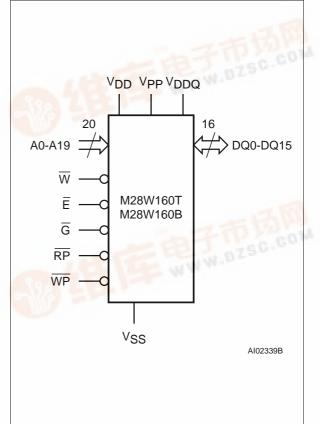
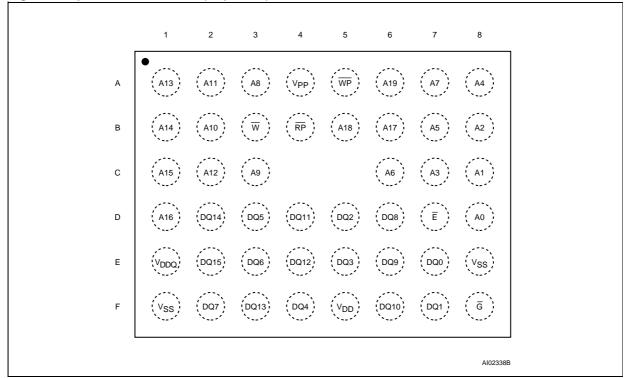


M28W160T M28W160B

16 Mbit (1Mb x16, Boot Block) Low Voltage Flash Memory


- SUPPLY VOLTAGE
 - V_{DD} = 2.7V to 3.6V: for Program, Erase and Read
 - V_{DDQ} = 1.65V or 2.7V: Input/Output option
 - V_{PP} = 12V: optional Supply Voltage for fast Program and Erase
- ACCESS TIME
 - 3.0V to 3.6V: 100ns
 - 2.7V to 3.6V: 120ns
- PROGRAMMING TIME: 10µs typical
- PROGRAM/ERASE CONTROLLER (P/E.C.)
 - Program Word-by-Word
 - Status Register bits
- OTP MEMORY AREA
 MEMORY PLOCE COMMON FLASH INTERFACE
- - Parameter Blocks (Top or Bottom location)
 - Main Blocks
- BLOCK ERASE
- BLOCK PROTECTION on TWO PARAMETER BLOCKS (selected without 12V supply)
- PROGRAM/ERASE SUSPEND
 - Read or Program another Block during Program/Erase Suspend
- PROGRAM/ERASE LATENCY TIME: <1µs</p>
 - Data update on a Word-by-Word basis
 - Efficient data Read/Write during Program/Erase suspend
- FAST RECOVERY from POWER DOWN
- LOW POWER CONSUMPTION
 - Automatic Stand-by: 10µA max
 - Stand-by: 10µA max
 - 100,000 Program/Erase cycles per block
- C.COM 20 YEARS OF DATA RETENTION - Defectivity below 1ppm/year
- ELECTRONIC SIGNATURE


.dzsc.com

- Manufacturer Code: 0020h
- Device Code, M28W160T: 0090h
- Device Code, M28W160B: 0091h

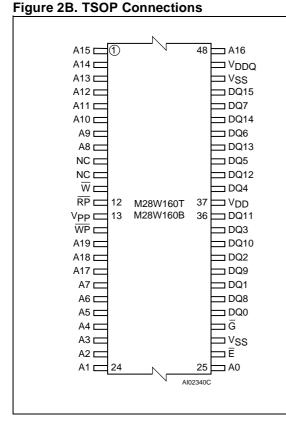


Figure 2A. µBGA Connections (Top View)

Note: Although no Solder Ball is present where the unnamed dotted connections are placed (C4 and C5 locations), these are reserved for future use. Routing should be avoided in this area.

Table 1. Signal Names

ddress Inputs ata Input/Output, Command Inputs ata Input/Output hip Enable utput Enable
ata Input/Output hip Enable
hip Enable
utput Enable
/rite Enable
eset / Deep Power-Down
/rite Protect
upply Voltage
ptional Power Supply for put/Output Buffers
ptional Supply Voltage for ast Program & Erase
round
ot Connected Internally

A7

Symbol	Parameter	Value	Unit
T _A	Ambient Operating Temperature ⁽²⁾	-40 to 85	°C
T _{BIAS}	Temperature Under Bias	-40 to 125	°C
T _{STG}	Storage Temperature	-55 to 155	°C
V _{IO}	Input or Output Voltage	-0.6 to V _{DDQ} +0.6	V
V _{DD} , V _{DDQ}	Supply Voltage	-0.6 to 4.2	V
Vpp	Program Voltage	-0.6 to 13.5	V

Table 2. Absolute Maximum Ratings ⁽¹⁾

Note: 1. Except for the rating "Operating Temperature Range", stresses above those listed in the Table "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents.

