bit data, unless otherwise stated.

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Program Register Input Information					
SCLK rising edge to CSB rising edge	t_{SCS}	80			ns
SCLK pulse cycle time	t_{SCY}	200			ns
SCLK pulse width low	t_{SCL}	80			ns
SCLK pulse width high	t_{SCH}	80			ns
SDIN to SCLK set-up time	t_{DSU}	40			ns
SCLK to SDIN hold time	t_{DHO}	40			ns
CSB pulse width low	t_{CSL}	40			ns
CSB pulse width high	t_{CSH}	40			ns
CSB rising to SCLK rising	t_{CSS}	40			ns
Pulse width of spikes that will be suppressed	t_{ps}	0		5	ns

CONTROL INTERFACE TIMING – 2-WIRE MODE

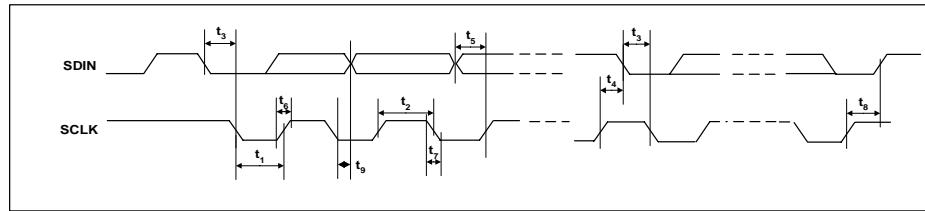


Figure 5 Control Interface Timing – 2-Wire Serial Control Mode

Test Conditions

DCVDD=1.8V, DBVDD=AVDD=SPKVDD=3.3V, DGND=AGND=SPKGND=0V, $T_A=+25^\circ\text{C}$, Slave Mode, $\text{fs}=48\text{kHz}$, MCLK = 256fs, 24-bit data, unless otherwise stated.

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Program Register Input Information					
SCLK Frequency		0		400	kHz
SCLK Low Pulse-Width	t_1	1.3			us
SCLK High Pulse-Width	t_2	600			ns
Hold Time (Start Condition)	t_3	600			ns
Setup Time (Start Condition)	t_4	600			ns
Data Setup Time	t_5	100			ns
SDIN, SCLK Rise Time	t_6			300	ns
SDIN, SCLK Fall Time	t_7			300	ns
Setup Time (Stop Condition)	t_8	600			ns
Data Hold Time	t_9			900	ns
Pulse width of spikes that will be suppressed	t_{ps}	0		5	ns

DEVICE DESCRIPTION

INTRODUCTION

The WM8982 is a low power audio codec combining a high quality audio DAC and ADC. Applications for this device include digital camcorders and digital still cameras with audio and video, record and playback capability. The integrated video buffer makes the device suitable for driving both audio and video signals directly to a television or VCR.

FEATURES

The chip offers great flexibility in use, and so can support many different modes of operation as follows:

MICROPHONE INPUTS

A microphone input is provided, allowing for a microphone to be pseudo-differentially connected, with user defined gain using internal resistors. The provision of the common mode input pin allows for rejection of common mode noise on the microphone input (level depends on gain setting chosen). A microphone bias is output from the chip which can be used to bias the microphone. The signal routing can be configured to allow manual adjustment of mic levels, or indeed to allow the ALC loop to control the level of mic signal that is transmitted.

Total gain through the microphone path of up to +55.25dB can be selected.

PGA AND ALC OPERATION

A programmable gain amplifier is provided in the input path to the ADC. This may be used manually or in conjunction with a mixed analogue/digital automatic level control (ALC) which keeps the recording volume constant.

LINE INPUTS (AUX1, AUX2)

The inputs, AUX1 and AUX2, can be used as a stereo line input or as an input for warning tones (or 'beeps') etc. These inputs can be summed into the record paths, along with the microphone preamp outputs, so allowing for mixing of audio with 'backing music' etc as required.

ADC

The ADC uses a multi-bit high-order oversampling architecture to deliver optimum performance with low power consumption.

HI-FI DAC

The hi-fi DAC provides high quality audio playback suitable for all portable audio hi-fi type applications, including MP3 players and portable disc players of all types.

OUTPUT MIXERS

Flexible mixing is provided on the outputs of the device. Gain adjustment PGAs are provided for the SPKOUTN/P outputs, and signal switching is provided to allow for all possible signal combinations. The SPKOUTN/P output buffers can be configured as BTL speaker drivers. Thermal implications should be considered before simultaneous full power operation of all outputs is attempted.

Alternatively, if a speaker output is not required, the SPKOUTP and SPKOUTN pins might be used as a stereo headphone driver, (disable output invert buffer on SPKOUTN).

AUDIO INTERFACES

The WM8982 has a standard audio interface, to support the transmission of data to and from the chip. This interface is a 3 wire standard audio interface which supports a number of audio data formats including I2S, DSP/PCM Mode (a burst mode in which FRAME sync plus data packed words are transmitted), MSB-First, left justified and MSB-First, right justified, and can operate in master or slave modes.

CONTROL INTERFACES

To allow full software control over all its features, the WM8982 offers a choice of 2 or 3 wire MPU control interface. It is fully compatible and an ideal partner for a wide range of industry standard microprocessors, controllers and DSPs.

Selection between the modes is via the MODE pin. In 2 wire mode the address of the device is fixed as 0011010.

CLOCKING SCHEMES

WM8982 offers the normal audio DAC clocking scheme operation, where 256fs MCLK is provided to the DAC and ADC.

A PLL is included which may be used to generate these clocks in the event that they are not available from the system controller. This PLL uses an input clock, typically the 12MHz USB or ilink clock, to generate high quality audio clocks. If this PLL is not required for generation of these clocks, it can be reconfigured to generate alternative clocks which may then be output on the GPIO pins and used elsewhere in the system.

VIDEO BUFFER

The WM8982 incorporates a current mode output video buffer with an input 3rd order Low Pass Filter (LPF) and clamp. The gain through this buffer can be programmed as 0dB or 6dB via the control interface. The current mode output means that the signal swing seen at the output of the buffer will be the same as that at the connection to the receiving equipment (e.g. a TV). Note that the input to the receiver should be AC coupled and terminated to 75Ω, as is standard, for best performance.

POWER CONTROL

The design of the WM8982 has given much attention to power consumption without compromising performance. It operates at very low voltages, and includes the ability to power off any unused parts of the circuitry under software control, and includes standby and power off modes.

INPUT SIGNAL PATH

The WM8982 has a number of flexible analogue inputs, consisting of an input PGA stage followed by a boost/mix stage which drives into the hi-fi ADC. The input path has three input pins which can be configured in a variety of ways to accommodate single-ended or differential microphones. There is an auxiliary input pin which can be fed into to the input boost/mix stage as well as driving into the output path. A bypass path exists from the output of the boost/mix stage into the output mixer.

MICROPHONE INPUT

The WM8982 can accommodate a variety of microphone configurations including single ended and differential inputs. The inputs to the input PGA are MICN, MICP and LINEIN.

In single-ended microphone input configuration the microphone signal should be input to MICN and the internal NOR gate configured to clamp the non-inverting input of the input PGA to VMID.

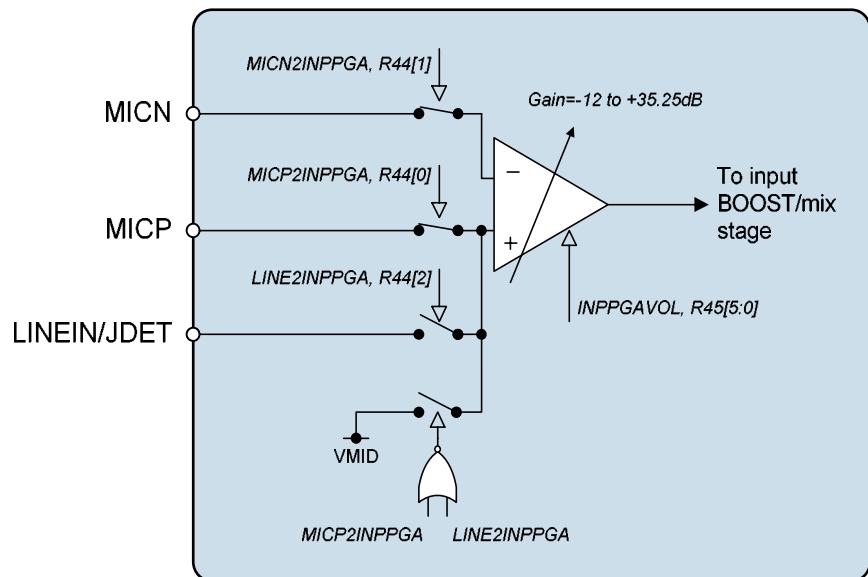


Figure 6 Microphone Input PGA Circuit

The input PGA is enabled by the INPPGAEN register bit.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R2 Power Management 2	2	INPPGAEN	0	Input PGA enable: 0 = disabled 1 = enabled

Table 2 Input PGA Enable Register Settings

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R44 Input Control	0	MICP2INPPGA	1	Connect MICP pin to input PGA amplifier positive terminal. 0 = MICP not connected to input PGA 1 = input PGA amplifier positive terminal connected to MICP (constant input impedance)
	1	MICN2INPPGA	1	Connect MICN pin to input PGA negative terminal. 0=MICN not connected to input PGA 1=MICN connected to input PGA amplifier negative terminal.
	2	LINE2INPPGA	0	Connect LINEIN pin to input PGA positive terminal. 0=LINEIN not connected to input PGA 1=LINEIN connected to input PGA amplifier positive terminal (constant input impedance).

Table 3 Input PGA Control

INPUT PGA VOLUME CONTROL

The input microphone PGA has a gain range from -12dB to +35.25dB in 0.75dB steps. The gain from the MICN input to the PGA output and from the LINEIN amplifier to the PGA output are always common and controlled by the register bits INPPGAVOL[5:0]. These register bits also affect the MICP pin when MICP2/INPPGA=1 and the LINEIN pin when LINE2/INPPGA=1.

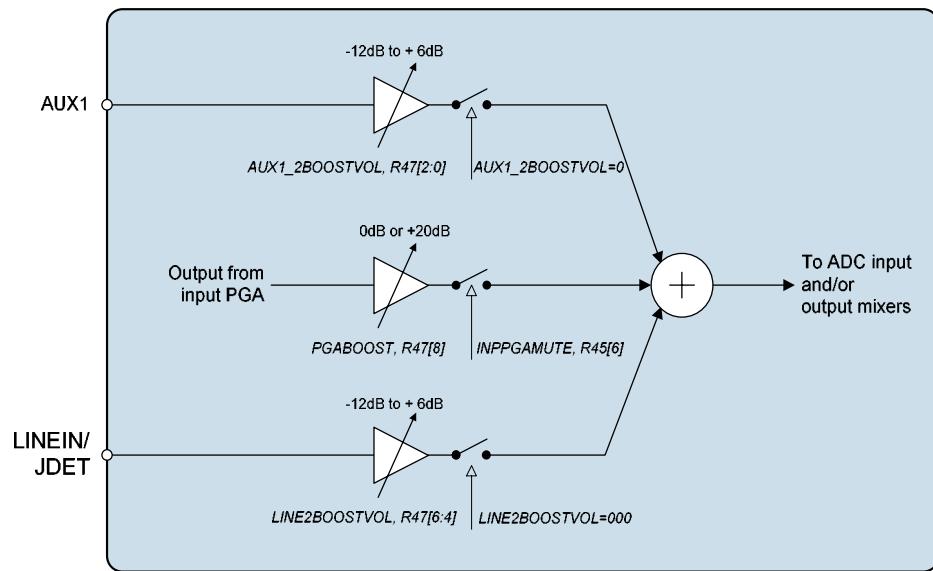
When the Automatic Level Control (ALC) is enabled the input PGA gains are controlled automatically and the INPPGAVOL bits should not be used.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R45 Input PGA volume control	5:0	INPPGAVOL	010000	Input PGA volume: 000000 = -12dB 000001 = -11.25dB . 010000 = 0dB . . 111111 = 35.25dB
	6	INPPGAMUTE	0	Mute control for input PGA: 0=Input PGA not muted, normal operation 1=Input PGA muted (and disconnected from the following input BOOST stage).
	7	INPPGAZC	0	Input PGA zero cross enable: 0=Update gain when gain register changes 1=Update gain on 1 st zero cross after gain register write.
	8	INPPGAUPDATE	Not latched	INPPGAVOL volume does not update until a 1 is written to INPPGAUPDATE
R32 ALC control 1	8	ALCSEL	0	ALC function select: 0=ALC off 1=ALC on

Table 4 Input PGA Volume Control

AUXILLIARY INPUTS

There are two auxilliary inputs, AUX1 and AUX2 which can be used for a variety of purposes such as line inputs or as a 'beep' input signal to be mixed with the outputs.


The AUX1 input can be used as a line input to the input BOOST stage which has gain adjust of -12dB to +6dB in 3dB steps (plus off). See the INPUT BOOST section for further details.

The AUX1/2 inputs can also be mixed into the output channel mixers, with a gain of -15dB to +6dB plus off.

In addition the AUX2 input can be summed into the speaker output path (SPKOUTN) with a gain adjust of -15 to +6dB. This allows a 'beep' input to be output on the speaker outputs only without affecting the lineout signal.

INPUT BOOST

The input PGA stage is followed by an input BOOST circuit. The input BOOST circuit has 3 selectable inputs: the input microphone PGA output, the AUX amplifier output and the LINEIN input pin (can be used as a line input, bypassing the input PGA). These three inputs can be mixed together and have individual gain boost/adjust as shown in Figure 7.

Figure 7 Input Boost Stage

The input PGA paths can have a +20dB boost (PGABOOST=1), a 0dB pass through (PGABOOST=0) or be completely isolated from the input boost circuit (INPPGAMUTE=1).

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R47 Input BOOST control	8	PGABOOST	1	Boost enable for input PGA: 0 = PGA output has +0dB gain through input BOOST stage. 1 = PGA output has +20dB gain through input BOOST stage.

Table 5 Input BOOST Stage Control

The Auxiliary amplifier path to the BOOST stages is controlled by the AUX1_2BOOSTVOL[2:0] register bits. When AUX1_2BOOSTVOL=000 this path is completely disconnected from the BOOST stage. Settings 001 through to 111 control the gain in 3dB steps from -12dB to +6dB.

The LINEIN path to the BOOST stage is controlled by the LINE2BOOSTVOL[2:0] register bits. When LINE2BOOSTVOL=000 the LINEIN input pin is completely disconnected from the BOOST stage. Settings 001 through to 111 control the gain in 3dB steps from -12dB to +6dB.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R47 Input BOOST control	2:0	AUX1_2BOOSTVOL	000	Controls the auxilliary amplifier to the input boost stage: 000=Path disabled (disconnected) 001=-12dB gain through boost stage 010=-9dB gain through boost stage ... 111=+6dB gain through boost stage
	6:4	LINE2BOOSTVOL	000	Controls the LINEIN pin to the input boost stage: 000=Path disabled (disconnected) 001=-12dB gain through boost stage 010=-9dB gain through boost stage ... 111=+6dB gain through boost stage

Table 6 Input BOOST Stage Control

The BOOST stage is enabled under control of the BOOSTEN register bit.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R2 Power management 2	4	BOOSTEN	0	Input BOOST enable 0 = Boost stage OFF 1 = Boost stage ON

Table 7 Input BOOST Enable Control

MICROPHONE BIASING CIRCUIT

The MICBIAS output provides a low noise reference voltage suitable for biasing electret type microphones and the associated external resistor biasing network. Refer to the Applications Information section for recommended external components. The MICBIAS voltage can be altered via the MBVSEL register bit. When MBVSEL=0, MICBIAS=0.9*AVDD and when MBVSEL=1, MICBIAS=0.6*AVDD. The output can be enabled or disabled using the MICBEN control bit.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R1 Power management 1	4	MICBEN	0	Microphone Bias Enable 0 = OFF (high impedance output) 1 = ON

Table 8 Microphone Bias Enable Control

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R44 Input control	8	MBVSEL	0	Microphone Bias Voltage Control 0 = 0.9 * AVDD 1 = 0.6 * AVDD

Table 9 Microphone Bias Voltage Control

The internal MICBIAS circuitry is shown in Figure 8. Note that the maximum source current capability for MICBIAS is 3mA. The external biasing resistors therefore must be large enough to limit the MICBIAS current to 3mA.

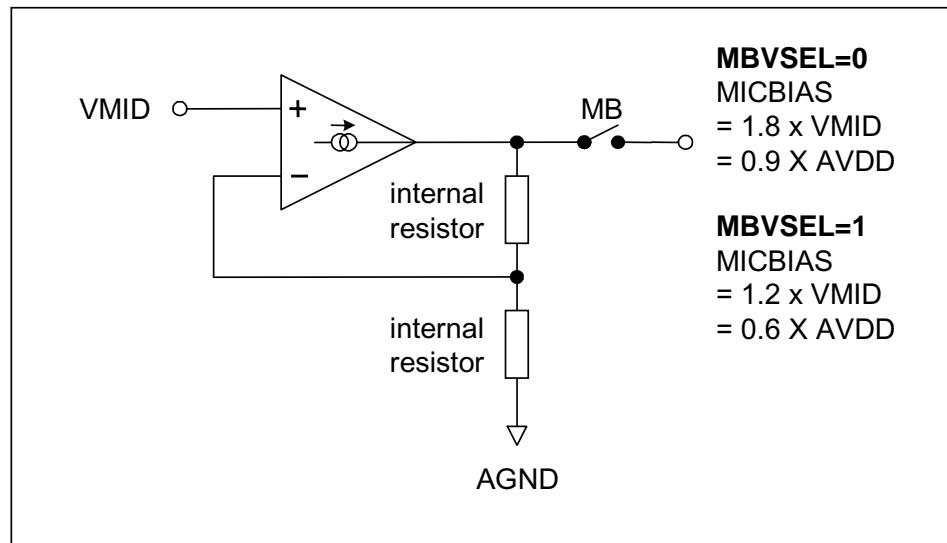


Figure 8 Microphone Bias Schematic

ANALOGUE TO DIGITAL CONVERTER (ADC)

The WM8982 uses a multi-bit, oversampled sigma-delta ADC. The use of multi-bit feedback and high oversampling rates reduces the effects of jitter and high frequency noise. The ADC Full Scale input level is proportional to $AVDD$. With a 3.3V supply voltage, the full scale level is $1.0V_{rms}$. Any voltage greater than full scale may overload the ADC and cause distortion.

