

Preliminary Information

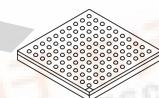
Clock Generator for PowerQUICC and PowerPC Microprocessors

The MPC9855 is a PLL based clock generator specifically designed for Freescale Microprocessor and Microcontroller applications including the PowerPC and PowerQUICC. This device generates a microprocessor input clock. The microprocessor clock is selectable in output frequency to any of the commonly used microprocessor input and bus frequencies. The device offers eight low skew clock outputs in two banks, each configurable to support different clock frequencies. The extended temperature range of the MPC9855 supports telecommunication and networking requirements.

Features

- 8 LVCMOS outputs for processor and other circuitry
- Crystal oscillator or external reference input
- 25 or 33 MHz Input reference frequency
- Selectable output frequencies include = 200, 166, 133, 125, 111, 100, 83, 66, 50, 33, or 16 MHz
- Buffered reference clock output (2 copies)
- Low cycle-to-cycle and period jitter
- 100-lead PBGA package
- 100-lead Pb-free Package Available
- 3.3 V supply with 3.3 V or 2.5 V LVCMOS output supplies
- Supports computing, networking, telecommunications applications
- Ambient temperature range -40°C to $+85^{\circ}\text{C}$
- 100-lead PBGA package
- 100-lead Pb-free Package Available