2. Depends on range.

DESCRIPTION

ل ۲۸

The M28W160 is a 16 Mbit non-volatile Flash memory that can be erased electrically at the block level and programmed in-system on a Word-by-Word basis. The device is offered in the TSOP48 (12 x 20 mm) and the μ BGA48 0.75 mm ball pitch packages. When shipped, all bits of the M28W160 are in the '1' state.

The array matrix organisation allows each block to be erased and reprogrammed without affecting other blocks. Each block can be programmed and erased over 100,000 cycles. V_{DDQ} allows to drive the I/O pin down to 1.65V. An optional 12V V_{PP} power supply is provided to speed up the program phase at customer production line environment.

An internal Command Interface (C.I.) decodes the instructions to access/modify the memory content. The Program/Erase Controller (P/E.C.) automatically executes the algorithms taking care of the timings necessary for program and erase operations. Verification is performed too, unburdening the microcontroller, while the Status Register tracks the status of the operation.

The following instructions are executed by the M28W160: Read Array, Read Electronic Signature, Read Status Register, Clear Status Register, Program, Block Erase, Program/Erase Suspend, Program/Erase Resume, CFI Query, Read/Program OTP Area.

Organisation

The M28W160 is organised as 1 Mbit by 16 bits. A0-A19 are the address lines; DQ0-DQ15 are the Data Input/Output. Memory control is provided by Chip Enable \overline{E} , Output Enable \overline{G} and Write Enable \overline{W} inputs.

A Reset/Power-Down controls the hardware reset and the power-down.

The upper two (or lower two) parameter blocks can be protected to secure the code content of the memory. WP controls protection and unprotection operations.

Memory Blocks

The device features an asymmetrical blocked architecture. The M28W160 has an array of 39 blocks: 8 Parameter Blocks of 4 KWord and 31 Main Blocks of 32 KWord. M28W160T has the Parameter Blocks at the top of the memory address space while the M28W160B locates the Parameter Blocks starting from the bottom. The memory maps are shown in Tables 3 and 4.

The two upper parameter blocks can be protected from accidental programming or erasure, using WP. Each block can be erased separately. Erase can be suspended in order to perform either read or program in any other block and then resumed. Program can be suspended to read data in any other block and then resumed.

Table 3. Top Boot Block Address

Size (KWord)	Address Range
4	FF000-FFFFF
4	FE000-FEFFF
4	FD000-FDFFF
4	FC000-FCFFF
4	FB000-FBFFF
4	FA000-FAFFF
4	F9000-F9FFF
4	F8000-F8FFF
32	F0000-F7FF
32	E8000-EFFFF
32	E0000-E7FF
32	D8000-DFFF
32	D0000-D7FFF
32	C8000-CFFF
32	C0000-C7FF
32	B8000-BFFFF
32	B0000-B7FFF
32	A8000-AFFF
32	A0000-A7FF
32	98000-9FFFF
32	90000-97FFF
32	88000-8FFFF
32	80000-87FFF
32	78000-7FFFF
32	70000-77FFF
32	68000-6FFFF
32	60000-67FFF
32	58000-5FFFF
32	50000-57FFF
32	48000-4FFFF
32	40000-47FFF
32	38000-3FFFF
32	30000-37FFF
32	28000-2FFFF
32	20000-27FFF
32	18000-1FFFF
32	10000-17FFF
32	08000-0FFFF
32	00000-07FFF

Table 4. Bottom Boot Block Address

	Boot Block Address
Size (KWord)	Address Range
32	F8000-FFFFF
32	F0000-F7FFF
32	E8000-EFFFF
32	E0000-E7FFF
32	D8000-DFFFF
32	D0000-D7FFF
32	C8000-CFFFF
32	C0000-C7FFF
32	B8000-BFFFF
32	B0000-B7FFF
32	A8000-AFFFF
32	A0000-A7FFF
32	98000-9FFFF
32	90000-97FFF
32	88000-8FFFF
32	80000-87FFF
32	78000-7FFFF
32	70000-77FFF
32	68000-6FFFF
32	60000-67FFF
32	58000-5FFFF
32	50000-57FFF
32	48000-4FFFF
32	40000-47FFF
32	38000-3FFFF
32	30000-37FFF
32	28000-2FFFF
32	20000-27FFF
32	18000-1FFFF
32	10000-17FFF
32	08000-0FFFF
4	07000-07FFF
4	06000-06FFF
4	05000-05FFF
4	04000-04FFF
4	03000-03FFF
4	02000-02FFF
4	01000-01FFF
4	00000-00FFF
L	

SIGNAL DESCRIPTIONS

See Figure 1 and Table 1.

Address Inputs (A0-A19). The address signals are inputs driven with CMOS voltage levels. They are latched during a write operation.