ADC DIGITAL FILTERS

The ADC filters perform true 24 bit signal processing to convert the raw multi-bit oversampled data from the ADC to the correct sampling frequency to be output on the digital audio interface. The digital filter path for the ADC channel is illustrated in Figure 9.

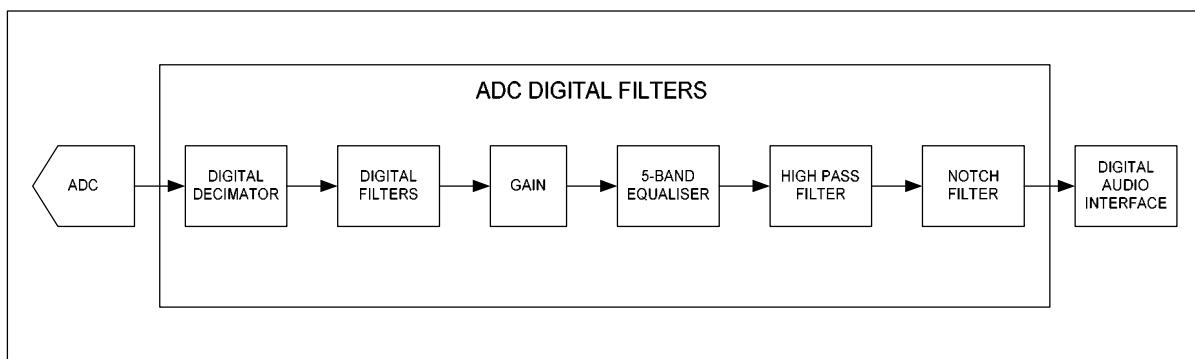


Figure 9 ADC Digital Filter Path

The ADCs are enabled by the **ADCEN** register bit.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R2 Power management 2	0	ADCEN	0	Enable ADC: 0 = ADC disabled 1 = ADC enabled

Table 10 ADC Enable Control

The polarity of the output signal can also be changed under software control using the ADCPOL register bit. The oversampling rate of the ADC can be adjusted using the ADCOSR register bit. With ADCOSR=0 the oversample rate is 64x which gives lowest power operation and when ADCOSR=1 the oversample rate is 128x which gives best performance.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R14 ADC Control	0	ADCPOL	0	ADC polarity adjust: 0=normal 1=inverted
	3	ADCOSR	0	ADC oversample rate select: 0=64x (lower power) 1=128x (best performance)

Table 11 ADC Control

SELECTABLE HIGH PASS FILTER

A selectable high pass filter is provided. To disable this filter set HPFEN=0. The filter has two modes controlled by HPFAPP. In Audio Mode (HPFAPP=0) the filter is first order, with a cut-off frequency of 3.7Hz. In Application Mode (HPFAPP=1) the filter is second order, with a cut-off frequency selectable via the HPFCUT register. The cut-off frequencies when HPFAPP=1 are shown in Table 13.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R14 ADC Control	8	HPFEN	1	High Pass Filter Enable 0=disabled 1=enabled
	7	HPFAPP	0	Select audio mode or application mode 0=Audio mode (1 st order, fc = ~3.7Hz) 1=Application mode (2 nd order, fc = HPFCUT)
	6:4	HPFCUT	000	Application mode cut-off frequency See Table 13 for details.

Table 12 ADC Enable Control

HPFCUT	FS (KHZ)								
	SR=101/100			SR=011/010			SR=001/000		
	8	11.025	12	16	22.05	24	32	44.1	48
000	82	113	122	82	113	122	82	113	122
001	102	141	153	102	141	153	102	141	153
010	131	180	156	131	180	156	131	180	156
011	163	225	245	163	225	245	163	225	245
100	204	281	306	204	281	306	204	281	306
101	261	360	392	261	360	392	261	360	392
110	327	450	490	327	450	490	327	450	490
111	408	563	612	408	563	612	408	563	612

Table 13 High Pass Filter Cut-off Frequencies (HPFAPP=1)

Note that the High Pass filter values (when HPFAPP=1) work on the basis that the SR register bits are set correctly for the actual sample rate as shown in Table 13.

PROGRAMMABLE NOTCH FILTER

A programmable notch filter is provided. This filter has a variable centre frequency and bandwidth, programmable via two coefficients, a0 and a1. a0 and a1 are represented by the register bits NFA0[13:0] and NFA1[13:0]. Because these coefficient values require four register writes to setup there is an NFU (Notch Filter Update) flag which should be set only when all four registers are setup.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R27 Notch Filter 1	6:0	NFA0[6:0]	0	Notch Filter a0 coefficient, bits [6:0]
	7	NFEN	0	Notch filter enable: 0=Disabled 1=Enabled
	8	NFU	0	Notch filter update. The notch filter values used internally only update when one of the NFU bits is set high.
R28 Notch Filter 2	6:0	NFA0[13:7]	0	Notch Filter a0 coefficient, bits [13:7]
	8	NFU	0	Notch filter update. The notch filter values used internally only update when one of the NFU bits is set high.
R29 Notch Filter 3	6:0	NFA1[6:0]	0	Notch Filter a1 coefficient, bits [6:0]
	8	NFU	0	Notch filter update. The notch filter values used internally only update when one of the NFU bits is set high.
R30 Notch Filter 4	0-6	NFA1[13:7]	0	Notch Filter a1 coefficient, bits [13:7]
	8	NFU	0	Notch filter update. The notch filter values used internally only update when one of the NFU bits is set high.

Table 14 Notch Filter Function

The coefficients are calculated as follows:

$$a_0 = \frac{1 - \tan(w_b / 2)}{1 + \tan(w_b / 2)}$$

$$a_1 = -(1 + a_0) \cos(w_0)$$

Where:

$$w_0 = 2\pi f_c / f_s$$

$$w_b = 2\pi f_b / f_s$$

f_c = centre frequency in Hz, f_b = -3dB bandwidth in Hz, f_s = sample frequency in Hz

The actual register values can be determined from the coefficients as follows:

$$NFA0 = -a_0 \times 2^{13}$$

$$NFA1 = -a_1 \times 2^{12}$$

DIGITAL ADC VOLUME CONTROL

The output of the ADC can be digitally attenuated over a range from -127dB to 0dB in 0.5dB steps. The gain for a given eight-bit code X is given by:

$$0.5 \times (G-255) \text{ dB for } 1 \leq G \leq 255; \quad \text{MUTE for } G = 0$$

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R15 ADC Digital Volume	7:0	ADCVOL [7:0]	11111111 (0dB)	ADC Digital Volume Control 0000 0000 = Digital Mute 0000 0001 = -127dB 0000 0010 = -126.5dB ... 0.5dB steps up to 1111 1111 = 0dB
	8	ADCVU	Not latched	ADC volume does not update until a 1 is written to ADCVU

Table 15 ADC Digital Volume Control

INPUT LIMITER / AUTOMATIC LEVEL CONTROL (ALC)

The WM8982 has an automatic PGA gain control circuit, which can function as an input peak limiter or as an automatic level control (ALC).

In input peak limiter mode (ALCMODE bit = 1), a digital peak detector detects when the input signal goes above a predefined level and will ramp the PGA gain down to prevent the signal becoming too large for the input range of the ADC. When the signal returns to a level below the threshold, the PGA gain is slowly returned to its starting level. The peak limiter cannot increase the PGA gain above its static level.

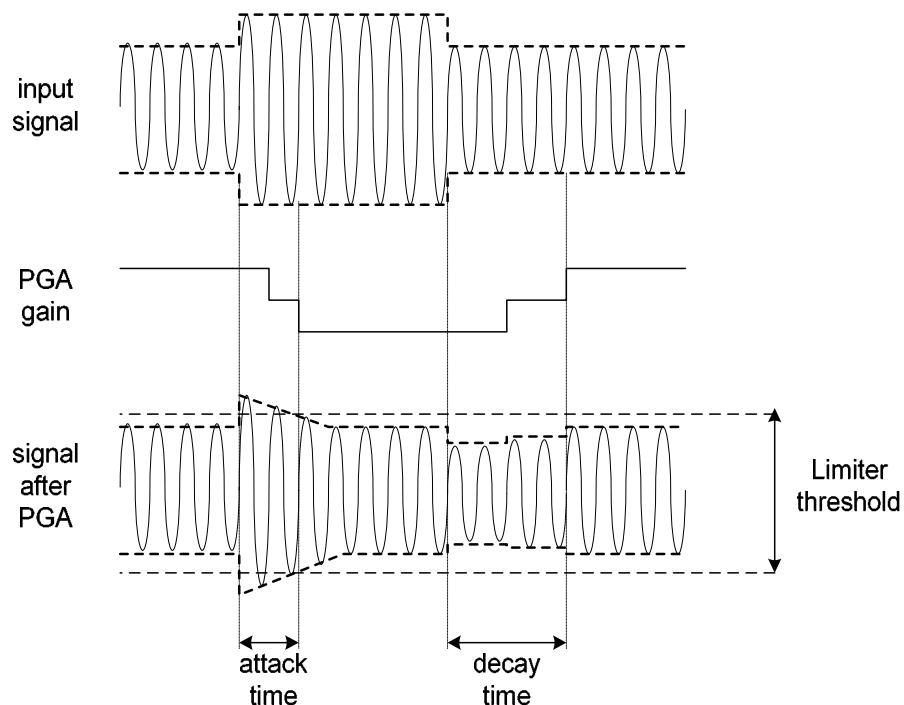


Figure 10 Input Peak Limiter Operation

In ALC mode (ALCMODE bit = 0) the circuit aims to keep a constant recording volume irrespective of the input signal level. This is achieved by continuously adjusting the PGA gain so that the signal level at the ADC input remains constant. A digital peak detector monitors the ADC output and changes the PGA gain if necessary.

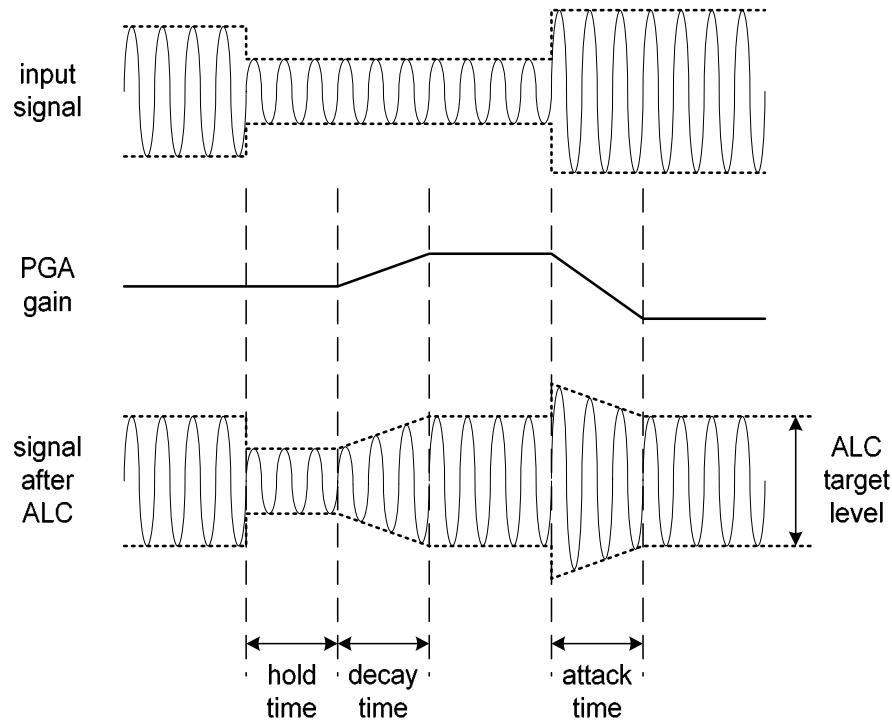


Figure 11 ALC Operation

The ALC/Limiter function is enabled by setting the register bit ALCSEL. When enabled, the recording volume can be programmed between -6dB and -28.5dB (relative to ADC full scale) using the ALCLVL register bits. An upper limit for the PGA gain can be imposed by setting the ALCMAX control bits and a lower limit for the PGA gain can be imposed by setting the ALCMIN control bits.

ALCHLD, ALCDCY and ALCATK control the hold, decay and attack times, respectively:

Hold time is the time delay between the peak level detected being below target and the PGA gain beginning to ramp up. It can be programmed in power-of-two (2^n) steps, e.g. 2.67ms, 5.33ms, 10.67ms etc. up to 43.7s. Alternatively, the hold time can also be set to zero. The hold time is not active in limiter mode (ALCMODE = 1). The hold time only applies to gain ramp-up, there is no delay before ramping the gain down when the signal level is above target.

Decay (Gain Ramp-Up) Time is the time that it takes for the PGA gain to ramp up and is given as a time per gain step, time per 6dB change and time to ramp up over 90% of it's range. The decay time can be programmed in power-of-two (2^n) steps, from 3.3ms/6dB, 6.6ms/6dB, 13.1ms/6dB, etc. to 3.36s/6dB.

Attack (Gain Ramp-Down) Time is the time that it takes for the PGA gain to ramp down and is given as a time per gain step, time per 6dB change and time to ramp down over 90% of it's range. The attack time can be programmed in power-of-two (2^n) steps, from 832us/6dB, 1.66ms/6dB, 3.328us/6dB, etc. to 852ms/6dB.

NB, In peak limiter mode the gain control circuit runs approximately 4x faster to allow reduction of fast peaks. Attack and Decay times for peak limiter mode are given below.

The hold, decay and attack times given in Table 16 are constant across sample rates so long as the SR bits are set correctly. E.g. when sampling at 48kHz the sample rates stated in Table 16 will only be correct if the SR bits are set to 000 (48kHz). If the actual sample rate was only 44.1kHz then the hold, decay and attack times would be scaled down by 44.1/48.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R32 ALC Control 1	8	ALCSEL	0	ALC function select 0=ALC disabled 1=ALC enabled
	5:3	ALCMAXGAIN [2:0]	111 (+35.25dB)	Set Maximum Gain of PGA 111=+35.25dB 110=+29.25dB 101=+23.25dB 100=+17.25dB 011=+11.25dB 010=+5.25dB 001=-0.75dB 000=-6.75dB
	2:0	ALCMINGAIN [2:0]	000 (-12dB)	Set minimum gain of PGA 000=-12dB 001=-6dB 010=0dB 011=+6dB 100=+12dB 101=+18dB 110=+24dB 111=+30dB
R33 ALC Control 2	7:4	ALCHLD [3:0]	0000 (0ms)	ALC hold time before gain is increased. 0000 = 0ms 0001 = 2.67ms 0010 = 5.33ms ... (time doubles with every step) 1111 = 43.691s
	3:0	ALCLVL [3:0]	1011 (-12dB)	ALC target – sets signal level at ADC input 0000 = -28.5dB FS 0001 = -27.0dB FS ... (1.5dB steps) 1110 = -7.5dB FS 1111 = -6dB FS
	8	ALCZC	0 (zero cross off)	ALC uses zero cross detection circuit.

R34 ALC Control 3	8	ALCMODE	0	Determines the ALC mode of operation: 0=ALC mode 1=Limiter mode				
		ALCDCY [3:0]	0011 (13ms/6dB)	Decay (gain ramp-up) time (ALCMODE ==0)				
					Per step	Per 6dB	90% of range	
				0000	410us	3.3ms	24ms	
				0001	820us	6.6ms	48ms	
				0010	1.64ms	13.1ms	192ms	
				... (time doubles with every step)				
				1010	420ms	3.36s	24.576s	
				0011 (2.9ms/6dB)	Decay (gain ramp-up) time (ALCMODE ==1)			
						Per step	Per 6dB	90% of range
					0000	90.8us	726.4us	5.26ms
					0001	181.6us	1.453ms	10.53ms
					0010	363.2us	2.905ms	21.06ms
					... (time doubles with every step)			
					1010	93ms	744ms	5.39s
		ALCATK [3:0]	0010 (832us/6dB)	ALC attack (gain ramp-down) time (ALCMODE == 0)				
					Per step	Per 6dB	90% of range	
				0000	104us	832us	6ms	
				0001	208us	1.664ms	12ms	
				0010	416us	3.328ms	24.1ms	
				... (time doubles with every step)				
				1010	106ms	852ms	6.18s	
				0010 (182us/6dB)	ALC attack (gain ramp-down) time (ALCMODE == 1)			
						Per step	Per 6dB	90% of range
					0000	22.7us	182.4us	1.31ms
					0001	45.4us	363.2us	2.62ms
					0010	90.8us	726.4us	5.26ms
					... (time doubles with every step)			
					1010	23.2ms	186ms	1.348s

Table 16 ALC Control Registers

ALC CLIP PROTECTION

To prevent clipping when a large signal occurs just after a period of quiet, the ALC circuit includes a clip protection function. If the ADC input signal exceeds 87.5% of full scale (-1.16dB), the PGA gain is ramped down at the maximum attack rate (as when ALCATK = 0000), until the signal level falls below 87.5% of full scale. This function is automatically enabled whenever the ALC is enabled.