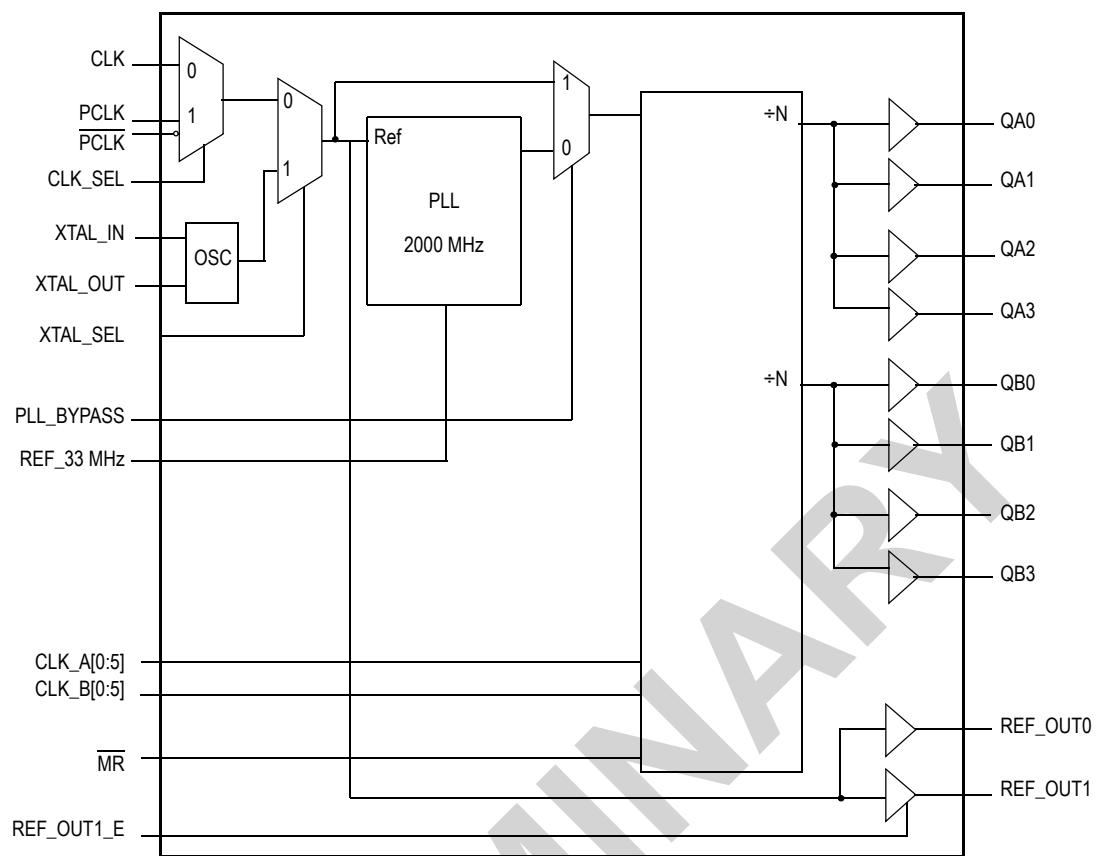
Functional Description


The MPC9855 uses either a 25 or 33 MHz reference frequency to generate 8 LVCMOS output clocks, of which, the frequency is selectable from 16 MHz to 200 MHz. The reference is applied to the input of a PLL and multiplied to 2 GHz. Output dividers, divide this frequency by 10, 12, 15, 16, 18, 20, 24, 30, 40, 60, or 120 to produce output frequencies of 200, 166, 133, 125, 111, 100, 83, 66, 50, 33, or 16 MHz. The single-ended LVCMOS outputs provide 8 low skew outputs for use in driving a microprocessor or microcontroller clock input as well as other system components. The input reference, either crystal or external input is also buffered to a separate dual outputs that may be used as the clock source for a Ethernet PHY if desired.

The reference clock may be provided by either an external clock input of 25 or 33 MHz. An internal oscillator requiring a 25 MHz crystal for frequency control may also be used. The external clock source may be applied to either of two clock inputs and selected via the CLK_SEL control input. Both single ended LVCMOS and differential LVPECL inputs are available. The crystal oscillator or external clock input is selected via the input pin of XTAL_SEL. Other than the crystal, no external components are required for crystal oscillator operation. The REF_33 MHz configuration pin is used to select between a 33 and 25 MHz input frequency.

The MPC9855 is packaged in a 100 lead MAPBGA package to optimize both performance and board density.

MPC9855


**MICROPROCESSOR
CLOCK GENERATOR**

**VF SUFFIX
VM SUFFIX (Pb-FREE)
100 MAPBGA PACKAGE
CASE 1462-01**

ORDERING INFORMATION

Device	Temp. Range	Case No.	Package
MPC9855	-40°C to $+85^{\circ}\text{C}$	1462-01	100 lead MAPBGA

Figure 1. MPC9855 Logic Diagram

Table 1. Pin Configurations

Pin	I/O	Type	Function	Supply	Active/State
CLK	Input	LVCMOS	PLL reference clock input (pull-down)	V _{DD}	—
PCLK, \overline{PCLK}	Input	LVPECL	PLL reference clock input (PCLK — pull-down, \overline{PCLK} — pull-up and pull-down)	V _{DD}	—
QA0, QA1, QA2, QA3 QB0, QB1, QB2, QB3	Output	LVCMOS	Clock Outputs	V _{DDOA}	—
REF_OUT0 REF_OUT1	Output	LVCMOS	Reference Output (25 MHz or 33 MHz)	V _{DD}	—
XTAL_IN	Input	LVCMOS	Crystal Oscillator Input Pin	V _{DD}	—
XTAL_OUT	Output	LVCMOS	Crystal Oscillator Output Pin	V _{DD}	—
CLK_SEL	Input	LVCMOS	Select between CLK and PCLK input (pull-down)	V _{DD}	High
XTAL_SEL	Input	LVCMOS	Select between External Input and Crystal Oscillator Input (pull-down)	V _{DD}	High
REF_33 MHz	Input	LVCMOS	Selects 33MHz input (pull-down)	V _{DD}	High
REF_OUT1_E	Input	LVCMOS	Enables REF_OUT1 output (pull-down)	V _{DD}	High
MR	Input	LVCMOS	Master Reset (pull-up)	V _{DD}	Low
PLL_BYPASS	Input	LVCMOS	Select PLL or static test mode (pull-up)	V _{DD}	High
CLK_A[0:5] ⁽¹⁾	Input	LVCMOS	Configures Bank A clock output frequency (pull-up)	V _{DD}	—
CLK_B[0:5] ¹	Input	LVCMOS	Configures Bank B clock output frequency (pull-up)	V _{DD}	—
V _{DD}	—	—	3.3 V Supply	—	—
V _{DDA}	—	—	Analog Supply	—	—
V _{DDOA}	—	—	Output Supply — Bank A	—	—
V _{DDOB}	—	—	Output Supply — Bank B	—	—
GND	—	—	Ground	—	—

