8 BIT ADDRESSABLE LATCH／DECODER／RELAIS DRIVER （OPEN DRAIN，INVERTING OUTPUT）

－LOW POWER DISSIPATION
Icc $=4 \mu \mathrm{~A}$（MAX．）AT $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
－COMPATIBLE WITH TTL OUTPUTS
$\mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}$（MIN） $\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$（MAX）
－OUTPUT DRIVE CAPABILITY 90 LSTTL LOADS
－HIGH CURRENT OPEN DRAIN OUTPUT UP TO 80 mA

DESCRIPTION

The M74HCT7259 is a high speed CMOS 8 BIT AD－ DRESSABLE LATCH／DECODER fabricated in sili－ con gate C2MOS technology．It has the same high speed performance of LSTTL combined with true CMOS low power consumption．
The M74HCT7259 has single data input（D） 8 LATCH inverted OUTPUTS（Q0－Q7）， 3 address in－ puts（ A, B and C ），common enable input（ENABLE） and a common CLEAR input．To operate this device as an addressable latch，data is held on the Dinput， and the address of the latch into which the data is to be entered is held on the A, B and C inputs．
When ENABLE is taken low the data flows through to the address output．The data is stored on the posi－ tive－going edge of the ENABLE pulse．All un－ adressed latches will remain unaffected．With ENABLE in the high state the device is deselected and all latches remain in their previous state，unaf－ fected by changes on the data or address inputs．To eliminate the possibility of entering erroneous data into the latches，the ENABLE should be held high

INPUT AND OUTPUT EQUIVALENT CIRCUIT

PIN CONNECTIONS（top view）

NC＝
No Internal
Connection

(inactive) while the address lines are changing. If $\overline{\text { ENABLE }}$ is held high and CLEAR is taken low all eight latches are cleared to the HIGH (OFF) state. If ENABLE is low all latches except the addressed latch will be cleared. The address latch will instead be the complement of the D input,effectively imple-
menting a 3 to 8 line decoder. Internal clamp diodes protect the open drain outputs against over voltages due to inductive loads.
All inputs are equipped with protection circuits against static discharge and transient excess voltage.

LOGIC DIAGRAM

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
$1,2,3$	$\mathrm{~A}, \mathrm{~B}, \mathrm{C}$	Latch Select
$4,5,6,7$, $9,10,11,12$	$\overline{\mathrm{Q} 0}$ to $\overline{\mathrm{Q7}}$	latch Outputs
13	DATA IN	Data Inputs
14	$\overline{\text { ENABLE }}$	Latch Enable Input
15	$\overline{\mathrm{CLEAR}}$	Conditional Reset Input
8	GND	Ground (OV)
16	V $_{\mathrm{CC}}$	Positive Supply Voltage

IEC LOGIC SYMBOL

TRUTH TABLE

INPUTS		OUTPUTS OF ADDRESSED LATCH	EACH OTHER OUTPUT	FUNCTION
$\overline{\text { CLEAR }}$	$\overline{\text { ENABLE }}$			
H	L	$\overline{\mathrm{D}}$	QI0	ADDRESSABLE LATCH
H	H	Qi 0	Qi0	MEMORY
L	L	$\overline{\mathrm{D}}$	H	8-LINE DEMULTIPLEXER
L	H	H	H	CLEAR ALL BITS TO "H"

SELECT INPUTS			LATCH ADDRESSED
C	B	\mathbf{A}	
L	L	L	$\overline{\mathrm{Q} 0}$
L	L	H	$\overline{\mathrm{Q} 1}$
L	H	L	$\overline{\mathrm{Q} 2}$
L	H	H	$\overline{\mathrm{Q} 3}$
H	L	L	$\overline{\mathrm{Q} 4}$
H	L	H	$\overline{\mathrm{Q} 5}$
H	H	L	$\overline{\mathrm{Q} 6}$
H	H	H	$\overline{\mathrm{Q} 7}$

D: The level at the data input
Qi0: The level before the indicated steady state input conditions were established, ($i=0,1, \ldots ., 7$).