Note:

If ATK = 0000, then the clip protection circuit makes no difference to the operation of the ALC. It is designed to prevent clipping when long attack times are used.

NOISE GATE

When the signal is very quiet and consists mainly of noise, the ALC function may cause "noise pumping", i.e. loud hissing noise during silence periods. The WM8982 has a noise gate function that prevents noise pumping by comparing the signal level at the input pins against a noise gate threshold, NGTH. The noise gate cuts in when:

Signal level at ADC [dB] < NGTH [dB] + PGA gain [dB] + Mic Boost gain [dB]

This is equivalent to:

Signal level at input pin [dB] < NGTH [dB]

The PGA gain is then held constant (preventing it from ramping up as it normally would when the signal is quiet).

The table below summarises the noise gate control register. The NGTH control bits set the noise gate threshold with respect to the ADC full-scale range. The threshold is adjusted in 6dB steps. Levels at the extremes of the range may cause inappropriate operation, so care should be taken with set-up of the function. Note that the noise gate only works in conjunction with the ALC function.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R35 ALC Noise Gate Control	2:0	NGTH	000	Noise gate threshold: 000=-39dB 001=-45dB 010=-51dB ... (6dB steps) 111=-81dB
	3	NGATEN	0	Noise gate function enable 1 = enable 0 = disable

Table 17 ALC Noise Gate Control

OUTPUT SIGNAL PATH

The WM8982 output signal paths consist of digital application filters, up-sampling filters, Hi-Fi DAC, analogue mixers, speaker/headphone, and line/mono/midrail output drivers. The digital filters and DAC are enabled by register bit DACEN. The mixers and output drivers can be separately enabled by individual control bits (see Analogue Outputs). Thus it is possible to utilise the analogue mixing and amplification provided by the WM8982, irrespective of whether the DAC is running or not.

The WM8982 DAC receives digital input data on the DACDAT pin. The digital filter block processes the data to provide the following functions:

- § Digital volume control
- § Graphic equaliser
- § A digital peak limiter.
- § Sigma-Delta Modulation

A high performance sigma-delta audio DAC converts the digital data into an analogue signal.

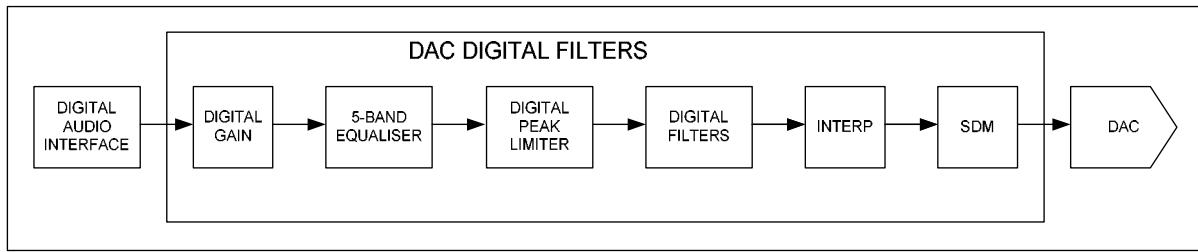


Figure 12 DAC Digital Filter Path

The analogue output from the DAC can then be mixed with the aux analogue inputs and the ADC analogue inputs. The mix is fed to the output drivers for headphone or speaker (SPKOUTP/N) or line (MONOOUT). MONOOUT has an additional mixer which allows it to output a different signals to the speaker outputs.

DIGITAL PLAYBACK (DAC) PATH

Digital data is passed to the WM8982 via the flexible audio interface and is then passed through a variety of advanced digital filters as shown in Figure 12 to the hi-fi DAC. The DAC is enabled by the DACEN register bit.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R3 Power Management 3	0	DACEN	0	DAC enable 0 = DAC disabled 1 = DAC enabled

Table 18 DAC Enable Control

The WM8982 also has a Soft Mute function, which gradually attenuates the volume of the digital signal to zero. When removed, the gain will ramp back up to the digital gain setting.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R10 DAC Control	0	DACPOL	0	DAC output polarity: 0 = non-inverted 1 = inverted (180 degrees phase shift)
	2	AMUTE	0	Automute enable 0 = Amute disabled 1 = Amute enabled
	3	DACOSR	0	DAC oversampling rate: 0=64x (lowest power) 1=128x (best performance)
	6	SOFTMUTE	0	Softmute enable: 0=Disabled 1=Enabled

Table 19 DAC Control Register

The digital audio data is converted to oversampled bit streams in the on-chip, true 24-bit digital interpolation filters. The bitstream data enters the multi-bit, sigma-delta DAC, which converts it to a high quality analogue audio signal. The multi-bit DAC architecture reduces high frequency noise and sensitivity to clock jitter. It also uses a Dynamic Element Matching technique for high linearity and low distortion.

The DAC output defaults to non-inverted. Setting DACPOL will invert the DAC output phase.

AUTOMUTE

The DAC has an automute function which applies an analogue mute when 1024 consecutive zeros are detected. The mute is released as soon as a non-zero sample is detected. Automute can be disabled using the AMUTE control bit.

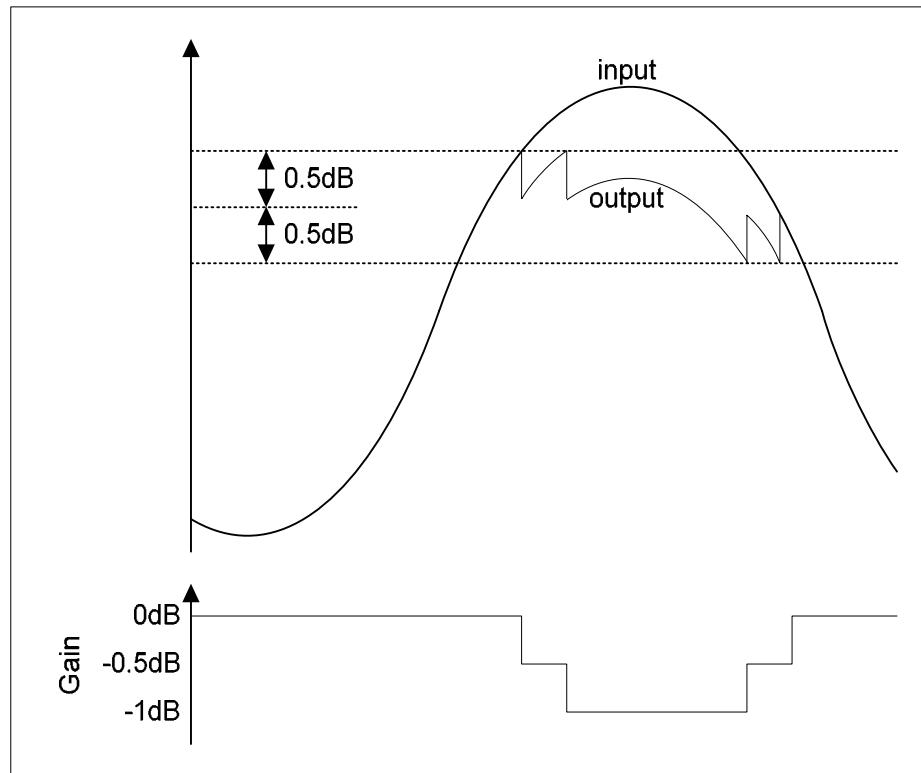
DIGITAL HI-FI DAC VOLUME (GAIN) CONTROL

The signal volume from the Hi-Fi DAC can be controlled digitally. The gain and attenuation range is -127dB to 0dB in 0.5dB steps. The level of attenuation for an eight-bit code X is given by:

$$0.5 \times (X-255) \text{ dB} \text{ for } 1 \leq X \leq 255; \quad \text{MUTE for } X = 0$$

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R11 DAC Digital Volume	7:0	DACVOL [7:0]	11111111 (0dB)	DAC Digital Volume Control 0000 0000 = Digital Mute 0000 0001 = -127dB 0000 0010 = -126.5dB ... 0.5dB steps up to 1111 1111 = 0dB
	8	DACVU	Not latched	DAC volume does not update until a 1 is written to DACVU

Table 20 DAC Digital Volume Control


Note: An additional gain of up to +12dB can be added using the gain block embedded in the digital peak limiter circuit (see DAC OUTPUT LIMITER section).

DAC 5-BAND EQUALISER

A 5-band graphic equaliser function which can be used to change the output frequency levels to suit the environment. This can be applied to the ADC or DAC path and is described in the 5-BAND EQUALISER section for further details on this feature.

DAC DIGITAL OUTPUT LIMITER

The WM8982 has a digital output limiter function. The operation of this is shown in Figure 13. In this diagram the upper graph shows the envelope of the input/output signals and the lower graph shows the gain characteristic.

Figure 13 DAC Digital Limiter Operation

The limiter has a programmable upper threshold which is close to 0dB. Referring to Figure 13, in normal operation (LIMBOOST=000 => limit only) signals below this threshold are unaffected by the limiter. Signals above the upper threshold are attenuated at a specific attack rate (set by the LIMATK register bits) until the signal falls below the threshold. The limiter also has a lower threshold 1dB below the upper threshold. When the signal falls below the lower threshold the signal is amplified at a specific decay rate (controlled by LIMDCY register bits) until a gain of 0dB is reached. Both threshold levels are controlled by the LIMLVL register bits. The upper threshold is 0.5dB above the value programmed by LIMLVL and the lower threshold is 0.5dB below the LIMLVL value.

VOLUME BOOST

The limiter has programmable upper gain which boosts signals below the threshold to compress the dynamic range of the signal and increase its perceived loudness. This operates as an ALC function with limited boost capability. The volume boost is from 0dB to +12dB in 1dB steps, controlled by the LIMBOOST register bits.

The output limiter volume boost can also be used as a stand alone digital gain boost when the limiter is disabled.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R24 DAC digital limiter control 1	3:0	LIMATK	0010	Limiter Attack time (per 6dB gain change) for 44.1kHz sampling. Note that these will scale with sample rate. 0000=94us 0001=188s 0010=375us 0011=750us 0100=1.5ms 0101=3ms 0110=6ms 0111=12ms 1000=24ms 1001=48ms 1010=96ms 1011 to 1111=192ms
	7:0	LIMDCY	0011	Limiter Decay time (per 6dB gain change) for 44.1kHz sampling. Note that these will scale with sample rate: 0000=750us 0001=1.5ms 0010=3ms 0011=6ms 0100=12ms 0101=24ms 0110=48ms 0111=96ms 1000=192ms 1001=384ms 1010=768ms 1011 to 1111=1.536s
	8	LIMEN	0	Enable the DAC digital limiter: 0=disabled 1=enabled
R25 DAC digital limiter control 2	3:0	LIMBOOST	0000	Limiter volume boost (can be used as a stand alone volume boost when LIMEN=0): 0000=0dB 0001=+1dB 0010=+2dB ... (1dB steps) 1011=+11dB 1100=+12dB 1101 to 1111=reserved
	6:4	LIMLVL	000	Programmable signal threshold level (determines level at which the limiter starts to operate) 000=-1dB 001=-2dB 010=-3dB 011=-4dB 100=-5dB 101 to 111=-6dB

Table 21 DAC Digital Limiter Control

5-BAND GRAPHIC EQUALISER

A 5-band graphic EQ is provided, which can be applied to the ADC or DAC path, under control of the EQMODE register bit.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R18 EQ Control 1	8	EQMODE	1	0 = Equaliser applied to ADC path 1 = Equaliser applied to DAC path

Table 22 EQ DAC or ADC Path Select

The equaliser consists of low and high frequency shelving filters (Band 1 and 5) and three peak filters for the centre bands. Each has adjustable cut-off or centre frequency, and selectable boost (+/- 12dB in 1dB steps). The peak filters have selectable bandwidth.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R18 EQ Band 1 Control	4:0	EQ1G	01100 (0dB)	Band 1 Gain Control. See Table 28 for details.
	6:5	EQ1C	01	Band 1 Cut-off Frequency: 00=80Hz 01=105Hz 10=135Hz 11=175Hz

Table 23 EQ Band 1 Control

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R19 EQ Band 2 Control	4:0	EQ2G	01100 (0dB)	Band 2 Gain Control. See Table 28 for details.
	6:5	EQ2C	01	Band 2 Centre Frequency: 00=230Hz 01=300Hz 10=385Hz 11=500Hz
	8	EQ2BW	0	Band 2 Bandwidth Control 0=narrow bandwidth 1=wide bandwidth

Table 24 EQ Band 2 Control

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R20 EQ Band 3 Control	4:0	EQ3G	01100 (0dB)	Band 3 Gain Control. See Table 28 for details.
	6:5	EQ3C	01	Band 3 Centre Frequency: 00=650Hz 01=850Hz 10=1.1kHz 11=1.4kHz
	8	EQ3BW	0	Band 3 Bandwidth Control 0=narrow bandwidth 1=wide bandwidth

Table 25 EQ Band 3 Control

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R21 EQ Band 4 Control	4:0	EQ4G	01100 (0dB)	Band 4 Gain Control. See Table 28 for details
	6:5	EQ4C	01	Band 4 Centre Frequency: 00=1.8kHz 01=2.4kHz 10=3.2kHz 11=4.1kHz
	8	EQ4BW	0	Band 4 Bandwidth Control 0=narrow bandwidth 1=wide bandwidth

Table 26 EQ Band 4 Control

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R22 EQ Band 5 Gain Control	4:0	EQ5G	01100 (0dB)	Band 5 Gain Control. See Table 28 for details.
	6:5	EQ5C	01	Band 5 Cut-off Frequency: 00=5.3kHz 01=6.9kHz 10=9kHz 11=11.7kHz

Table 27 EQ Band 5 Control

GAIN REGISTER	GAIN
00000	+12dB
00001	+11dB
00010	+10dB
.... (1dB steps)	
01100	0dB
01101	-1dB
11000 to 11111	-12dB

Table 28 Gain Register Table

ANALOGUE OUTPUTS

The WM8982 has three analogue outputs. These are:

- SPKOUTP and SPKOUTN – normally used to drive an 8Ω BTL speaker.
- MONOOUT – line output.

SPKOUTP/N and MONOOUT are supplied from SPKVDD and are capable of driving up to 1.5Vrms signals as shown in Figure 14.

SPKOUTP and SPKOUTN have individual analogue volume PGAs with -57dB to +6dB ranges.

There are three output mixers in the output signal path, the two SPKOUTN/P mixers which control the signals to speaker, and also a dedicated MONOOUT mixer.

SPEAKER OUTPUT CHANNEL MIXERS

The speaker output channel mixers are shown in Figure 14. These mixers allow the AUX inputs, the ADC bypass and the DAC channels to be combined as desired. This allows a mix of the DAC channel with external line-in from the AUX or speech from the input bypass path.

The AUX and bypass inputs have individual volume control from -15dB to +6dB and the DAC volume can be adjusted in the digital domain if required. The output of these mixers goes to the speaker (SPKOUTP/N) and can optionally go to the MONOOUT mixer.

