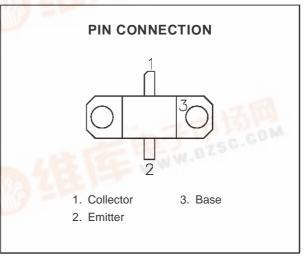


SD1894

RF & MICROWAVE TRANSISTORS SATELLITE COMMUNICATIONS APPLICATIONS


- CLASS C
- 1.6 GHz
- COMMON BASE
- REFRACTORY/GOLD METALLIZATION
- EFFICIENCY = 50% MIN.
- P_{OUT} = 4.5 W MIN. WITH 10 dB GAIN

DESCRIPTION

The SD1894 is a common base silicon NPN bipolar device optimized for 1.6 GHz SATCOM applications.

The SD1894 offers superior gain and collector efficiency, making it an ideal choice for Class C power amplifiers used in portable as well as fixed SAT-COM terminals.

ABSOLUTE MAXIMUM RATINGS $(T_{case} = 25^{\circ}C)$

Symbol	Parameter	Value	Unit
Vсво	Collector-Base Voltage	45	DISCV
Vces	Collector-Emitter Voltage	45	V
VEBO	Emitter-Base Voltage	3.0	V
Ic	Device Current	375	mA
P _{DISS}	Power Dissipation	12.5	W
TJ	Junction Temperature	+200	°C
T _{STG}	Storage Temperature	- 65 to +150	°C

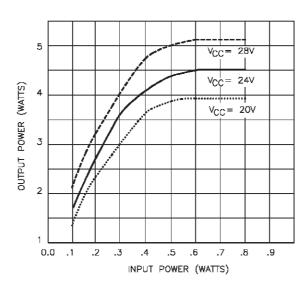
THERMAL DATA

技	PRIH(j-c)	Junction-Case Thermal Resistance	14.0	°C/W	
	IN CO.				

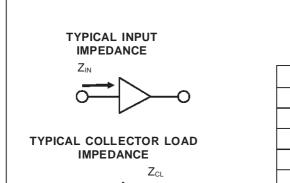
February 4, 1997

SD1894

ELECTRICAL SPECIFICATIONS (T_{case} = 25°C)

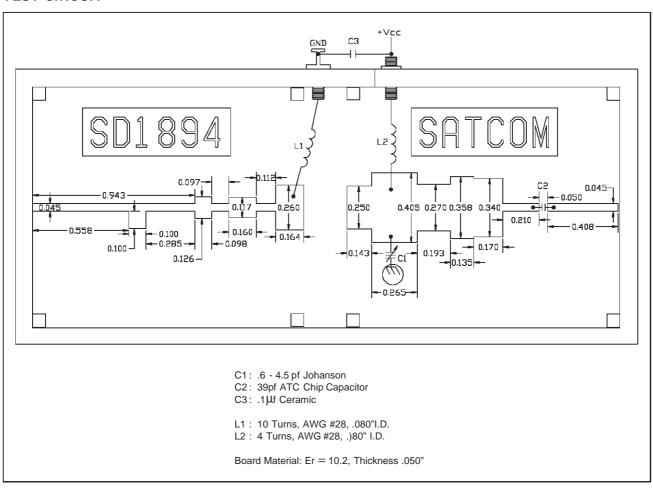

STATIC

Symbol	Test Conditions	Value			Unit	
	rest conditions		Min.	Тур.	Max.	Ollit
ВУсво	$I_C = 1 \text{ mA}$ $I_E =$	0 mA	45	_	_	V
BV _{CES}	$I_C = 1 \text{ mA}$ V_{BE}	= 0 V	45	_	_	V
BV _{EBO}	$I_E = 1 \text{ mA}$ $I_C =$	0 mA	3.0	_	_	V
I _{CBO}	V _{CB} = 28 V I _E =	0 mA	_	_	.25	mA
h _{FE}	V _{CE} = 5 V I _C =	.2 A	15	_	150	

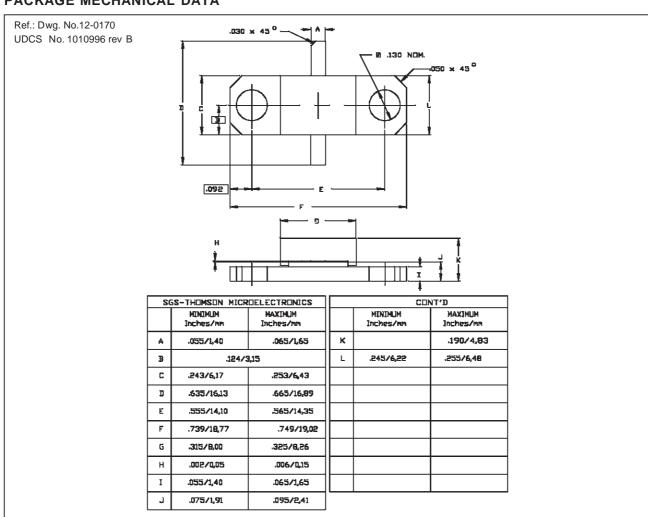

DYNAMIC

Symbol	Test Conditions			Value			Unit
Symbol				Min.	Тур.	Max.	Oilit
P _{IN}	f = 1650 MHz	$V_{CC} = 28 \text{ V}$	$P_{OUT} = 4.5 W$.35	.45	W
ης	f = 1650 MHz	$V_{CC} = 28 \text{ V}$	$P_{OUT} = 4.5 W$	50	55	_	%
P _G	f = 1650 MHz	V _{CC} = 28 V	P _{OUT} = 4.5 W	10.0	11.1	_	dB
Load Mismatch	V _{CC} = 28 V	P _{OUT} = 4.5 W	VSWR = 20:1	1	_	adation ir Power	1

INPUT POWER vs OUTPUT POWER



IMPEDANCE DATA


FREQ.	Z _{IN} (Ω)	Z _{CL} (Ω)
1600 MHz	31.6 + j 21.4	5.2 + j 14.7
1620 MHz	38.0 + j 15.0	5.6 + j 14.55
1635 MHz	38.8 + j 11.3	5.85 + j 14.45
1650 MHz	36.0 + j 9.1	6.1 + j 14.3
1665 MHz	34.3 + j 8.77	6.37 + j 14.2

TEST CIRCUIT

3/4

PACKAGE MECHANICAL DATA

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

©1997 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea
Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland
Taiwan - Thailand - United Kingdom - U.S.A.

4/4