1. Power PC bit ordering (bit 0 = msb, bit 5 = lsb).

Table 2. Function Table

Control	Default	0	1
CLK_SEL	0	CLK	PCLK
XTAL_SEL	0	CLKx	XTAL
PLL_BYPASS	0	Normal	Bypass
REF_OUT1_E	0	Disables REF_OUT1	Enables REF_OUT1
REF_33 MHz	0	Selects 25 MHz Reference	Selects 33 MHz Reference
MR	1	Reset	Normal

CLK_A and CLK_B control output frequencies. Refer to **Table 3** for specific device configuration

Table 3. Output Configurations (Banks A & B)

CLK_x[0:5] ⁽¹⁾	CLK_x[0] (msb)	CLK_x[1]	CLK_x[2]	CLK_x[3]	CLK_x[4]	CLK_x[5] (lsb)	N	Frequency (MHz)
111111	1	1	1	1	1	1	126	15.87
111100	1	1	1	1	0	0	120	16.67
101000	1	0	1	0	0	0	80	25.00
011110	0	1	1	1	1	0	60	33.33
010100	0	1	0	1	0	0	40	50.00
001111	0	0	1	1	1	1	30	66.67
001100	0	0	1	1	0	0	24	83.33
001010	0	0	1	0	1	0	20	100.00
001001	0	0	1	0	0	1	18	111.11
001000	0	0	1	0	0	0	16	125.00
000111	0	0	0	1	1	1	15	133.33
000110	0	0	0	1	1	0	12	166.67
000101	0	0	0	1	0	1	10	200.00
000100	0	0	0	1	0	0	8 ⁽²⁾	250

1. PowerPC bit ordering (bit 0 = msb, bit 5 = lsb)

2. Minimum value for N.

OPERATION INFORMATION

Output Frequency Configuration

The MPC9855 was designed to provide the commonly used frequencies in PowerQUICC, PowerPC and other microprocessor systems. **Table 3** lists the configuration values that will generate those common frequencies. The MPC9855 can generate numerous other frequencies that may be useful in specific applications. The output frequency (f_{out}) may be calculated by the following equation.

$$f_{out} = 2000 / N$$

where f_{out} is in MHz and $N = 2 * CLK_x[0:5]$

This calculation is valid for all values of N from 8 to 126. Note that N = 15 is a modified case of the configuration inputs CLK_x[0:5]. To achieve N = 15 CLK_x[0:5] is configured to 00111 or 7.

Crystal Input Operation

The MPC9855 features a fully integrated Pierce oscillator to minimize system implementation costs. Other than the addition of a crystal no external components are required. The crystal selection should be 25 MHz, parallel resonant type with a load specification of $C_L = 10 \text{ pF}$.

The crystal should be located as close to the MPC92469 XTAL_IN and XTAL_OUT pins as possible to avoid any board level parasitic.

Power-Up and MR Operation

Figure 2 defines the release time and the minimum pulse length for MR pin. The MR release time is based upon the power supply being stable and within V_{DD} specifications. See **Table 10** for actual parameter values. The MPC9855 may be configured after release of reset and the outputs will be stable for use after lock indication is obtained.

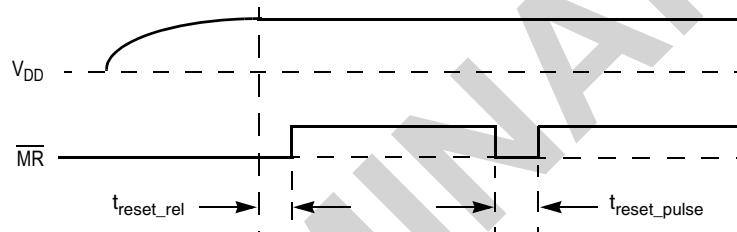


Figure 2. MR Operation

Power Supply Bypassing

The MPC9855 is a mixed analog/digital product. The architecture of the XC9855 supports low noise signal operation at high frequencies. In order to maintain its superior signal quality, all V_{DD} pins should be bypassed by high-frequency ceramic capacitors connected to GND. If the spectral frequencies of the internally generated switching noise on the supply pins cross the series resonant point of an individual bypass capacitor, its overall impedance begins to look inductive and thus increases with increasing frequency. The parallel capacitor combination shown ensures that a low impedance path to ground exists for frequencies well above the noise bandwidth.