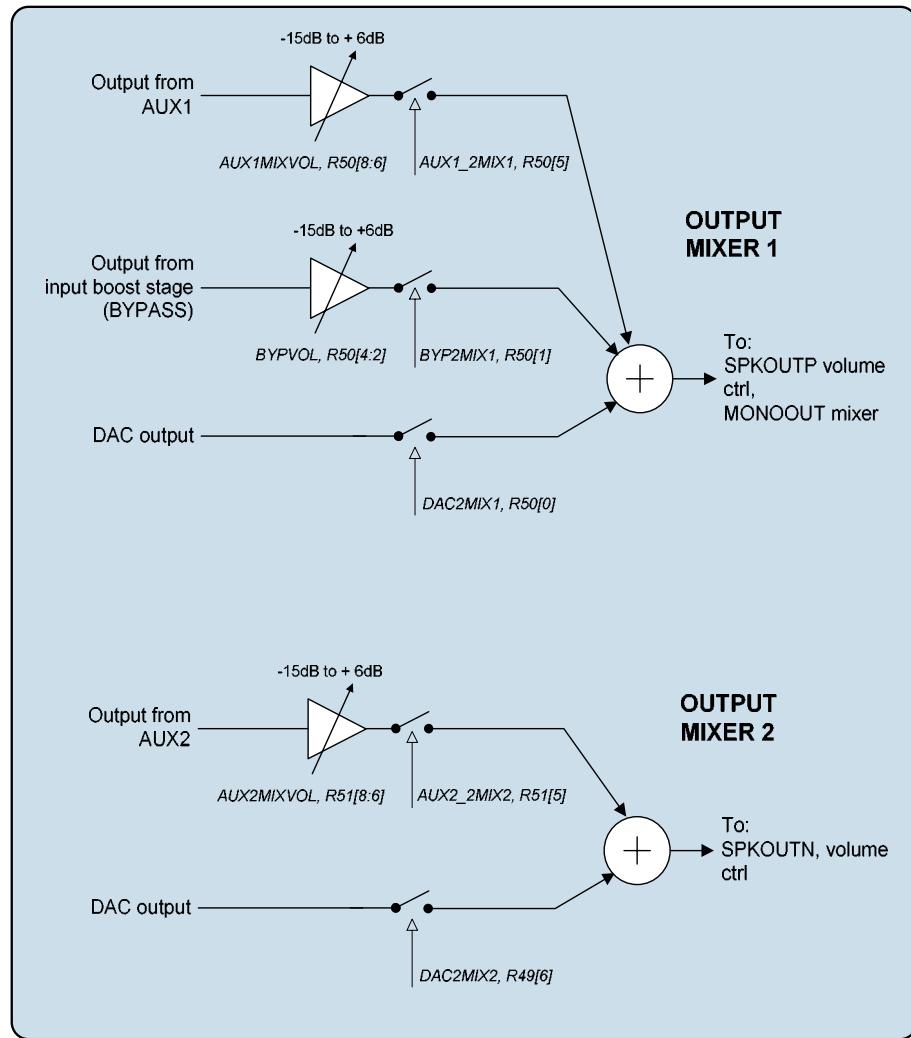


Figure 14 Output Mixers

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R49 Output mixer control	6	DAC2MIX2	0	DAC output to output mixer 2 0 = not selected 1 = selected
R50 Output mixer 1 control	0	DAC2MIX1	1	DAC output to output mixer 1 0 = not selected 1 = selected
	1	BYP2MIX1	0	Bypass path (from the input boost output) to output mixer 1 0 = not selected 1 = selected
	4:2	BYPVOL	000	Bypass volume control to output mixer 1: 000 = -15dB 001 = -12dB ... 101 = 0dB 110 = +3dB 111 = +6dB
	5	AUX1_2MIX1	0	Aux 1 input to output mixer 1: 0 = not selected 1 = selected
	8:6	AUX1MIXVOL	000	Aux 1 input to output mixer 1 volume control: 000 = -15dB 001 = -12dB ... 101 = 0dB 110 = +3dB 111 = +6dB
R51 Output mixer 2 control	5	AUX2_2MIX2	0	Aux 2 input to output mixer 2: 0 = not selected 1 = selected
	8:6	AUX2MIXVOL	000	Aux 2 input to output mixer 2 volume control: 000 = -15dB 001 = -12dB ... 101 = 0dB 110 = +3dB 111 = +6dB
R3 Power management 3	2	MIX1EN	0	Output mixer 1 enable: 0 = disabled 1 = enabled
	3	MIX2EN	0	Output mixer 2 enable: 0 = disabled 1 = enabled

Table 29 Output Mixer Control

SPEAKER OUTPUTS (SPKOUTP AND SPKOUTN)

The outputs SPKOUTP and SPKOUTN are designed to drive an 8Ω BTL speaker but can optionally drive two headphone loads of 16Ω/32Ω or a line output. Each output has an individual volume control PGA, an output boost/level shift bit, a mute and an enable as shown in Figure 15. SPKOUTP and SPKOUTN output the Output Mixer 1 and Output Mixer 2 mixer outputs respectively.

The SPKOUTN signal path also has an optional invert. The amplifier used for this invert can be used to mix in the AUX2 signal with an adjustable gain range of -15dB → +6dB. This allows a 'beep' signal to be applied only to the speaker output without affecting the line output.

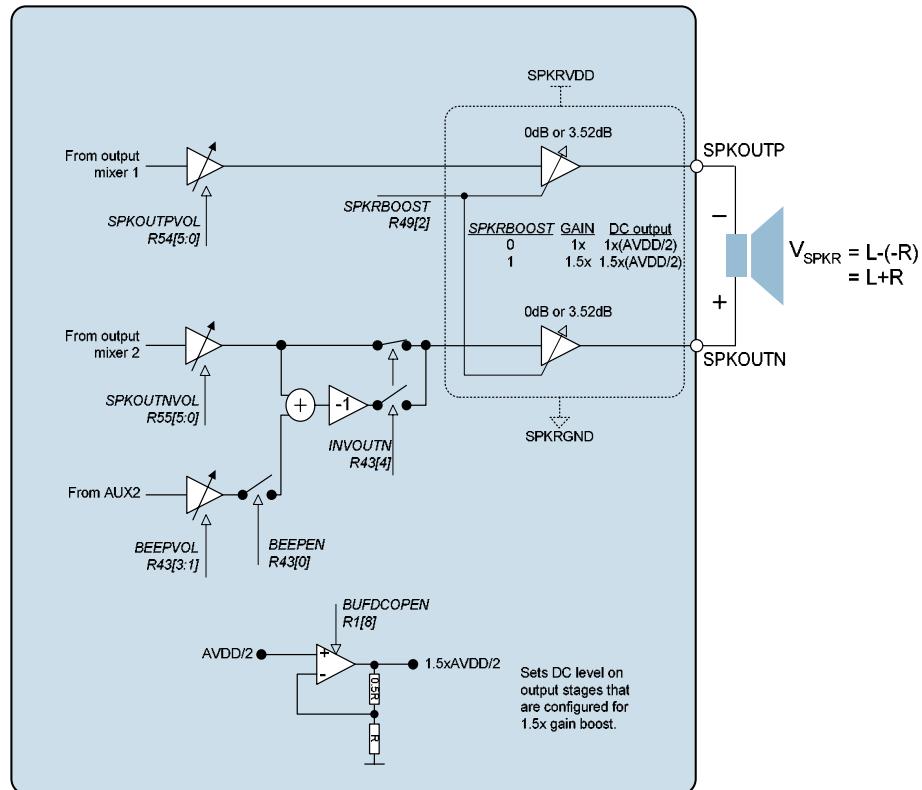


Figure 15 Speaker Outputs SPKOUTP and SPKOUTN

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R54 SPKOUTP Volume control	7	SPKOUTPZC	0	Speaker volume zero cross enable: 1 = Change gain on zero cross only 0 = Change gain immediately
	6	SPKOUTPMUTE	0	Speaker +ve output mute: 0 = Normal operation 1 = Mute
	5:0	SPKOUTPVOL	111001	Speaker +ve output volume: 000000 = -57dB ... 111001 = 0dB ... 111111 = +6dB
	8	SPKVU	Not latched	SPKOUTP and SPKOUTN volumes do not update until a 1 is written to SPKVU (in reg 54 or 55)
R55 SPKOUTN Volume control	7	SPKOUTNZC	0	Speaker volume zero cross enable: 1 = Change gain on zero cross only 0 = Change gain immediately
	6	SPKOUTNMUTE	0	Speaker -ve output mute: 0 = Normal operation 1 = Mute
	5:0	SPKOUTNVOL	111001	Speaker -ve output volume: 000000 = -57dB ... 111001 = 0dB ... 111111 = +6dB
	8	SPKVU	Not latched	SPKOUTP and SPKOUTN volumes do not update until a 1 is written to SPKVU (in reg 54 or 55)

Table 30 Speaker Volume Control

The signal to be output on SPKOUTP/SPKOUTN comes from Output Mixer 1 / Output Mixer 2 circuits and can be any combination of the DAC output, the Bypass path (output of the input boost stage) and the AUX inputs. The SPKOUTP/SPKOUTN volume is controlled by the SPKOUTPVOL/SPKOUTNVOL register bits. Note that gains over 0dB may cause clipping if the signal is large. The SPKOUTPMUTE/ SPKOUTNMUTE register bits cause the speaker outputs to be muted (the output DC level is driven out). The output pins remain at the same DC level (DCOP), so that no click noise is produced when muting or un-muting

The speaker output stages also have a selectable gain boost of 1.5x (3.52dB). When this boost is enabled the output DC level is also level shifted (from AVDD/2 to 1.5xAVDD/2) to prevent the signal from clipping. A dedicated amplifier BUFDOP, as shown in Figure 16, is used to perform the DC level shift operation. This buffer must be enabled using the BUFDOPEN register bit for this operating mode. It should also be noted that if SPKVDD is not equal to or greater than 1.5xAVDD this boost mode may result in signals clipping. Table 32 summarises the effect of the SPKRBOOST control bits.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R49 Output control	2	SPKRBOOST	0	0 = speaker gain = -1; DC = AVDD / 2 1 = speaker gain = +1.5; DC = 1.5 x AVDD / 2
R1 Power management 1	8	BUFDOPEN	0	Dedicated buffer for DC level shifting output stages when in 1.5x gain boost configuration. 0=Buffer disabled 1=Buffer enabled (required for 1.5x gain boost)

Table 31 Speaker Boost Stage Control

SPKRBOOST	OUTPUT STAGE GAIN	OUTPUT DC LEVEL	OUTPUT STAGE CONFIGURATION
0	1x (0dB)	AVDD/2	Inverting
1	1.5x (3.52dB)	1.5xAVDD/2	Non-inverting

Table 32 Output Boost Stage Details

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R43 Beep control	5	MUTEPGA2INV	0	Mute input to INVOUTN mixer
	4	INVOUTN	0	Invert SPKOUTN output
	3:1	BEEPVOL	000	AUX2 input to SPKOUTN inverter gain 000 = -15dB ... 111 = +6dB
	0	BEEPEN	0	0 = mute AUX2 beep input 1 = enable AUX2 beep input

Table 33 AUXR – SPKOUTN BEEP Mixer Function

ZERO CROSS TIMEOUT

A zero-cross timeout function is also provided so that if zero cross is enabled on the input or output PGAs the gain will automatically update after a timeout period if a zero cross has not occurred. This is enabled by setting SLOWCLKEN. The timeout period is dependent on the clock input to the digital and is equal to $2^{21} * \text{input clock period}$.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R7 Additional Control	0	SLOWCLKEN	0	Slow clock enable. Used for both the jack insert detect debounce circuit and the zero cross timeout. 0 = slow clock disabled 1 = slow clock enabled

Table 34 Timeout Clock Enable Control

MONOOUT MIXER AND OUTPUT STAGE

The MONOOUT pin can provide an additional line output, or a pseudo ground connection for headphones. There is a dedicated analogue mixer for MONOOUT as shown in Figure 17.

The MONOOUT output stage is powered from SPKVDD and SPKGND. The output also incorporates an optional 1.5x boost and level shifting stage.

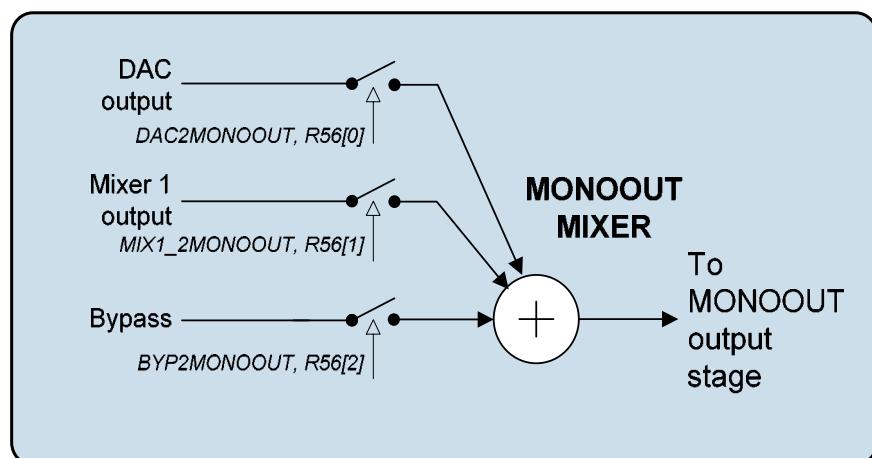


Figure 17 Mono Output Mixer

MONOOUT can provide a buffered midrail headphone pseudo-ground, or a mono line output.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R56 MONOOUT mixer control	6	MONOOUT MUTE	0	0 = Output stage outputs MONOOUT mixer 1 = Output stage muted – drives out VMID. Can be used as VMID buffer in this mode.
	2	BYPL2MONO OUT	0	ADC input to MONOOUT 0 = disabled 1= enabled
	1	MIX1_2MONO OUT	0	Mixer 1 to MONOOUT 0 = disabled 1= enabled
	0	DAC2MONO OUT	1	DAC output to MONOOUT 0 = disabled 1= enabled

Table 35 MONOOUT Mixer Registers

The MONOOUT output stage has a selectable gain boost of 1.5x (3.52dB). When this boost is enabled the output DC level is also level shifted (from AVDD/2 to 1.5xAVDD/2) to prevent the signal from clipping. A dedicated amplifier BUFDOPEN, as shown in Figure 18, is used to perform the DC level shift operation. This buffer must be enabled using the BUFDOPEN register bit for this operating mode. It should also be noted that if SPKVDD is not equal to or greater than 1.5xAVDD this boost mode may result in signals clipping. Table 32 summarises the effect of the MONOBOOST control bit.

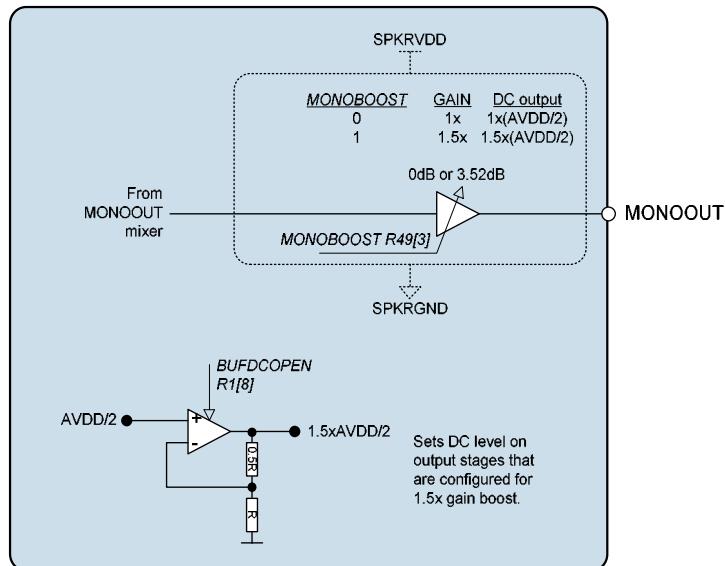


Figure 19 MONOOUT

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R49 Output control	3	MONOBOOST	0	0 = MONOOUT output gain = -1; DC = AVDD / 2 1 = MONOOUT output gain = +1.5 DC = 1.5 x AVDD / 2
R1 Power management 1	8	BUFDOPEN	0	Dedicated buffer for DC level shifting output stages when in 1.5x gain boost configuration. 0=Buffer disabled 1=Buffer enabled (required for 1.5x gain boost)

Table 36 MONOOUT Boost Stage Control

MONOBOOST	OUTPUT STAGE GAIN	OUTPUT DC LEVEL	OUTPUT STAGE CONFIGURATION
0	1x	AVDD/2	Inverting
1	1.5x	1.5xAVDD/2	Non-inverting

Table 37 MONOOUT Boost Stage Details

ENABLING THE OUTPUTS

Each analogue output of the WM8982 can be separately enabled or disabled. The analogue mixer associated with each output has a separate enable. All outputs are disabled by default. To save power, unused parts of the WM8982 should remain disabled.

Outputs can be enabled at any time, but it is not recommended to do so when BUFIO is disabled (BUFIOEN=0) or when BUFDOPEN is disabled (BUFDOPEN=0) when configured in output boost mode, as this may cause pop noise (see “Power Management” and “Applications Information” sections).

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R1 Power Management 1	2	BUFIOEN	0	Unused input/output tie off buffer enable
	6	MONOMIXEN	0	MONOOUT mixer enable
	8	BUFDOPEN	0	Output stage 1.5xAVDD/2 driver enable
R2 Power Management 2	6	SLEEP	0	0 = normal device operation 1 = residual current reduced in device standby mode
	2	MIX1EN	0	Mixer 1 enable
R3 Power Management 3	3	MIX2EN	0	Mixer 2 enable
	4	VBUFEN	0	Video buffer enable
	5	SPKOUTNEN	0	SPKOUTN output enable
	6	SPKOUTPEN	0	SPKOUTP output enable
	7	MONOOUTEN	0	MONOOUT enable
	Note: All “Enable” bits are 1 = ON, 0 = OFF			

Table 38 Output Stages Power Management Control

THERMAL SHUTDOWN

The speaker outputs can drive very large currents. To protect the WM8982 from overheating a thermal shutdown circuit is included. If the device temperature reaches approximately 125°C and the thermal shutdown circuit is enabled (TSDEN=1) then the speaker amplifiers will be disabled if TSDEN is set. The thermal shutdown may also be configured to generate an interrupt. See the GPIO and Interrupt Controller section for details.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R49 Output control	1	TSDEN	1	Thermal Shutdown Enable 0 : thermal shutdown disabled 1 : thermal shutdown enabled

Table 39 Thermal Shutdown

UNUSED ANALOGUE INPUTS/OUTPUTS

Whenever an analogue input/output is disabled, it remains connected to a voltage source (either AVDD/2 or 1.5xAVDD/2 as appropriate) through a resistor. This helps to prevent pop noise when the output is re-enabled. The resistance between the voltage buffer and the output pins can be controlled using the VROI control bit. The default impedance is low, so that any capacitors on the outputs can charge up quickly at start-up. If a high impedance is desired for disabled outputs, VROI can then be set to 1, increasing the resistance to about $30\text{k}\Omega$.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R49	0	VROI	0	VREF (AVDD/2 or 1.5xAVDD/2) to analogue output resistance 0: approx $1\text{k}\Omega$ 1: approx $30\text{k}\Omega$

Table 40 Disabled Outputs to VREF Resistance

A dedicated buffer is available for tying off unused analogue I/O pins as shown in Figure 20. This buffer can be enabled using the BUFINEN register bit.

If the SPKRBOOST or MONOBOOST bits are set then the relevant outputs will be tied to the output of the DC level shift buffer at $1.5x\text{AVDD}/2$ when disabled.

Figure 20 summarises the tie-off options for the speaker and mono output pins.