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	-0.5 to +7	V
$\mathrm{~V}_{\mathrm{I}}$	DC Input Voltage	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
$\mathrm{~V}_{\mathrm{O}}$	DC Output Voltage	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
I_{IK}	DC Input Diode Current	± 20	mA
I_{OK}	DC Output Diode Current	± 20	mA
I_{O}	DC Output Current Per Pin	100	mA
$\mathrm{I}_{\mathrm{GND}}$	DC Ground Current	-800	mA
I_{CC}	DC V_{CC} Current	50	mA
P_{D}	Power Dissipation	$500\left(^{*}\right)$	mW
$\mathrm{T}_{\text {stg }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature 10 sec	300	${ }^{\circ} \mathrm{C}$

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is notimplied. (*) $^{*} 500 \mathrm{~mW}: \cong 65^{\circ} \mathrm{C}$ derate to 300 mW by $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}: 65^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	4.5 to 5.5	V
$\mathrm{~V}_{\mathrm{I}}$	Input Voltage	0 to V_{CC}	V
V_{O}	Output Voltage	0 to V_{CC}	V
T_{op}	Operating Temperature	-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r},} \mathrm{t}_{\mathrm{f}}$	Input Rise and Fall Time	0 to 500	ns

DC SPECIFICATIONS

Symbol	Parameter	Test Conditions			Value					Unit
		$V_{c c}$ (V)			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85{ }^{\circ} \mathrm{C}$		
					Min.	Typ.	Max.	Min.	Max.	
V_{IH}	High Level Input Voltage	$\begin{gathered} 4.5 \\ \text { to } \\ 5.5 \end{gathered}$			2.0			2.0		V
VIL	Low Level Input Voltage	$\begin{gathered} 4.5 \\ \text { to } \\ 5.5 \end{gathered}$					0.8		0.8	V
VoL	Low Level Output Voltage	4.5	$\begin{gathered} \mathrm{V}_{\mathrm{I}}= \\ \mathrm{V}_{\mathrm{IH}} \text { or } \\ \mathrm{V}_{\mathrm{IL}} \end{gathered}$	$\mathrm{l}=20 \mu \mathrm{~A}$		0.0	0.1		0.1	V
				$\mathrm{I}_{0}=36 \mathrm{~mA}$		0.17	0.26		0.33	
				$\mathrm{I}_{\mathrm{O}}=80 \mathrm{~mA}$		0.32	0.40		0.50	
Ioz	Output Leackage Current	5.5	$\begin{array}{r} \mathrm{V}_{1}= \\ \text { Vout }= \end{array}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{CC}} \text { or } G N D \end{aligned}$			± 5		± 50	$\mu \mathrm{A}$
1 N	Input Leakage Current	5.5	$\mathrm{V}_{1}=V^{\prime}$	cc or GND			± 0.1		± 1	$\mu \mathrm{A}$
Icc	Quiescent Supply Current	5.5	$\mathrm{V}_{1}=\mathrm{V}^{\prime}$	cc or GND			4		40	$\mu \mathrm{A}$
			$\begin{array}{\|r} \hline \text { Each Ir } \\ \text { VIN }=0 . \\ \text { All Ot } \\ \mathrm{V}_{\mathrm{CC}} \\ \hline \end{array}$	nput in Turn: 5 V or 2.4 V her Inputs: or GND			3.0		3.9	mA

AC ELECTRICAL CHARACTERISTICS ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, Input $\left.\mathrm{tr}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}\right)$