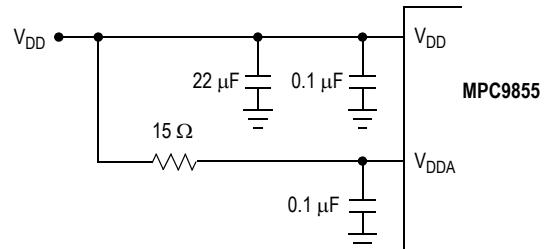


Figure 3. V_{CC} Power Supply Bypass

Power Consumption

The total power consumption of the MPC9855 may be calculated by the following formula:

$$P = V_{DD} * (I_{DD} + I_{DDA} + I_{DDOC}) + (CPD * \text{frequency} * 4 * V_{DDOA}^{**2}) + (CPD * \text{frequency} * 4 * V_{DDOB}^{**2})$$

where frequency is the programmed output frequency for bank A and bank B.

Table 4. Absolute Maximum Ratings⁽¹⁾

Symbol	Characteristics	Min	Max	Unit	Condition
V_{DD}	Supply Voltage (core)	-0.3	3.8	V	
V_{DDA}	Supply Voltage (Analog Supply Voltage)	-0.3	V_{DD}	V	
V_{DDOA}	Supply Voltage (LVCMOS output for Bank A)	-0.3	V_{DD}	V	
V_{DDOB}	Supply Voltage (LVCMOS output for Bank B)	-0.3	V_{DD}		
V_{IN}	DC Input Voltage	-0.3	$V_{DD}+0.3$	V	
V_{OUT}	DC Output Voltage ⁽²⁾	-0.3	$V_{DDx}+0.3$	V	
I_{IN}	DC Input Current		± 20	mA	
I_{OUT}	DC Output Current		± 50	mA	
T_S	Storage Temperature	-65	125	°C	

1. Absolute maximum continuous ratings are those maximum values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation at absolute-maximum-rated conditions is not implied.

2. V_{DDx} references power supply pin associated with specific output pin.

Table 5. General Specifications

Symbol	Characteristics	Min	Typ	Max	Unit	Condition
V_{TT}	Output Termination Voltage		$V_{DD} \div 2$		V	
MM	ESD Protection (Machine Model)	200			V	
HBM	ESD Protection (Human Body Model)	2000			V	
CDM	ESD Protection (Charged Device Model)	500			V	
LU	Latch-Up Immunity	200			mA	
C_{IN}	Input Capacitance		4		pF	Inputs
C_{PD}	Power Dissipation Capacitance		6		pF	Per Output
θ_{JC}	Thermal Resistance (junction-to-ambient)		54.5		°C/W	Air Flow = 0
T_A	Ambient Temperature	-40		85	°C	

Table 6. DC Characteristics ($T_A = -40^{\circ}\text{C}$ to 85°C)

Symbol	Characteristics	Min	Typ	Max	Unit	Condition
Supply Current for $V_{DD} = 3.3 \text{ V} \pm 5\%$, $V_{DDOA} = 3.3 \text{ V} \pm 5\%$, $V_{DDOB} = 3.3 \text{ V} \pm 5\%$						
$I_{DD} + I_{DDA} + I_{DDC}$	Maximum Quiescent Supply Current (Core)		160		mA	$V_{DD} + V_{DDA} + V_{DDC}$ pins
I_{DDA}	Maximum Quiescent Supply Current (Analog Supply)		15		mA	V_{DDA} pins
Supply Current for $V_{DD} = 3.3 \text{ V} \pm 5\%$, $V_{DDOA} = 2.5 \text{ V} \pm 5\%$, $V_{DDOB} = 2.5 \text{ V} \pm 5\%$						
$I_{DD} + I_{DDA} + I_{DDC}$	Maximum Quiescent Supply Current (Core)		140		mA	$V_{DD} + V_{DDA} + V_{DDC}$ pins
I_{DDA}	Maximum Quiescent Supply Current (Analog Supply)		15		mA	V_{DDA} pins

Table 7. LVPECL DC Characteristics ($T_A = -40^\circ\text{C}$ to 85°C)⁽¹⁾

Symbol	Characteristics	Min	Typ	Max	Unit	Condition
Differential LVPECL clock inputs (CLK_1 , $\overline{\text{CLK}}_1$) for $V_{\text{DD}} = 3.3 \text{ V} \pm 0.5\%$						
V_{PP}	Differential Voltage ⁽²⁾ (peak-to-peak) (LVPECL)	250			mV	
V_{CMR}	Differential Input Crosspoint Voltage ⁽³⁾ (LVPECL)	1.0		$V_{\text{DD}} - 0.6$	V	