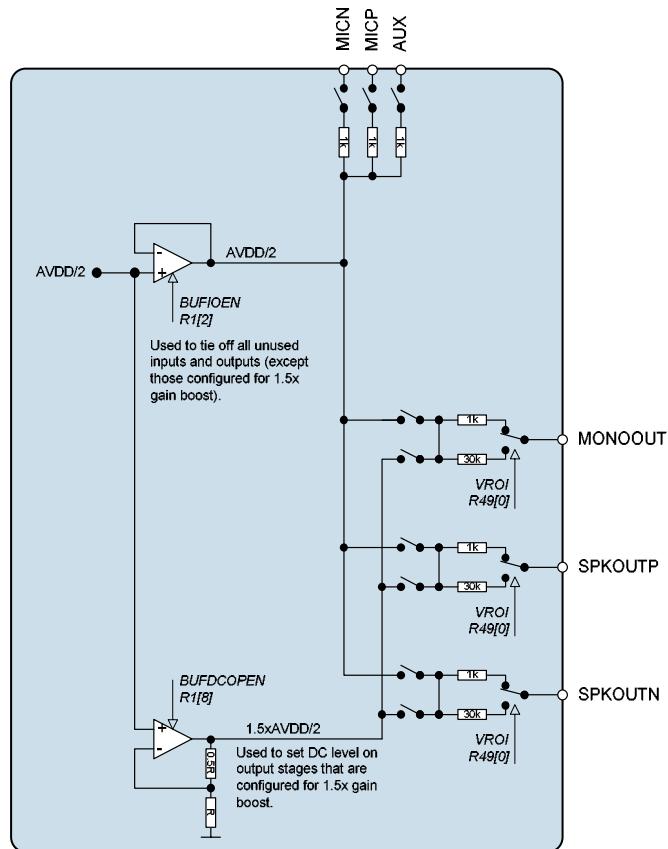


Figure 20 Unused Input/Output Pin Tie-off Buffers

SPKOUTEN/ MONOOUTEN	MONOBOOST/ SPKRBOOST	VROI	OUTPUT CONFIGURATION
0	0	0	1kΩ tie-off to AVDD/2
0	0	1	30kΩ tie-off to AVDD/2
0	1	0	1kΩ tie-off to 1.5xAVDD/2
0	1	1	30kΩ tie-off to 1.5xAVDD/2
1	0	X	Output enabled (DC level=AVDD/2)
1	1	X	Output enabled (DC level=1.5xAVDD/2)

Table 41 Unused Output Pin Tie-off Options

VIDEO BUFFER

DESCRIPTION

The WM8982 incorporates a current mode output video buffer capable of operating from a 2.5V supply, with an input 3rd order Low Pass Filter (LPF) and clamp. The gain through this buffer can be programmed as 0dB or 6dB via the control interface. The current mode output means that the signal swing seen at the output of the buffer will be the same as that at the connection to the receiving equipment (e.g. a TV). Note that the input to the receiver should be AC coupled and terminated to 75Ω, as is standard, for best performance.

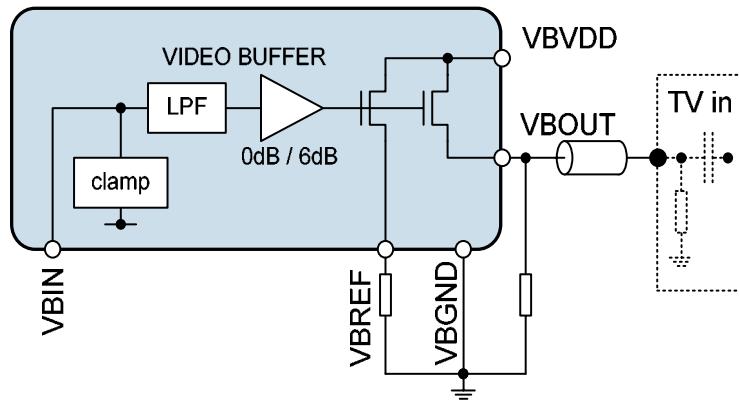


Figure 21 Video Buffer

The input clamp should be enabled when using AC coupling at the input to the video buffer, using the VBCLAMPEN register bit.

Care should be taken with PCB layout, designing for at least 1GHz frequencies to avoid degrading performance. Vias and sharp corners should be avoided and parasitic capacitance minimised on signal paths, which should be kept as short and straight as possible. The VBVDD supply should be decoupled as close to the pin as possible. See the "External Components" section for more information.

LOW PASS FILTER

A low pass filter is integrated at the video buffer input, which is intended to remove images in the video DAC output waveform at multiples of the DAC clock frequency. A 3rd order Butterworth filter is used, with the following characteristics:

VIDEO BUFFER REGISTERS

Video buffer enable / disable and gain are controlled via the following registers:

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R3 Power management 3	4	VBUFEN	0	Video buffer enable 0 = enabled 1 = disabled
R40 Video Buffer	8	VBGAIN	0	Video buffer gain 0 = 0dB 1 = +6dB
	7	VBCLAMPEN	0	Video buffer clamp enable 0 = disabled 1 = enabled

Table 42 Video Buffer Registers

DIGITAL AUDIO INTERFACES

The audio interface has four pins:

- ADCDAT: ADC data output
- DACDAT: DAC data input
- FRAME: Data Left/Right alignment clock
- BCLK: Bit clock, for synchronisation

The clock signals BCLK, and FRAME can be outputs when the WM8982 operates as a master, or inputs when it is a slave (see Master and Slave Mode Operation, below).

Five different audio data formats are supported:

- Left justified
- Right justified
- I²S
- DSP mode A
- DSP mode B

All of these modes are MSB first. They are described in Audio Data Formats, below. Refer to the Electrical Characteristic section for timing information.

MASTER AND SLAVE MODE OPERATION

The WM8982 audio interface may be configured as either master or slave. As a master interface device the WM8982 generates BCLK and FRAME and thus controls sequencing of the data transfer on ADCDAT and DACDAT. To set the device to master mode register bit MS should be set high. In slave mode (MS=0), the WM8982 responds with data to clocks it receives over the digital audio interfaces.

AUDIO DATA FORMATS

In Left Justified mode, the MSB is available on the first rising edge of BCLK following an FRAME transition. The other bits up to the LSB are then transmitted in order. Depending on word length, BCLK frequency and sample rate, there may be unused BCLK cycles before each FRAME transition.

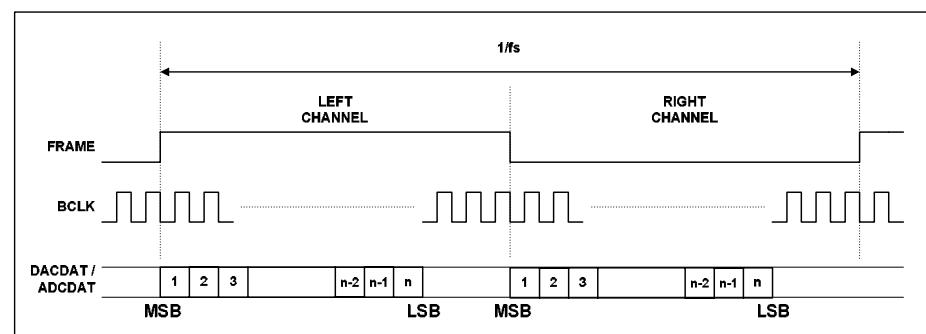


Figure 22 Left Justified Audio Interface (assuming n-bit word length)

In Right Justified mode, the LSB is available on the last rising edge of BCLK before a FRAME transition. All other bits are transmitted before (MSB first). Depending on word length, BCLK frequency and sample rate, there may be unused BCLK cycles after each FRAME transition.

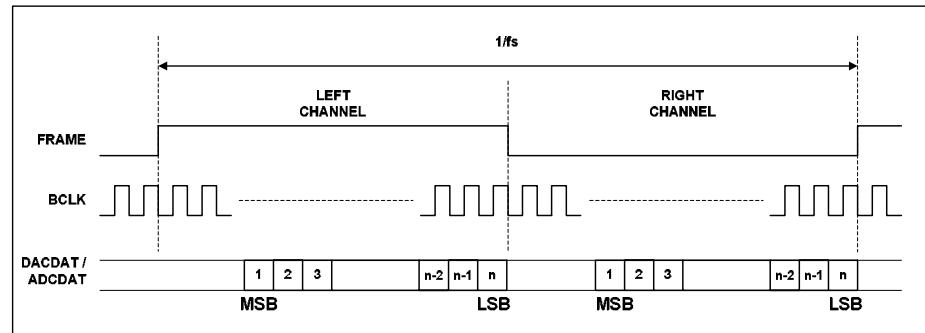


Figure 23 Right Justified Audio Interface (assuming n-bit word length)

In I²S mode, the MSB is available on the second rising edge of BCLK following a FRAME transition. The other bits up to the LSB are then transmitted in order. Depending on word length, BCLK frequency and sample rate, there may be unused BCLK cycles between the LSB of one sample and the MSB of the next.

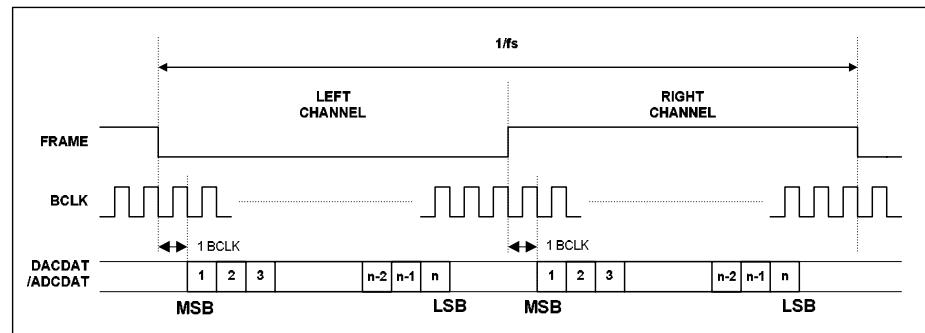


Figure 24 I²S Audio Interface (assuming n-bit word length)

In DSP/PCM mode, the left channel MSB is available on either the 1st (mode B) or 2nd (mode A) rising edge of BCLK (selectable by LRP) following a rising edge of FRAME. Right channel data immediately follows left channel data. Depending on word length, BCLK frequency and sample rate, there may be unused BCLK cycles between the LSB of the right channel data and the next sample.

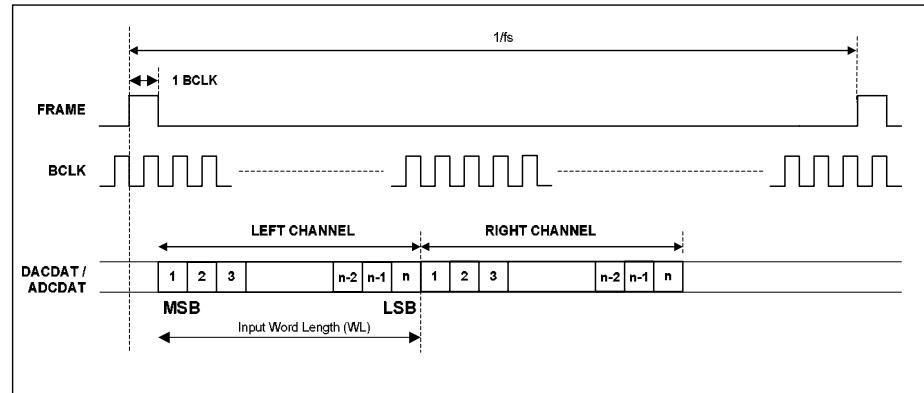


Figure 25 DSP/PCM Mode Audio Interface (mode A, LCRP=0)

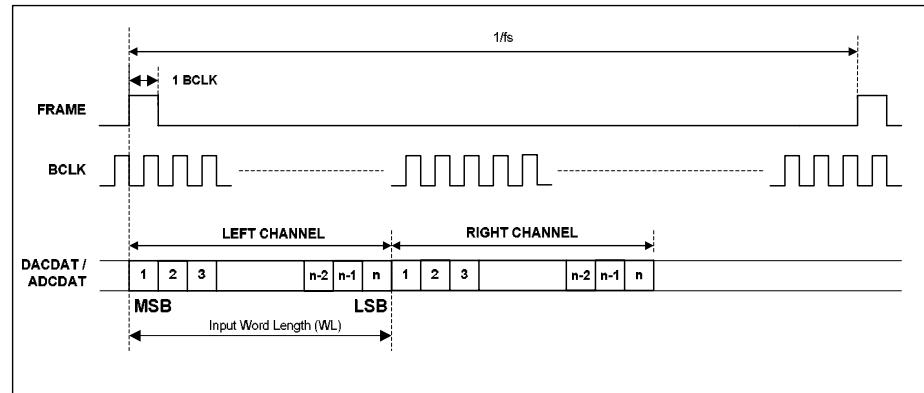


Figure 26 DSP/PCM Mode Audio Interface (mode B, LCRP=1)

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R4 Audio Interface Control	0	MONO	0	Selects between stereo and mono device operation: 0=Stereo device operation 1=Mono device operation. Data appears in 'left' phase of FRAME
	1	ADCLRSWAP	0	Controls whether ADC data appears in 'right' or 'left' phases of FRAME clock: 0=ADC data appear in 'left' phase of FRAME 1=ADC data appears in 'right' phase of FRAME
	2	DACLRSWAP	0	Controls whether DAC data appears in 'right' or 'left' phases of FRAME clock: 0=DAC data appear in 'left' phase of FRAME 1=DAC data appears in 'right' phase of FRAME
	4:3	FMT	10	Audio interface Data Format Select: 00=Right Justified 01=Left Justified 10=I ² S format 11= DSP/PCM mode
	6:5	WL	10	Word length 00=16 bits 01=20 bits 10=24 bits 11=32 bits (see note)
	7	FRAMEP		FRAME clock polarity 0=normal 1=inverted
	8	BCP		BCLK polarity 0=normal 1=inverted

Table 43 Audio Interface Control

Note: Right Justified Mode will only operate with a maximum of 24 bits.

AUDIO INTERFACE CONTROL

The register bits controlling audio format, word length and master / slave mode are summarised below. Each audio interface can be controlled individually.

Register bit MS selects audio interface operation in master or slave mode. In Master mode BCLK, and FRAME are outputs. The frequency of BCLK in master mode are controlled with BCLKDIV. These are divided down versions of master clock. This may result in short BCLK pulses at the end of a FRAME if there is a non-integer ratio of BCLKs to FRAME clocks.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R6 Clock Generation Control	0	MS	0	Sets the chip to be master over FRAME and BCLK 0=BCLK and FRAME clock are inputs 1=BCLK and FRAME clock are outputs generated by the WM8982 (MASTER)
	4:2	BCLKDIV	000	Configures the BCLK output frequency, for use when the chip is master over BCLK. 000=divide by 1 (BCLK=MCLK) 001=divide by 2 (BCLK=MCLK/2) 010=divide by 4 011=divide by 8 100=divide by 16 101=divide by 32 110=reserved 111=reserved
	7:5	MCLKDIV	010	Sets the scaling for either the MCLK or PLL clock output (under control of CLKSEL) 000=divide by 1 001=divide by 1.5 010=divide by 2 011=divide by 3 100=divide by 4 101=divide by 6 110=divide by 8 111=divide by 12
	8	CLKSEL	1	Controls the source of the clock for all internal operation: 0=MCLK 1=PLL output

Table 44 Clock Control

LOOPBACK

Setting the LOOPBACK register bit enables digital loopback. When this bit is set the output data from the ADC audio interface is fed directly into the DAC data input.

COMPANDING

The WM8982 supports A-law and μ -law companding on both transmit (ADC) and receive (DAC) sides. Companding can be enabled on the DAC or ADC audio interfaces by writing the appropriate value to the DAC_COMP or ADC_COMP register bits respectively.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R5 Companding Control	0	LOOPBACK	0	Digital loopback function 0=No loopback 1=Loopback enabled, ADC data output is fed directly into DAC data input.
	2:1	ADC_COMP	0	ADC companding 00=off 01=reserved 10= μ -law 11=A-law
	4:3	DAC_COMP	0	DAC companding 00=off 01=reserved 10= μ -law 11=A-law
	5	WL8	0	0=off 1=device operates in 8-bit mode

Table 45 Companding Control

Companding involves using a piecewise linear approximation of the following equations (as set out by ITU-T G.711 standard) for data compression:

μ -law (where $\mu=255$ for the U.S. and Japan):

$$F(x) = \ln(1 + \mu|x|) / \ln(1 + \mu) \quad -1 \leq x \leq 1$$

A-law (where $A=87.6$ for Europe):

$$F(x) = A|x| / (1 + \ln A) \quad \} \text{ for } x \geq 1/A$$

$$F(x) = (1 + \ln A|x|) / (1 + \ln A) \quad \} \text{ for } 1/A \leq x \leq 1$$

The companded data is also inverted as recommended by the G.711 standard (all 8 bits are inverted for μ -law, all even data bits are inverted for A-law). The data will be transmitted as the first 8 MSB's of data.

Companding converts 13 bits (μ -law) or 12 bits (A-law) to 8 bits using non-linear quantization. The input data range is separated into 8 levels, allowing low amplitude signals better precision than that of high amplitude signals. This is to exploit the operation of the human auditory system, where louder sounds do not require as much resolution as quieter sounds. The companded signal is an 8-bit word containing sign (1-bit), exponent (3-bits) and mantissa (4-bits).

Setting the WL8 register bit allows the device to operate with 8-bit data. In this mode it is possible to use 8 BCLK's per FRAME. When using DSP mode B, this allows 8-bit data words to be output consecutively every 8 BCLK's and can be used with 8-bit data words using the A-law and μ -law companding functions.