Symbol	Parameter	Test Conditions			Value					Unit
		Vcc (V)	$\begin{gathered} \mathrm{C}_{\mathrm{L}} \\ (\mathrm{pF}) \end{gathered}$	$\begin{gathered} \hline \mathbf{R}_{\mathbf{L}} \\ (\mathrm{K} \Omega) \end{gathered}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85{ }^{\circ} \mathrm{C}$		
					Min.	Typ.	Max.	Min.	Max.	
ttin	Output Transition Time	4.5	50	1		3	6		9	ns
$\begin{aligned} & \text { tpLz } \\ & \text { tpzL } \end{aligned}$	Propagation Delay Time (DATA - \bar{Q})	4.5	50	1		20	31		39	ns
		4.5	150	1		24	37		46	
$\begin{aligned} & \text { tpLZ } \\ & \text { tpZL }^{2} \end{aligned}$	Propagation Delay Time$(A, B, C-\bar{Q})$	4.5	50	1		25	39		49	ns
		4.5	150	1		29	45		56	
$\begin{aligned} & \mathrm{t}_{\mathrm{tPLZ}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Propagation Delay Time$(\overline{E N A B L E}-\bar{Q})$	4.5	50	1		21	33		41	ns
		4.5	150	1		25	39		49	
$\begin{aligned} & \text { tpLZ } \\ & \text { tpZL } \end{aligned}$	Propagation Delay Time (CLEAR - Q)	4.5	50	1		19	30		38	ns
		4.5	150	1		23	36		45	
tw(L)	Minimum Pulse Width ($\overline{\text { CLEAR }}$)	4.5	50	1		7	15		19	ns
tw(L)	Minimum Pulse Width ($\overline{\text { ENABLE }}$)	4.5	50	1		7	15		19	ns
t_{s}	Minimum Set-Up Time	4.5	50	1		4	10		13	ns
th	Minimum Hold Time	4.5	50	1			5		5	ns
$\mathrm{CIN}_{\text {I }}$	Input Capacitance					5	10		10	pF
$\mathrm{C}_{\text {PD }}{ }^{*}$)	Power Dissipation Capacitance					96				pF

$\left(^{*}\right) C_{\text {PD }}$ is defined as the value of the IC's internal equivalent capadtanœ which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operting current can be obtained by the following equation. $\mathrm{I}_{\mathrm{CC}}(\mathrm{opr})=\mathrm{C}_{\mathrm{PD}} \bullet \mathrm{V}_{\mathrm{CC}} \bullet \mathrm{f}_{\mathrm{IN}}+\mathrm{I}_{\mathrm{IC}}$

SWITCHING CHARACTERISTICS TEST WAVEFORMS

WAVEFORM 1: $(\overline{\text { ENABLE }}=\mathrm{L}, \overline{\mathrm{CLR}}=\mathrm{H}, \mathrm{A}-\mathrm{C}=$ STABLE $)$

WAVEFORM 2: $(\overline{\text { ENABLE }}=\mathrm{L})$

WAVEFORM 3: ($\overline{\mathrm{CLR}}=\mathrm{H}, \mathrm{A}-\mathrm{C}=\mathrm{STABLE})$

WAVEFORM 4: ($\mathrm{D}=\mathrm{H}, \mathrm{A}-\mathrm{C}=\mathrm{STABLE}$)

WAVEFORM 5: $(\overline{\mathrm{CLR}}=\mathrm{H})$

TEST CIRCUIT Icc (Opr.)

Plastic DIP16 (0.25) MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
a1	0.51			0.020		
B	0.77		1.65	0.030		0.065
b		0.5			0.020	
b1		0.25			0.335	
D						0.100
E		2.54			0.700	
e3		17.78				0.787
F						
I						
L						

SO16 (Narrow) MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A			1.75			0.068
a1	0.1		0.2	0.004		0.007
a2			1.65			0.064
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
C		0.5			0.019	
c1	45° (typ.)					
D	9.8		10	0.385		0.393
E	5.8		6.2	0.228		0.244
e		1.27			0.050	
e3		8.89			0.350	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
M			0.62			0.024
S	8° (max.)					

P013H

PLCC2O MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A	9.78		10.03	0.385		0.395
B	8.89		9.04	0.350		0.356
D	4.2		4.57	0.165		0.180
d1		2.54			0.100	
d2		0.56			0.022	
E	7.37		8.38	0.290		0.330
e		1.27			0.050	
e3		5.08			0.200	
F		0.38			0.015	
G			0.101			0.004
M		1.27			0.050	
M1		1.14			0.045	

$\square \mathbf{G}$ (Seating Plane Coplanarity)

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use ascritical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.
© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