1. AC characteristics are design targets and pending characterization.

2. V_{PP} is the minimum differential input voltage swing required to maintain AC characteristics including t_{PD} and device-to-device skew.3. V_{CMR} (AC) is the crosspoint of the differential input signal. Normal AC operation is obtained when the crosspoint is within the V_{CMR} (AC) range and the input swing lies within the V_{PP} (AC) specification. Violation of V_{CMR} (AC) or V_{PP} (AC) impacts the device propagation delay, device and part-to-part skew.**Table 8. LVCMS I/O DC Characteristics ($T_A = -40^\circ\text{C}$ to 85°C)**

Symbol	Characteristics	Min	Typ	Max	Unit	Condition
LVCMS for $V_{\text{DD}} = 3.3 \text{ V} \pm 5\%$						
V_{IH}	Input High Voltage	2.0		$V_{\text{DD}} + 0.3$	V	LVCMS
V_{IL}	Input Low Voltage			0.8	V	LVCMS
I_{IN}	Input Current ⁽¹⁾			200	μA	$V_{\text{IN}} = V_{\text{DDL}}$ or GND
LVCMS for $V_{\text{DD}} = 3.3 \text{ V} \pm 5\%$, $V_{\text{DDOA}} = 3.3 \text{ V} \pm 5\%$, $V_{\text{DDOB}} = 3.3 \text{ V} \pm 5\%$						
V_{OH}	Output High Voltage	2.4			V	$I_{\text{OH}} = -12 \text{ mA}$
V_{OL}	Output Low Voltage			0.4	V	$I_{\text{OL}} = 12 \text{ mA}$
Z_{OUT}	Output Impedance		14 – 17		Ω	
LVCMS for $V_{\text{DD}} = 3.3 \text{ V} \pm 5\%$, $V_{\text{DDOA}} = 2.5 \text{ V} \pm 5\%$, $V_{\text{DDOB}} = 2.5 \text{ V} \pm 5\%$						
V_{OH}	Output High Voltage	1.9			V	$I_{\text{OH}} = -10 \text{ mA}$
V_{OL}	Output Low Voltage			0.4	V	$I_{\text{OL}} = 10 \text{ mA}$
Z_{OUT}	Output Impedance		18 – 22		Ω	

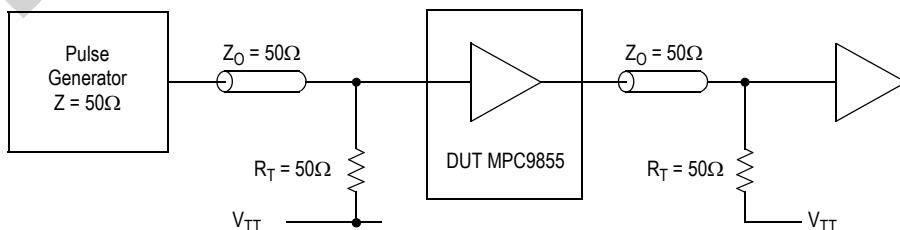

1. Inputs have pull-down resistors affecting the input current.

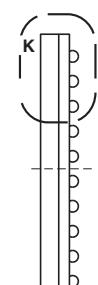
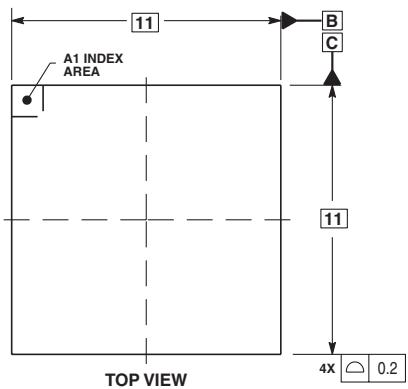
Table 9. AC Characteristics ($V_{DD} = 3.3 \text{ V} \pm 5\%$, $V_{DDOA} = 3.3 \text{ V} \pm 5\%$, $V_{DDOB} = 3.3 \text{ V} \pm 5\%$, $T_A = -40^\circ\text{C}$ to $+85^\circ\text{C}$)^{(1) (2)}