BIT8	BIT[7:4]	BIT[3:0]
SIGN	EXPONENT	MANTISSA

Table 46 8-bit Companded Word Composition

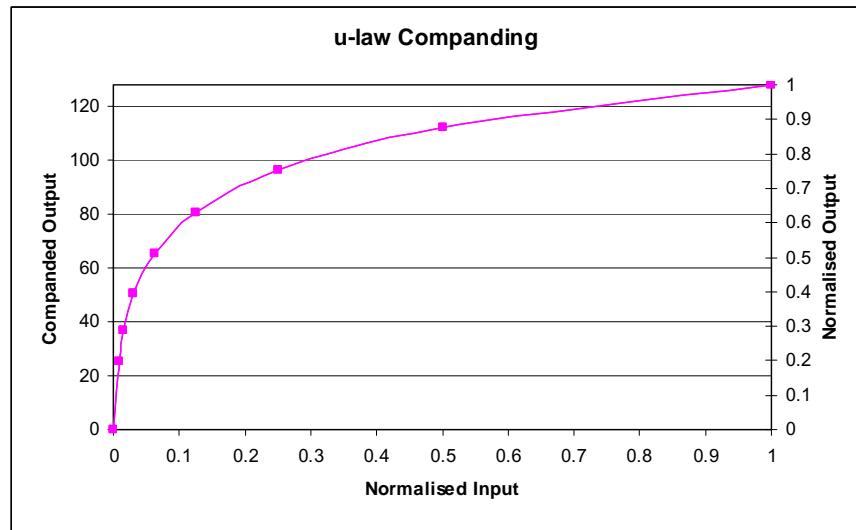


Figure 27 u-Law Companding

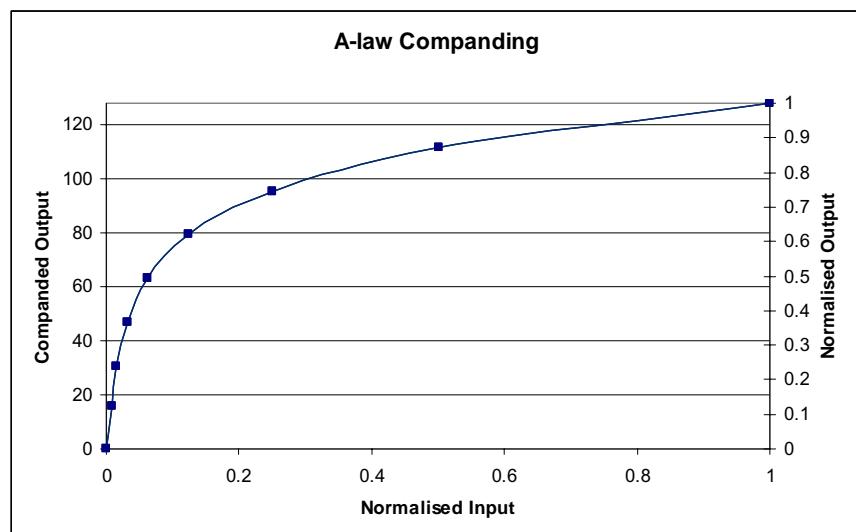


Figure 28 A-Law Companding

AUDIO SAMPLE RATES

The WM8982 sample rates for the ADC and the DAC are set using the SR register bits. The cutoffs for the digital filters and the ALC attack/decay times stated are determined using these values and assume a 256fs master clock rate.

If a sample rate that is not explicitly supported by the SR register settings is required then the closest SR value to that sample rate should be chosen, the filter characteristics and the ALC attack, decay and hold times will scale appropriately.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R7 Additional Control	3:1	SR	000	Approximate sample rate (configures the coefficients for the internal digital filters): 000=48kHz 001=32kHz 010=24kHz 011=16kHz 100=12kHz 101=8kHz 110-111=reserved

Table 47 Sample Rate Control

MASTER CLOCK AND PHASE LOCKED LOOP (PLL)

The WM8982 has an on-chip phase-locked loop (PLL) circuit that can be used to:

Generate master clocks for the WM8982 audio functions from another external clock, e.g. in telecoms applications.

Generate and output (on pin CSB/GPIO1 and/or GPIO4) a clock for another part of the system that is derived from an existing audio master clock.

Figure 29 shows the PLL and internal clocking arrangement on the WM8982.

The PLL can be enabled or disabled by the PLLEN register bit.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R1 Power management 1	5	PLLEN	0	PLL enable 0=PLL off 1=PLL on

Table 48 PLLEN Control Bit

Figure 29 PLL and Clock Select Circuit

The PLL frequency ratio $R = f_2/f_1$ (see Figure 29) can be set using the register bits PLLK and PLLN:

$$\text{PLL} = \text{int } R$$

$$\text{PLLK} = \text{int}(2^{24} (\text{R-PLLN}))$$

EXAMPLE:

MCLK=12MHz, required clock = 12.288MHz.

R should be chosen to ensure $5 < \text{PLL}N < 13$. There is a fixed divide by 4 in the PLL and a selectable divide by N after the PLL which should be set to divide by 2 to meet this requirement.

Enabling the divide by 2 sets the required $f_2 = 4 \times 2 \times 12.288\text{MHz} = 98.304\text{MHz}$.

$$R = 98.304 / 12 = 8.192$$

PLL N = int R = 8

$$k = \text{int} (2^{24} \times (8.192 - 8)) = 3221225 = 3126E9h$$

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R36 PLL N value	4	PLLPRESCALE	0	Divide MCLK by 2 before input to PLL
	3:0	PLLNL	1000	Integer (N) part of PLL input/output frequency ratio. Use values greater than 5 and less than 13.
R37 PLL K value 1	5:0	PLLK [23:18]	0Ch	Fractional (K) part of PLL1 input/output frequency ratio (treat as one 24-digit binary number).
R38 PLL K Value 2	8:0	PLLK [17:9]	093h	
R39 PLL K Value 3	8:0	PLLK [8:0]	0E9h	

Table 49 PLL Frequency Ratio Control

The PLL performs best when f_2 is around 90MHz. Its stability peaks at N=8. Some example settings are shown in Table 50.

MCLK (MHz) (F1)	DESIRED OUTPUT (MHz)	F2 (MHz)	PRESCALE DIVIDE	POSTSCALE DIVIDE	R	N (Hex)	K (Hex)
12	11.29	90.3168	1	2	7.5264	7	86C227
12	12.288	98.304	1	2	8.192	8	3126E9
13	11.29	90.3168	1	2	6.947446	6	F28BD5
13	12.288	98.304	1	2	7.561846	7	8FD526
14.4	11.29	90.3168	1	2	6.272	6	45A1CB
14.4	12.288	98.304	1	2	6.826667	6	D3A06D
19.2	11.29	90.3168	2	2	9.408	9	6872B0
19.2	12.288	98.304	2	2	10.24	A	3D70A4
19.68	11.29	90.3168	2	2	9.178537	9	2DB493
19.68	12.288	98.304	2	2	9.990243	9	FD80A0
19.8	11.29	90.3168	2	2	9.122909	9	1F76F8
19.8	12.288	98.304	2	2	9.929697	9	EE009F
24	11.29	90.3168	2	2	7.5264	7	86C227
24	12.288	98.304	2	2	8.192	8	3126E9
26	11.29	90.3168	2	2	6.947446	6	F28BD5
26	12.288	98.304	2	2	7.561846	7	8FD526
27	11.29	90.3168	2	2	6.690133	6	BOAC94
27	12.288	98.304	2	2	7.281778	7	482297
12	11.29	90.3168	1	2	7.5264	7	86C227
12	12.288	98.304	1	2	8.192	8	3126E9

Table 50 PLL Frequency Examples

GENERAL PURPOSE INPUT/OUTPUT

The WM8982 has two dual purpose input/output pins and one dedicated GPIO.

- CSB/GPIO1: CSB / GPIO pin
- LINEIN/JDET: Line input / headphone detection input
- GPIO2: Dedicated GPIO

The JDET function is provided for use as a jack detection input.

The GPIO1 and GPIO2 functions are provided for use as jack detection inputs or general purpose outputs.

The default configuration for the CSB/GPIO1 and GPIO2 pins are to be inputs.

When setup as an input, the CSB/GPIO1 pin can either be used as CSB or for jack detection, depending on how the MODE pin is set.

If setup as an input the GPIO2 pin can also be used for jack detection.

Table 49 illustrates the functionality of the GPIO1 and GPIO2 pins when used as general purpose outputs.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R8 GPIO Control	2:0	GPIO1SEL	000	CSB/GPIO1 pin function select: 000= input (CSB/jack detection: depending on MODE setting) 001= reserved 010=Temp ok 011=Amute active 100=PLL clk o/p 101=PLL lock 110=logic 1 111=logic 0
	3	GPIO1POL	0	GPIO1 Polarity invert 0=Non inverted 1=Inverted
	5:4	OPCLKDIV	00	PLL Output clock division ratio 00=divide by 1 01=divide by 2 10=divide by 3 11=divide by 4
R9 GPIO Control	2:0	GPIO2SEL	000	GPIO2 pin function select: 000= input jack detection 001= reserved 010=Temp ok 011=Amute active 100=PLL clk o/p 101=PLL lock 110=logic 1 111=logic 0
	3	GPIO2POL	0	GPIO2 Polarity invert 0=Non inverted 1=Inverted

Table 51 CSB/GPIO Control

Note: If MODE is set to 3 wire mode, CSB/GPIO1 shall be used as CSB input irrespective of the GPIO1SEL[2:] bits.

For further details of the Jack detect operation see the OUTPUT SWITCHING section.

OUTPUT SWITCHING (JACK DETECT)

When the device is configured with a 2-wire interface the CSB/GPIO1 pin can be used as a switch control input to automatically disable one set of outputs and enable another. The LINEIN/JDET and GPIO2 pins can also be used for this purpose. For example, when a headphone is plugged into a jack socket then it may be desirable to disable the speaker (e.g. when one of the GPIO pins is connected to a mechanical switch in the headphone socket to detect plug-in).

The GPIO pins have an internal de-bounce circuit when in this mode in order to prevent the output enables from toggling multiple times due to input glitches. This de-bounce circuit is clocked from a slow clock with period $2^{21} \times \text{MCLK}$.

Note that the GPIOPOL bits are not relevant for jack detection, it is the signal detected at the pin which is used.

The switching on/off of the outputs is fully configurable by the user. Each output, SPKOUT and MONOOUT has 2 associated enables. SPKOUT_EN_0 and MONOOUT_EN_0 are the output enable signals which are used if the selected jack detection pin is at logic 0 (after de-bounce). SPKOUT_EN_1 and MONOOUT_EN_1 are the output enable signals which are used if the selected jack detection pin is at logic 1 (after de-bounce).

Similar to the output enables, VMID, which can be driven out of MONOOUT can be configured to be on/off depending on the jack detection input polarity using the VMID_EN_0 and VMID_EN_1 bits.

The jack detection enables work as follows:

All OUT_EN signals have an AND function performed with their normal enable signals (in Table 38). When an output is normally enabled at per Table 38, the selected jack detection enable (controlled by selected jack detection pin polarity) is set 0, it will turn the output off. If the normal enable signal is already OFF (0), the jack detection signal will have no effect due on the AND function.

During jack detection if the user desires an output to be un-changed whether the jack is in or not, both the JD_EN settings i.e. JD_EN0 and JD_EN1, should be set to 0000.

The VMID_EN signal has an OR function performed with the normal VMID driver enable. If the VMID_EN signal is to have no effect to normal functionality when jack detection is enabled, it should set to 0 for all JD_EN0 or JD_EN1 settings.

If jack detection is not enabled (JD_EN=0), the output enables default to all 1's, allowing the outputs to be controlled as normal via the normal output enables found in Table 38. Similarly the VMID_EN signal defaults to 0 allowing the VMID driver to be controlled via the normal enable bit.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R9 GPIO Control	5:4	JD_SEL	00	Pin selected as jack detection input 00 = GPIO1 01 = JDET 10 = Reserved 11 = GPIO2
	6	JD_EN	0	Jack Detection Enable 0=disabled 1=enabled
	8:7	JD_VMID	00	[7] VMID_EN_0 [8] VMID_EN_1
R13 GPW Control	3:0	JD_EN0	0	Output enabled when selected jack detection input is logic 0. [0]= Reserved [1]= SPKOUT_EN_0 [2]= MONOOUT_EN_0 [3]= Reserved
	7:4	JD_EN1	0	Output enabled when selected jack detection input is logic 1 [4]= Reserved [5]= SPKOUT_EN_1 [6]= MONOOUT_EN_1 [7]= Reserved

Table 52 Jack Detect Register Control Bits

CONTROL INTERFACE

SELECTION OF CONTROL MODE AND 2-WIRE MODE ADDRESS

The control interface can operate as either a 3-wire or 2-wire MPU interface. The MODE pin determines the 2 or 3 wire mode as shown in Table 53.

The WM8982 is controlled by writing to registers through a serial control interface. A control word consists of 16 bits. The first 7 bits (B15 to B9) are address bits that select which control register is accessed. The remaining 9 bits (B8 to B0) are register bits, corresponding to the 9 bits in each control register.

MODE	INTERFACE FORMAT
Low	2 wire
High	3 wire

Table 53 Control Interface Mode Selection

3-WIRE SERIAL CONTROL MODE

In 3-wire mode, every rising edge of SCLK clocks in one data bit from the SDIN pin. A rising edge on CSB/GPIO1 pin latches in a complete control word consisting of the last 16 bits.

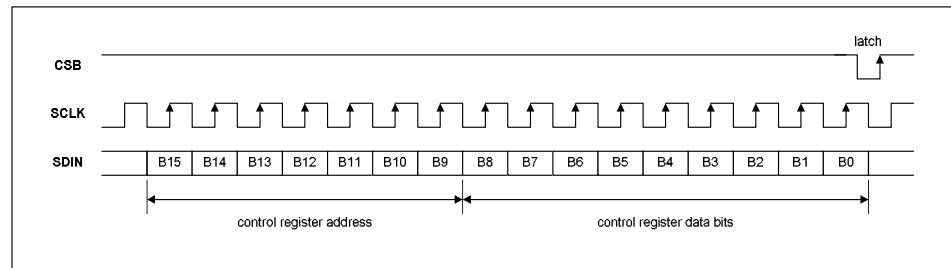


Figure 30 3-Wire Serial Control Interface

2-WIRE SERIAL CONTROL MODE

The WM8982 supports software control via a 2-wire serial bus. Many devices can be controlled by the same bus, and each device has a unique 7-bit device address (this is not the same as the 7-bit address of each register in the WM8982).

The WM8982 operates as a slave 2-wire device only. The controller indicates the start of data transfer with a high to low transition on SDIN while SCLK remains high. This indicates that a device address and data will follow. All devices on the 2-wire bus respond to the start condition and shift in the next eight bits on SDIN (7-bit address + Read/Write bit, MSB first). If the device address received matches the address of the WM8982, then the WM8982 responds by pulling SDIN low on the next clock pulse (ACK). If the address is not recognised or the R/W bit is '1' when operating in write only mode, the WM8982 returns to the idle condition and wait for a new start condition and valid address.

During a write, once the WM8982 has acknowledged a correct address, the controller sends the first byte of control data (B15 to B8, i.e. the WM8982 register address plus the first bit of register data). The WM8982 then acknowledges the first data byte by pulling SDIN low for one clock pulse. The controller then sends the second byte of control data (B7 to B0, i.e. the remaining 8 bits of register data), and the WM8982 acknowledges again by pulling SDIN low.

Transfers are complete when there is a low to high transition on SDIN while SCLK is high. After a complete sequence the WM8982 returns to the idle state and waits for another start condition. If a start or stop condition is detected out of sequence at any point during data transfer (i.e. SDIN changes while SCLK is high), the device jumps to the idle condition.

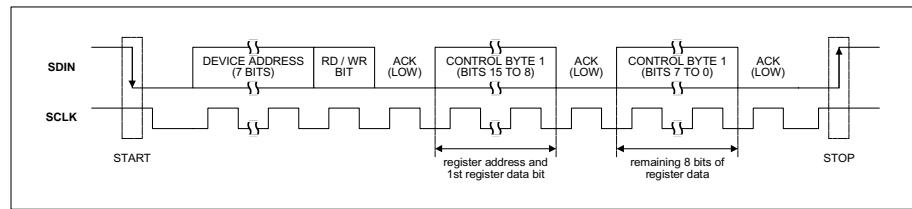


Figure 31 2-Wire Serial Control Interface

In 2-wire mode the WM8982 has a fixed device address, 0011010.

RESETTING THE CHIP

The WM8982 can be reset by performing a write of any value to the software reset register (address 0 hex). This will cause all register values to be reset to their default values. In addition to this there is a Power-On Reset (POR) circuit which ensures that the registers are set to default when the device is powered up.

POWER SUPPLIES

The WM8982 can use up to five separate power supplies:

AVDD and AGND: Analogue supply, powers all analogue functions except the speaker output and mono output drivers. AVDD can range from 2.5V to 3.6V and has the most significant impact on overall power consumption. A large AVDD slightly improves audio quality.

SPKVDD and SPKGND: Speaker supplies, power the speaker and mono output drivers. SPKVDD can range from 2.5V to 5V. SPKVDD can be tied to AVDD, but it requires separate layout and decoupling capacitors to curb harmonic distortion. With a larger SPKVDD, louder speaker outputs can be achieved with lower distortion. If SPKVDD is lower than AVDD, the output signal may be clipped.

DCVDD: Digital core supply, powers all digital functions except the audio and control interfaces. DCVDD can range from 1.62V to 3.6V, and has no effect on audio quality. The return path for DCVDD is DGND, which is shared with DBVDD.

DBVDD can range from 1.8V to 3.6V. DBVDD return path is through DGND.

