

EL5734,世代5135, E25234, 在15235

PRELIMINARY

Data Sheet

December 15, 2003

FN7383.1

630MHz, Gain of 5, Low Noise Amplifiers

The EL5134, EL5135, EL5234, and EL5235 are ultra-low voltage noise, high speed voltage feedback

amplifiers that are ideal for applications requiring low voltage noise, including communications and imaging. These devices offer extremely low power consumption for exceptional noise performance. Stable at gains as low as 5, these devices offer 100mA of drive performance. Not only do these devices find perfect application in high gain applications, they maintain their performance down to lower gain settings.

These amplifiers are available in small package options (SOT-23) as well as the MSOP and the industry-standard SO packages. All parts are specified for operation over the -40°C to +85°C temperature range.

PART	120		
NUMBER	PACKAGE	TAPE & REEL	PKG. DWG. #
EL5134IS	8-Pin SO	-	MDP0027
EL5134IS-T7	8-Pin SO	7"	MDP0027
EL5134IS-T13	8-Pin SO	13"	MDP0027
EL5135IW-T7	5-Pin SOT-23	7" (3K pcs)	MDP0038
EL5135IW-T7A	5-Pin SOT-23	7" (250 pcs)	MDP0038
EL5234IY	10-Pin MSOP		MDP0043
EL5234IY-T7	10-Pin MSOP	7"	MDP0043
EL5234IY-T13	10-Pin MSOP	13"	MDP0043
EL5235IS	8-Pin SO	-	MDP0027
EL5235IS-T7	8-Pin SO	7"	MDP0027
EL5235IS-T13	8-Pin SO	13"	MDP0027

Ordering Information

Features

- 650MHz -3dB bandwidth
- Ultra low noise 1.9nV/√Hz
- 450V/µs slew rate
- Low supply current = 7.3mA
- Single supplies from 5V to 12V
- Dual supplies from ±2.5V to ±5V
- Fast disable on the EL5134 and EL5234
- Duals EL5234 and EL5235 WWW.DZSC.CO
- · Low cost

Applications

- Imaging
- Instrumentation
- Communications devices

Pinouts

EL5234 (10-PIN MSOP) TOP VIEW

EL5235 (8-PIN SO) TOP VIEW

Absolute Maximum Ratings $(T_A = 25^{\circ}C)$

Supply Voltage from V _S + to V _S	13.2V
I _{IN} -, I _{IN} +, CE	±5mA
Continuous Output Current 10	00mA
Power Dissipation See C	urves

Storage Temperature	65°C to +125°C
Operating Temperature	40°C to +85°C
Operating Junction Temperature	+125°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: $T_J = T_C = T_A$

$\label{eq:expectations} Electrical Specifications \qquad V_{S} + = +5V, \ V_{S} - = -5V, \ R_{L} = 150\Omega, \ R_{F} = 900\Omega, \ R_{G} = 100\Omega, \ T_{A} = 25^{\circ}C, \ unless \ otherwise \ specified.$

PARAMETER	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNIT
V _{OS}	Offset Voltage		-1	0.2	1	mV
T _C V _{OS}	Offset Voltage Temperature Coefficient	Measured from T _{MIN} to T _{MAX}		-0.8		μV/°C
IB	Input Bias Current	V _{IN} = 0V	2.5	3.7	5.5	μA
I _{OS}	Input Offset Current	V _{IN} = 0V	-0.7	0.3	0.7	nA
T _C los	Input Bias Current Temperature Coefficient	Measured from T_{MIN} to T_{MAX}		-3		nA/°C
PSRR	Power Supply Rejection Ratio	V _S + = 4.75V to 5.25V	75	85		dB
CMRR	Common Mode Rejection Ratio	$V_{CM} = 0V \text{ to } 3.8V$	80	108		dB
CMIR	Common Mode Input Range	Guaranteed by CMRR test	±3	±3.3		V
R _{IN}	Input Resistance	Common mode	5	16		MΩ
C _{IN}	Input Capacitance			1		pF
I _S	Supply Current		5.6	6.7	7.8	mA
AVOL	Open Loop Gain	$R_L = 1k\Omega$ to GND	4.0	8.0		kV/V
V _O	Voltage Swing	$R_L = 1k\Omega$, $R_F = 900\Omega$, $R_G = 100\Omega$	±3.5	3.9		V
		$R_L = 150\Omega$, $R_F = 900\Omega$, $R_G = 100\Omega$	±3.3	3.65		mV
I _{SC}	Short Circuit Current	$R_L = 10\Omega$	70	140		mA
BW	-3dB Bandwidth	$A_V = +10, R_L = 1k\Omega$		600		MHz
BW	±0.1dB Bandwidth	$A_V = +10, R_L = 1k\Omega$		120		MHz
GBWP	Gain Bandwidth Product			1500		MHz
PM	Phase Margin	$R_L = 1k\Omega, C_L = 6pF$		55		0
SR	Slew Rate	V_{S} = +5V, R_{L} = 150 Ω , V_{OUT} = 0V to 3V	350	475		V/µs
t _R , t _F	Rise Time, Fall Time	±0.1V _{STEP}		TBD		ns
OS	Overshoot	±0.1V _{STEP}		TBD		%
t _{PD}	Propagation Delay	±0.1V _{STEP}		TBD		ns
t _S	0.01% Settling Time			TBD		ns
	0.01% Settling Time			14		ns
dG	Differential Gain	$A_V = 2, R_F = 1k\Omega$		0.01		%
dP	Differential Phase	$A_V = 2, R_F = 1k\Omega$		0.01		٥
e _N	Input Noise Voltage	f = 10kHz		1.9		nV/√Hz
i _N	Input Noise Current	f = 10kHz		0.9		pA/√Hz

2

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