Symbol	Characteristics	Min	Typ	Max	Unit	Condition
Input and Output Timing Specification						
f_{ref}	Input Reference Frequency (25 MHz input) Input Reference Frequency (33 MHz input) XTAL Input Input Reference Frequency in PLL Bypass Mode ⁽³⁾		25 33 25	250	MHz MHz MHz MHz	PLL bypass
f_{VCO}	VCO Frequency Range ⁽⁴⁾		2000		MHz	
f_{MCX}	Output Frequency Bank A output Bank B output Bank C output	15.87 15.87 50		200 200 500	MHz MHz MHz	PLL locked
f_{refPW}	Reference Input Pulse Width	2			ns	
f_{refCcc}	Input Frequency Accuracy			100	ppm	
t_r, t_f	Output Rise/Fall Time	80		500	ns	20% to 80%
DC	Output Duty Cycle	47.5 45	50 50	52.5 55	%	3.3 V operation 2.5 V operation
PLL Specifications						
BW	PLL Closed Loop Bandwidth ⁽⁵⁾			1	MHz	
t_{LOCK}	Maximum PLL Lock Time			10	ms	
t_{reset_ref}	MR Hold Time on Power Up	10			ns	
t_{reset_pulse}	MR Hold Time	10			ns	
Skew and Jitter Specifications						
$t_{sk(O)}$	Output-to-Output Skew (within a bank)		50		ps	
$t_{sk(O)}$	Output-to-Output Skew (across banks A and B)		100		ps	$V_{DDOA} = 3.3 \text{ V}$ $V_{DDOB} = 3.3 \text{ V}$
$t_{JIT(CC)}$	Cycle-to-cycle jitter		150 80		ps	Bank A and B Bank C
$t_{JIT(PER)}$	Period Jitter		150 80		ps	Bank A and B Bank C
$t_{JIT(\emptyset)}$	I/O Phase Jitter RMS (1 σ)		15 15		ps	Bank A and B Bank C

- AC characteristics are design targets and pending characterization.
- AC characteristics apply for parallel output termination of 50Ω to V_{TT} .
- In bypass mode, the MPC9855 divides the input reference clock.
- The input reference frequency must match the VCO lock range divided by the total feedback divider ratio:

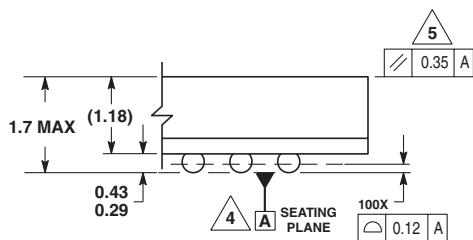
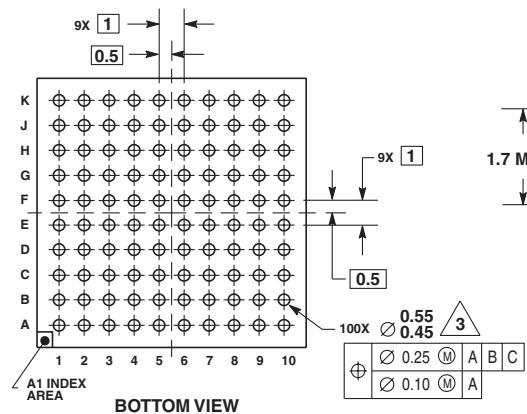
$$f_{ref} = (f_{VCO} \div M) \cdot N$$
- 3 dB point of PLL transfer characteristics.

Figure 4. MPC9855 AC Test Reference (LVC MOS Outputs)



Table 10. MPC9855 Pin Diagram (Top View)