VBVDD and VBGND: Supplies for video buffer circuit. VBVDD can range from 2.5V to 3.6V.

It is possible to use the same supply voltage for all four supplies. However, digital and analogue supplies should be routed and decoupled separately on the PCB to keep digital switching noise out of the analogue signal paths.

RECOMMENDED POWER UP/DOWN SEQUENCE

In order to minimise output 'pop' and 'click' noise it is recommended that the device is powered up in a controlled sequence.

In addition to this it is recommended that the zero cross functions are used when changing the volume in the PGAs.

POWER MANAGEMENT

SAVING POWER BY REDUCING OVERSAMPLING RATE

The default mode of operation of the ADC and DAC digital filters is in 64x oversampling mode. Under the control of ADCOSR and DACOSR the oversampling rate may be doubled. 64x oversampling results in a slight decrease in noise performance compared to 128x but lowers the power consumption of the device.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R10 DAC control	3	DACOSR128	0	DAC oversample rate select 0 = 64x (lowest power) 1 = 128x (best SNR)
R14 ADC control	3	ADCOSR128	0	ADC oversample rate select 0 = 64x (lowest power) 1 = 128x (best SNR)

Table 54 ADC and DAC Oversampling Rate Selection

VMID

The analogue will not work unless VMID is enabled (VMIDSEL 00). The impedance of the VMID resistor string, together with the decoupling capacitor on the VMID pin will determine the startup time of the VMID circuit.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R1 Power management 1	1:0	VMIDSEL	00	Reference string impedance to VMID pin (determines startup time): 00=off (open circuit) 01=75kΩ 10=300kΩ 11=5kΩ (for fastest startup)

Table 55 VMID Impedance Control

BIASEN

The analogue amplifiers will not operate unless BIASEN is enabled.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
R1 Power management 1	3	BIASEN	0	Analogue amplifier bias control

Table 56 Analogue Bias Control

ESTIMATED SUPPLY CURRENTS

When either the DAC or ADC are enabled it is estimated that approximately 4mA will be drawn from DCVDD when $f_s=48\text{kHz}$ (This will be lower at lower sample rates). When the PLL is enabled an additional 700 microamps will be drawn from DCVDD. It is anticipated that the video buffer will draw about 1mA with no load attached, in normal operating up to 30 mA will be drawn.

Table 53 shows the estimated 3.3V AVDD current drawn by various circuits, by register bit.

REGISTER BIT	AVDD CURRENT (MILLIAMPS)
BUFDOPEN	0.1
MONOMIXEN	0.2
PLLEN	1.4 (with clocks applied)
MICBEN	0.5
BIASEN	0.3
BUFIOEN	0.1
VMIDSEL	10K=>0.3, less than 0.1 for 100k/500k
BOOSTEN	0.2
INPPGAEN	0.2
ADCEN	x64 (ADCOSR=0)=>2.6, x128 (ADCOSR=1)=>4.9
MONOOUTEN	0.2
SPKOUTPEN	1mA from SPKVDD + 0.2mA from AVDD in 5V mode
SPKOUTNEN	1mA from SPKVDD + 0.2mA from AVDD in 5V mode
MIX2EN	0.2
MIX1EN	0.2
DACEN	x64 (DACOSR=0)=>1.8, x128(DACOSR=1)=>1.9

Table 57 AVDD Supply Current

REGISTER MAP

ADDR B[15:9]		REGISTER NAME	B8	B7	B6	B5	B4	B3	B2	B1	B0	DEF'T VAL													
DEC	HEX		(HEX)																						
0	00	Software Reset		Software reset																					
1	01	Power manage't 1	BUFDCOP EN	0	MONOMIX EN	PLLEN	MICBEN	BIASEN	BUFIOEN	VMIDSEL		000													
2	02	Power manage't 2	0	0	SLEEP	0	BOOSTEN	0	INPPGAEN	0	ADCEN	000													
3	03	Power manage't 3	0	MONOOUT EN	SPKOUTP EN	SPKOUTN EN	VBUFEN	MIX2EN	MIX1EN	0	DACEN	000													
4	04	Audio Interface	BCP	FRAMEP	WL		FMT		DLRSWAP	ALRSWAP	MONO	050													
5	05	Comanding ctrl	0	0	0	WL8	DAC_COMP		ADC_COMP		LOOPBACK	000													
6	06	Clock Gen ctrl	CLKSEL	MCLKDIV			BCLKDIV			0	MS	140													
7	07	Additional ctrl	0	0	0	0	0	SR			LOWCLKEN	000													
8	08	GPIO Stuff	0	0	0	OPCLKDIV		GPIO1POL	GPIO1SEL[2:0]			000													
9	09	Jack detect control	JD_VMID1	JD_VMIDO	JD_EN	JD_SEL		GPIO2POL	GPIO2SEL[2:0]			000													
10	0A	DAC Control	0	0	SOFT MUTE	0	0	DACOSR 128	AMUTE	0	DACPOL	000													
11	0B	DAC digital Vol	DACVU	DACVOL								0FF													
13	0D	Jack Detect Control		JD_EN1				JD_EN0				000													
14	0E	ADC Control	HPFEN	HPFAPP	HPFCUT			ADCOSR 128	0	0	ADCPOL	100													
15	0F	ADC Digital Vol	ADCVU	ADCVOL								0FF													
18	12	EQ1 – low shelf	EQMODE	0	EQ1C		EQ1G					12C													
19	13	EQ2 – peak 1	EQ2BW	0	EQ2C		EQ2G					02C													
20	14	EQ3 – peak 2	EQ3BW	0	EQ3C		EQ3G					02C													
21	15	EQ4 – peak 3	EQ4BW	0	EQ4C		EQ4G					02C													
22	16	EQ5 – high shelf	0	0	EQ5C		EQ5G					02C													
24	18	DAC Limiter 1	LIMEN	LIMDCY				LIMATK				032													
25	19	DAC Limiter 2	0	0	LIMLVL			LIMBOOST				000													
27	1B	Notch Filter 1	NFU	NFEN	NFA0[13:7]								000												
28	1C	Notch Filter 2	NFU	0	NFA0[6:0]								000												
29	1D	Notch Filter 3	NFU	0	NFA1[13:7]								000												
30	1E	Notch Filter 4	NFU	0	NFA1[6:0]								000												
32	20	ALC control 1	ALCSEL	0	0	ALCMAX			ALCMIN			038													
33	21	ALC control 2	ALCZC	ALCHLD				ALCLVL				00B													
34	22	ALC control 3	ALCMODE	ALCDCY				ALCATK				032													
35	23	Noise Gate	0	0	0	0	0	NGEN	NGTH			000													
36	24	PLL N	0	0	0	0	PLL_PRE SCALE	PLLN[3:0]				008													
37	25	PLL K 1	0	0	0	PLLK[23:18]						00C													
38	26	PLL K 2		PLLK[17:9]								093													
39	27	PLL K 3		PLLK[8:0]								0E9													
40	28	Video Buffer	0	0	0	0	0	0	VBPUULLDW	VBGAIN	VBCLAMP EN	000													
43	2B	Beep control	0	0	0	MUTE PGA2INV	INVOUTN	BEEPVOL			BEEPEN	000													
44	2C	Input ctrl	MICBVSEL	0	0	0	0	0	LINE2 INPPGA	MICN2 INPPGA	MICP2 INPPGA	003													
45	2D	INP PGA gain ctrl	INPGA UPDATE	INPPGAZC	INPPGA MUTE	INPPGA VOL						010													
47	2F	ADC Boost ctrl	PGABOOST	0	LINE2 BOOST VOL			0	AUX1_2 BOOST VOL			100													

49	31	Output ctrl	0	0	DAC2 MIX2	0	0	MONO BOOST	SPKR BOOST	TSDEN	VROI	002
50	32	Output mixer 1 ctrl	AUX1MIXVOL			AUX1_2 MIX1	BYPVOL			BYP2MIX1	DAC2MIX1	001
51	33	Output mixer 2 ctrl	AUX2MIXVOL			AUX2_2 MIX2	0	0	0	0	1	001
54	36	SPKOUTP volume ctrl	UPDATE	SPKOUTP ZC	SPKOUTP MUTE	SPKOUTPVOL						039
55	37	SPKOUTN volume ctrl	UPDATE	SPKOUTN ZC	SPKOUTN MUTE	SPKOUTNVOL						039
56	38	MONOOUT mixer ctrl	0	0	MONOOUT MUTE	0	0	0	BYPL2 MONOOUT	MIX1_2 MONOOUT	DAC2 MONOOUT	001

Table 58 WM8982 Register Map

DIGITAL FILTER CHARACTERISTICS

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ADC Filter					
Passband	+/- 0.025dB	0		0.454fs	
	-6dB		0.5fs		
Passband Ripple				+/- 0.025	dB
Stopband		0.546fs			
Stopband Attenuation	f > 0.546fs	-60			dB
Group Delay			21/fs		
ADC High Pass Filter					
High Pass Filter Corner Frequency	-3dB		3.7		Hz
	-0.5dB		10.4		
	-0.1dB		21.6		
DAC Filter					
Passband	+/- 0.035dB	0		0.454fs	
	-6dB		0.5fs		
Passband Ripple				+/-0.035	dB
Stopband		0.546fs			
Stopband Attenuation	f > 0.546fs	-80			dB
Group Delay			29/fs		

Table 59 Digital Filter Characteristics

TERMINOLOGY

1. Stop Band Attenuation (dB) – the degree to which the frequency spectrum is attenuated (outside audio band)
2. Pass-band Ripple – any variation of the frequency response in the pass-band region

DAC FILTER RESPONSES

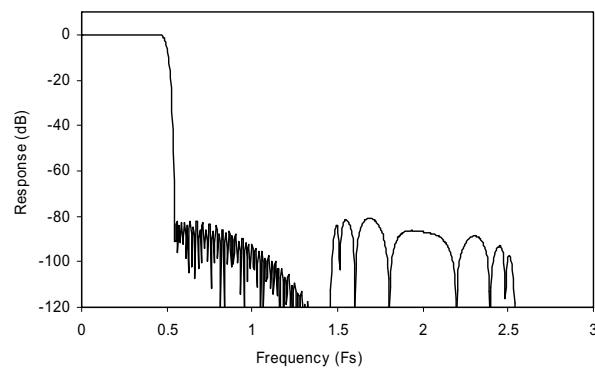


Figure 32 DAC Digital Filter Frequency Response

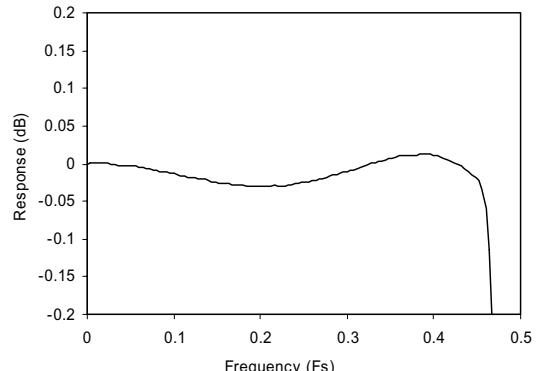


Figure 33 DAC Digital Filter Ripple

ADC FILTER RESPONSES

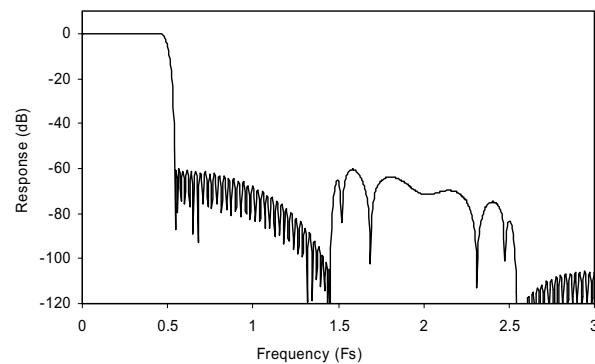
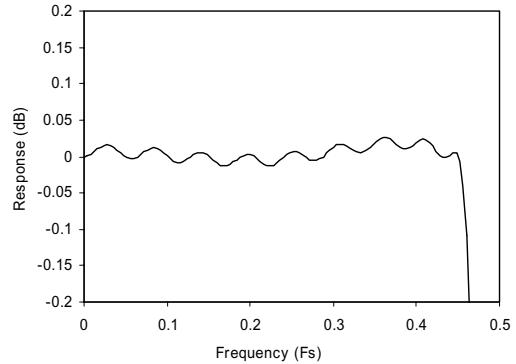
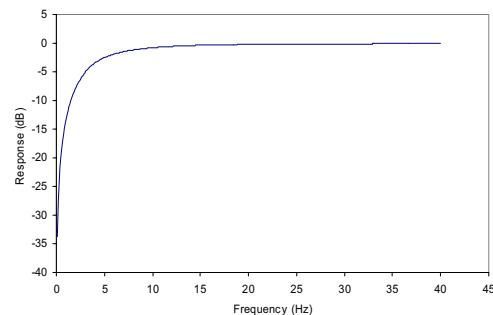
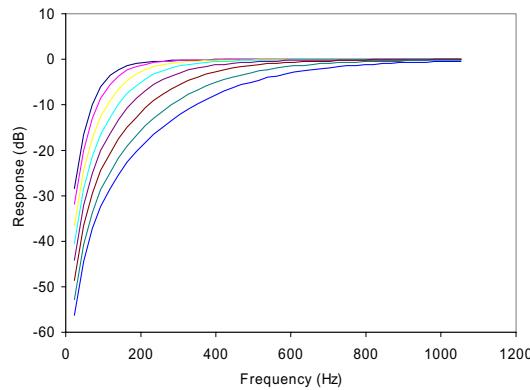
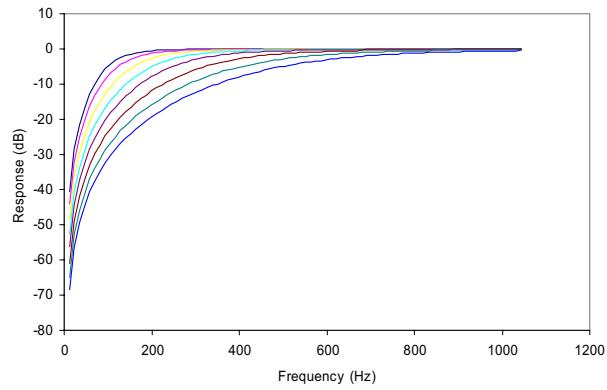


Figure 34 ADC Digital Filter Frequency Response


Figure 35 ADC Digital Filter Ripple

HIGHPASS FILTER


The WM8982 has a selectable digital highpass filter in the ADC filter path. This filter has two modes, audio and applications. In audio mode the filter is a 1st order IIR with a cut-off of around 3.7Hz. In applications mode the filter is a 2nd order high pass filter with a selectable cut-off frequency.

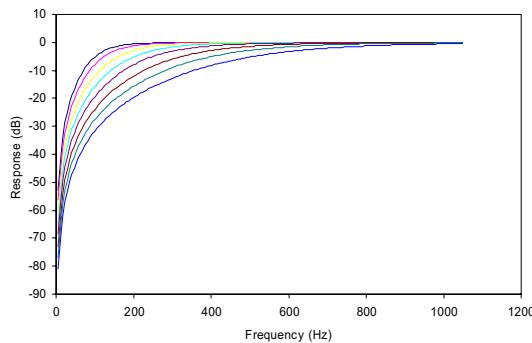

Figure 36 ADC Highpass Filter Response, HPFAPP=0

Figure 37 ADC Highpass Filter Responses (48kHz),
HPFAPP=1, all cut-off settings shown.

Figure 38 ADC Highpass Filter Responses (24kHz),
HPFAPP=1, all cut-off settings shown.

Figure 39 ADC Highpass Filter Responses (12kHz),
HPFAPP=1, all cut-off settings shown.

5-BAND EQUALISER

The WM8982 has a 5-band equaliser which can be applied to either the ADC path or the DAC path. The plots from Figure 40 to Figure 53 show the frequency responses of each filter with a sampling frequency of 48kHz, firstly showing the different cut-off/centre frequencies with a gain of ± 12 dB, and secondly a sweep of the gain from -12dB to +12dB for the lowest cut-off/centre frequency of each filter.