	1	2	3	4	5	6	7	8	9	10
A	V_{DDOA}	V_{DDOA}	CLKA[1]	CLKA[3]	CLKA[5]	V_{DD}	QA1	QA2	V_{DDOA}	V_{DDOA}
B	V_{DDOA}	V_{DDOA}	CLKA[0]	CLKA[2]	CLKA[4]	QA0	V_{DDOA}	QA3	V_{DDOA}	V_{DDOA}
C	RSVD	RSVD	V_{DD}	V_{DD}	V_{DD}	V_{DD}	V_{DD}	V_{DD}	V_{DD}	REF_OUT[0]
D	V_{DDA}	V_{DDA}	V_{DD}	GND	GND	GND	GND	V_{DD}	RSVD	REF_OUT[1]
E	XTAL_SEL	CLK	V_{DD}	GND	GND	GND	GND	V_{DD}	V_{DD}	GND
F	PCLK	\overline{PCLK}	V_{DD}	GND	GND	GND	GND	V_{DD}	RSVD	RSVD
G	CLK_SEL	REF_33MHz	V_{DD}	GND	GND	GND	GND	V_{DD}	PLL_BYPASS	MR
H	XTAL_IN	XTAL_OUT	V_{DD}	V_{DD}	V_{DD}	V_{DD}	V_{DD}	V_{DD}	RSVD	REF_OUT1E
J	V_{DDOB}	V_{DDOB}	CLKB[0]	CLKB[2]	CLKB[4]	QB0	V_{DDOB}	QB3	V_{DDOB}	V_{DDOB}
K	V_{DDOB}	V_{DDOB}	CLKB[1]	CLKB[3]	CLKB[5]	V_{DD}	QB1	QB2	V_{DDOB}	V_{DDOB}

Table 11. MPC9855 Pin List



Signal	100 Pin MAPBGA	Signal	100 Pin MAPBGA	Signal	100 Pin MAPBGA	Signal	100 Pin MAPBGA	Signal	100 Pin MAPBGA
V_{DDOA}	A1	RSVD	C1	XTAL_SEL	E1	CLK_SEL	G1	V_{DDOB}	J1
V_{DDOA}	A2	RSVD	C2	CLK	E2	REF_33MHz	G2	V_{DDOB}	J2
CLKA[1]	A3	V_{DD}	C3	V_{DD}	E3	V_{DD}	G3	CLKB[0]	J3
CLKA[3]	A4	V_{DD}	C4	GND	E4	GND	G4	CLKB[2]	J4
CLKA[5]	A5	V_{DD}	C5	GND	E5	GND	G5	CLKB[4]	J5
V_{DD}	A6	V_{DD}	C6	GND	E6	GND	G6	QB0	J6
QA1	A7	V_{DD}	C7	GND	E7	GND	G7	V_{DDOB}	J7
QA2	A8	V_{DD}	C8	V_{DD}	E8	V_{DD}	G8	QB3	J8
V_{DDOA}	A9	V_{DD}	C9	V_{DD}	E9	PLL_BYPASS	G9	V_{DDOB}	J9
V_{DDOA}	A10	REF_OUT[0]	C10	GND	E10	\overline{MR}	G10	V_{DDOB}	J10
V_{DDOA}	B1	V_{DDA}	D1	PCLK	F1	XTAL_IN	H1	V_{DDOB}	K1
V_{DDOA}	B2	V_{DDA}	D2	\overline{PCLK}	F2	XTAL_OUT	H2	V_{DDOB}	K2
CLKA[0]	B3	V_{DD}	D3	V_{DD}	F3	V_{DD}	H3	CLKB[1]	K3
CLKA[2]	B4	GND	D4	GND	F4	V_{DD}	H4	CLKB[3]	K4
CLKA[4]	B5	GND	D5	GND	F5	V_{DD}	H5	CLKB[5]	K5
QA0	B6	GND	D6	GND	F6	V_{DD}	H6	V_{DD}	K6
V_{DDOA}	B7	GND	D7	GND	F7	V_{DD}	H7	QB1	K7
QA3	B8	V_{DD}	D8	V_{DD}	F8	V_{DD}	H8	QB2	K8
V_{DDOA}	B9	RSVD	D9	RSVD	F9	RSVD	H9	V_{DDOB}	K9
V_{DDOA}	B10	REF_OUT[1]	D10	RSVD	F10	REF_OUT1E	H10	V_{DDOB}	K10

PACKAGE DIMENSIONS

NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETERS.
2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
3. MAXIMUM SOLDER BALL DIAMETER MEASURED PARALLEL TO DATUM A.
4. DATUM A, SEATING PLANE, IS DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.
5. PARALLELISM MEASUREMENT SHALL EXCLUDE ANY EFFECT OF MARK ON TOP SURFACE OF PACKAGING.

DETAIL K
ROTATED 90° CLOCKWISE

**VA SUFFIX
VM SUFFIX (Pb-FREE)
100 MAPBGA PACKAGE
CASE 1462-01
ISSUE 0**

NOTES

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2005. All rights reserved.