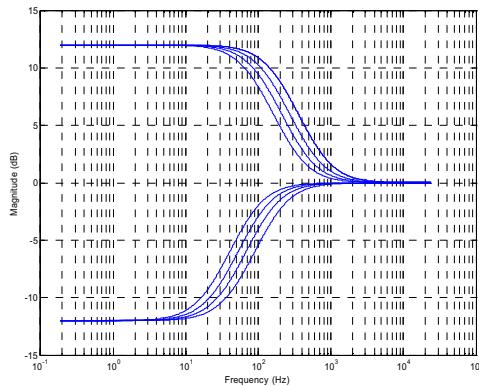


Figure 40 EQ Band 1 Low Frequency Shelf Filter Cut-offs

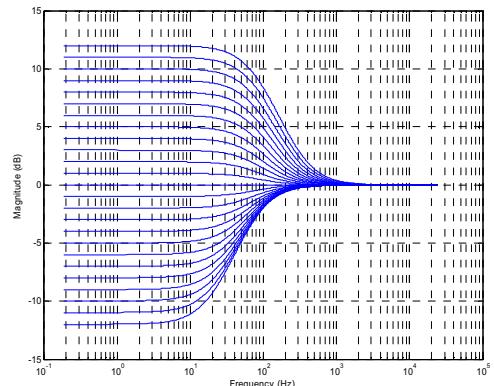


Figure 41 EQ Band 1 Gains for Lowest Cut-off Frequency

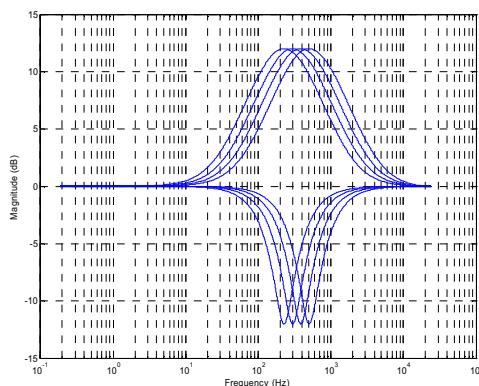


Figure 42 EQ Band 2 – Peak Filter Centre Frequencies, EQ2BW=0

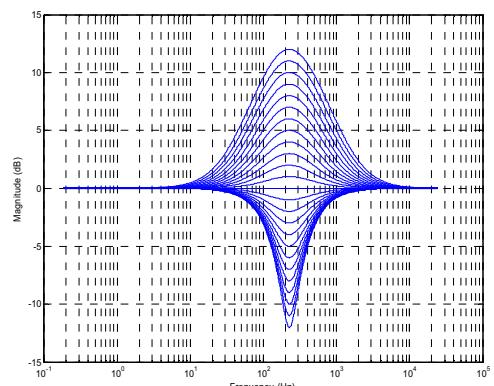
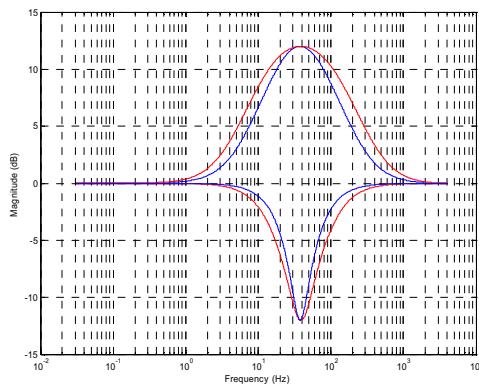
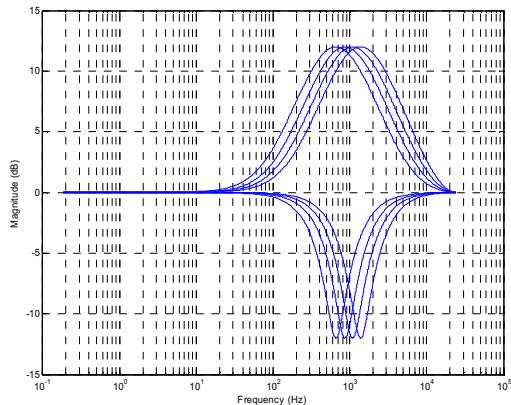
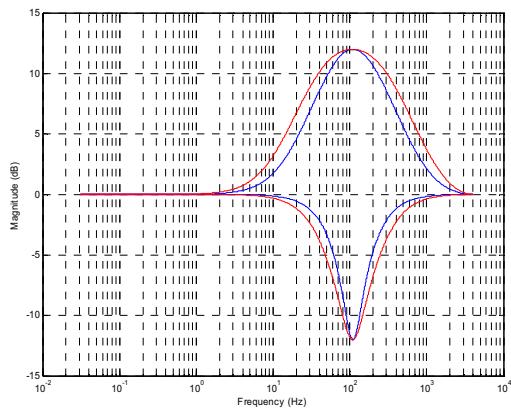
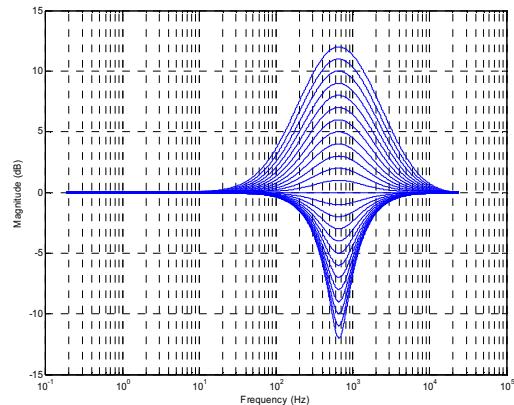
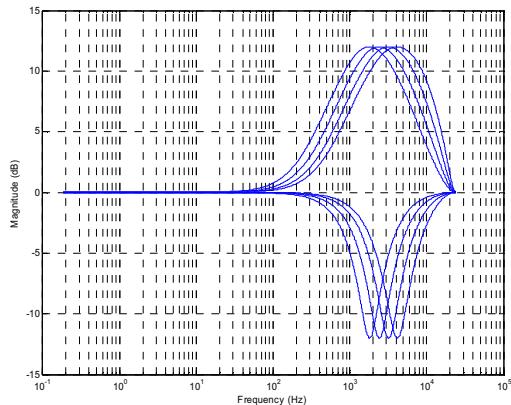
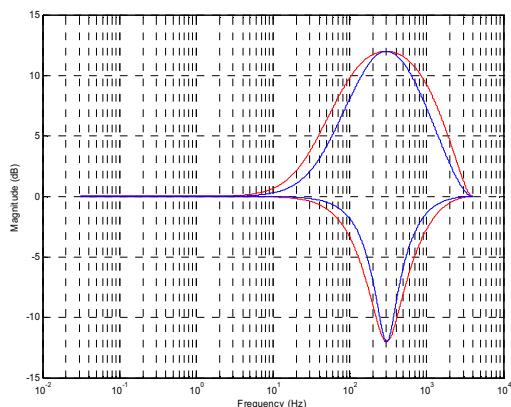
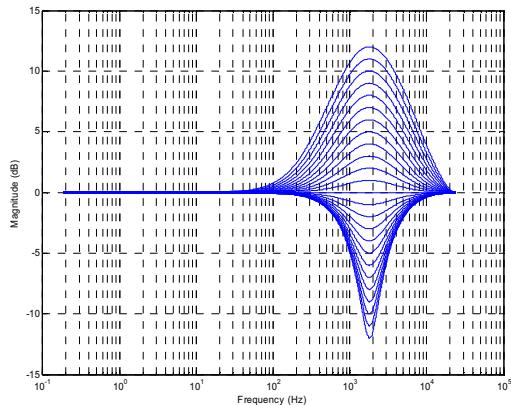
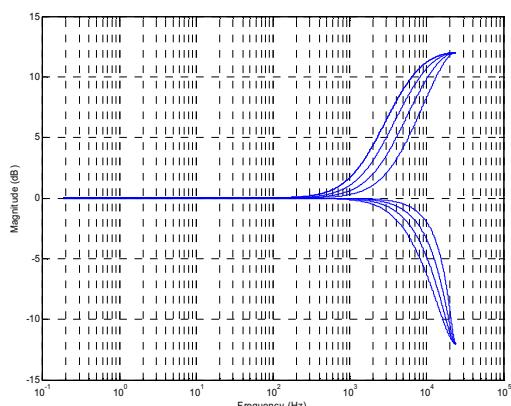


Figure 43 EQ Band 2 – Peak Filter Gains for Lowest Cut-off Frequency, EQ2BW=0


Figure 44 EQ Band 2 – EQ2BW=0, EQ2BW=1



Figure 45 EQ Band 3 – Peak Filter Centre Frequencies, EQ3| Figure 46 EQ Band 3 – Peak Filter Gains for Lowest Cut-off Frequency, EQ3BW=0


Figure 47 EQ Band 3 – EQ3BW=0, EQ3BW=1

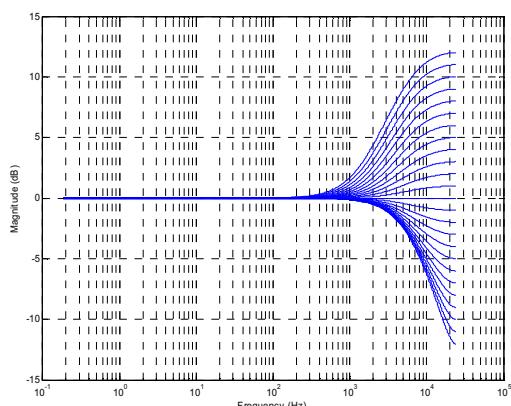

Figure 48 EQ Band 4 – Peak Filter Centre Frequencies, EQ3| Figure 49 EQ Band 4 – Peak Filter Gains for Lowest Cut-off Frequency, EQ4BW=0

Figure 50 EQ Band 4 – EQ3BW=0, EQ3BW=1

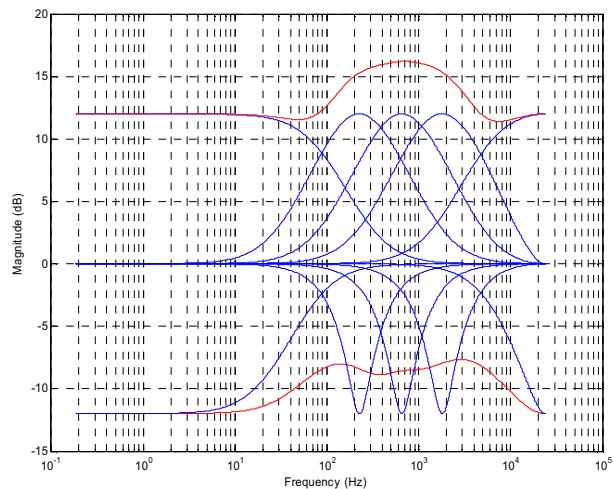


Figure 51 EQ Band 5 High Frequency Shelf Filter Cut-offs

Figure 52 EQ Band 5 Gains for Lowest Cut-off Frequency

Figure 53 shows the result of having the gain set on more than one channel simultaneously. The blue traces show each band (lowest cut-off/centre frequency) with ± 12 dB gain. The red traces show the cumulative effect of all bands with $+12$ dB gain and all bands -12 dB gain, with $\text{EqxBW}=0$ for the peak filters.

Figure 53 Cumulative Frequency Boost/Cut

APPLICATION INFORMATION

RECOMMENDED EXTERNAL COMPONENTS

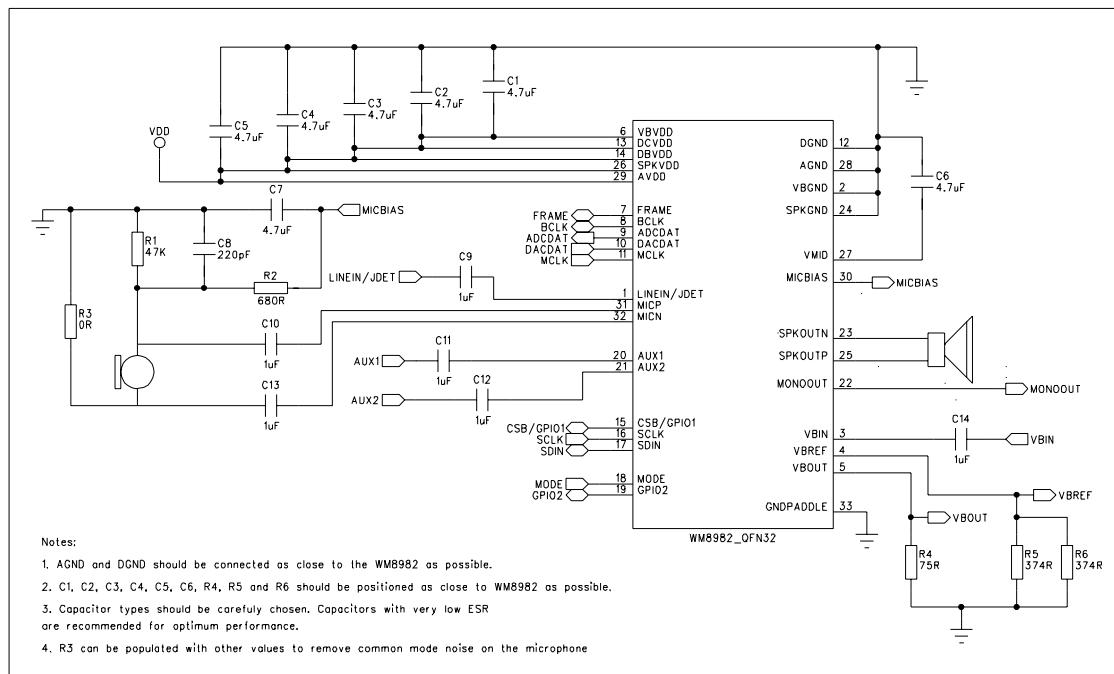
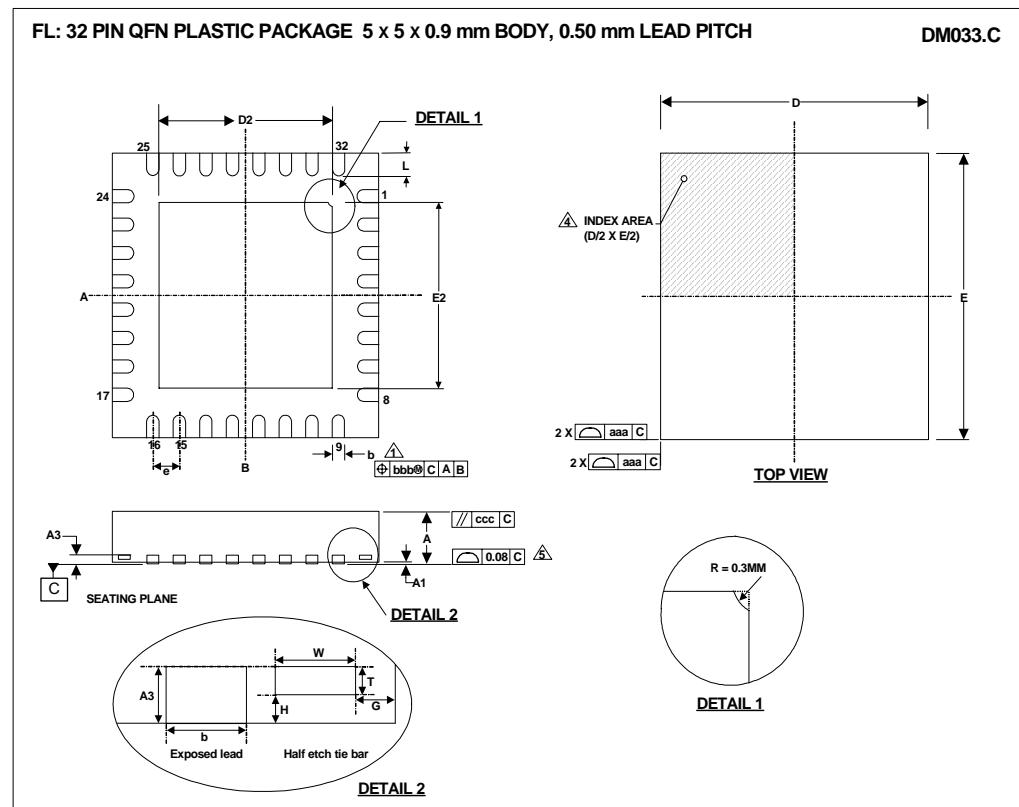



Figure 54 Recommended External Component Diagram

PACKAGE DIAGRAM

Symbols	Dimensions (mm)			
	MIN	NOM	MAX	NOTE
A	0.80	0.90	1.00	
A1	0	0.02	0.05	
A3	0.20	REF		
b	0.18	0.25	0.30	1
D	5.00			
D2	3.30	3.45	3.55	2
E	5.00			
E2	3.30	3.45	3.55	2
e	0.50	BSC		
G	0.213			
H	0.1			
L	0.30	0.40	0.50	
T	0.1			
W	0.2			

Tolerances of Form and Position

aaa	0.15	
bbb	0.10	
ccc	0.10	
REF:	JEDEC, MO-220, VARIATION VHHD-5.	

NOTES:

1. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.15 mm AND 0.30 mm FROM TERMINAL TIP.
2. FALLS WITHIN JEDEC, MO-220, VARIATION VHHD-5.
3. ALL DIMENSIONS ARE IN MILLIMETRES.
4. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JEDEC 95-1 SPP-002.
5. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.
6. THIS DRAWING IS SUBJECT TO CHANGE WITHOUT NOTICE.

IMPORTANT NOTICE

Wolfson Microelectronics plc (WM) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current. All products are sold subject to the WM terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

WM warrants performance of its products to the specifications applicable at the time of sale in accordance with WM's standard warranty. Testing and other quality control techniques are utilised to the extent WM deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

In order to minimise risks associated with customer applications, adequate design and operating safeguards must be used by the customer to minimise inherent or procedural hazards. Wolfson products are not authorised for use as critical components in life support devices or systems without the express written approval of an officer of the company. Life support devices or systems are devices or systems that are intended for surgical implant into the body, or support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided, can be reasonably expected to result in a significant injury to the user. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

WM assumes no liability for applications assistance or customer product design. WM does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of WM covering or relating to any combination, machine, or process in which such products or services might be or are used. WM's publication of information regarding any third party's products or services does not constitute WM's approval, license, warranty or endorsement thereof.

Reproduction of information from the WM web site or datasheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations and notices. Representation or reproduction of this information with alteration voids all warranties provided for an associated WM product or service, is an unfair and deceptive business practice, and WM is not responsible nor liable for any such use.

Resale of WM's products or services with statements different from or beyond the parameters stated by WM for that product or service voids all express and any implied warranties for the associated WM product or service, is an unfair and deceptive business practice, and WM is not responsible nor liable for any such use.

ADDRESS:

Wolfson Microelectronics plc
Westfield House
26 Westfield Road
Edinburgh
EH11 2QB
United Kingdom

Tel :: +44 (0)131 272 7000
Fax :: +44 (0)131 272 7001
Email :: sales@wolfsonmicro.com