Data Input/Output (DQ0-DQ15). The data inputs, a word to be programmed or a command to the C.I., are latched on the Chip Enable \overline{E} or Write Enable \overline{W} rising edge, whichever occurs first. The data output from the memory Array, the Electronic Signature or Status Register is valid when Chip Enable \overline{E} and Output Enable \overline{G} are active. The output is high impedance when the chip is deselected, the outputs are disabled or RP is tied to V_{IL}. Commands are issued on DQ0-DQ7.

Chip Enable (Ē). The Chip Enable input activates the memory control logic, input buffers, decoders and sense amplifiers. E at V_{IH} deselects the memory and reduces the power consumption to the standby level. E can also be used to control writing to the command register and to the memory array, while \overline{W} remains at V_{IL} .

Output Enable (**G**). The Output Enable controls the data Input/Output buffers.

Write Enable (\overline{W}). This input controls writing to the Command Register, Input Address and Data latches.

Write Protect (WP). Write Protect is an input to protect or unprotect the two lockable parameter blocks. When \overline{WP} is at V_{IL} , the lockable blocks are protected. Program <u>or</u> erase operations are not achievable. When \overline{WP} is at V_{IH} , the lockable blocks are unprotected and they can be programmed or erased (refer to Table 9).

Reset/Power Down Input ($\overline{\mathbf{RP}}$ **).** The $\overline{\mathbf{RP}}$ input provides hardware reset of the memory and power down functions. When $\overline{\mathbf{RP}}$ is at V_{IL}, the memory is in reset/deep power down mode. The outputs are

έτ/

put to High-Z and the current consumption is minimised. When \overline{RP} is at V_{IH}, the device is in normal operation. Exiting reset/deep power down mode the device enters read array mode.

 V_{DD} Supply Voltage (2.7V to 3.6V). V_{DD} provides the power supply to the internal core of the memory device. It is the main power supply for all operations (Read, Program and Erase). It ranges from 2.7V to 3.6V.

V_{DDQ} **Supply Voltage (1.65V to V**_{DD}+0.3V). V_{DDQ} provides the power supply to the I/O pins and enables all Outputs to be powered independently from V_{DD}. V_{DDQ} can be tied to V_{DD} or it can use a separate supply. It can be powered either from 1.65V to 2.2V or from 2.7V to 3.6V.

VPP Program Supply Voltage (12V). VPP is the power supply for program and erase operations. The M28W160 is intended to execute program and erase operations at V_{DD} voltage ranges. Nevertheless, customers wishing to speed up programming at their manufacturing environment can also apply 12V to V_{PP}. This is not intended for extended use.

 V_{PP} can be connected to 12V for a total of 80 hours maximum. 12V may be applied to V_{PP} during program and erase for 1000 cycles on the main blocks and 2500 cycles on the parameter blocks. Stressing the device beyond these limits could damage the device.

 V_{PP} may be tied to 5V during read or idle phases. 5V supply is forbidden for program or erase operations. The V_{PP} must be supplied with either 2.7V to 3.6V or 11.4V to 12.6V during programming or erase operations. V_{PP} can be tied to V_{SS} to achieve a complete block protection.

V_{SS} Ground. V_{SS} is the reference for all the voltage measurements.

DEVICE OPERATIONS

Four control pins rule the hardware access to the Flash memory: \overline{E} , \overline{G} , \overline{W} , \overline{RP} .

The following operations can be performed using the appropriate bus cycles: Read, Write the Command of an Instruction, Output Disable, Standby, Power Down (see Table 5).

Read. Read operations are used to output the contents of the Memory Array, the Electronic Signature, the Status Register and the CFI. Both Chip Enable (\overline{E}) and Output Enable (\overline{G}) must be at V_{IL} in order to perform the read operation. The Chip Enable input should be used to enable the device. Output Enable should be used to gate data onto the output independently of the device selection. The data read depend on the previous command written to the memory (see instructions RD, RSIG, RSR, RCFI and RDO). Read Array is the default state of the device when exiting power down or after power-up.

Write. Write operations are used to give Commands to the memory or to latch Input Data to be programmed. A write operation is initiated when Chip Enable \overline{E} and Write Enable \overline{W} are at V_{IL} with Output Enable \overline{G} at V_{IH}. Commands, Input Data

and Addresses are latched on the rising edge of \overline{W} or \overline{E} , whichever occur first.

Output Disable. The data outputs are high impedance when the Output Enable \overline{G} is at V_{IH}.

Standby. Standby disables most of the internal circuitry allowing a substantial reduction of the current consumption. The memory is in standby when Chip Enable \overline{E} is at V_{IH} and the device is in read mode. The power consumption is reduced to the standby level and the outputs are set to high impedance, independently from the Output Enable \overline{G} or Write Enable \overline{W} inputs. If \overline{E} switches to V_{IH} during program or erase operation, the device enters in standby when finished.

Power Down. During power down all internal circuits are switched off, the memory is deselected and the outputs are put in high <u>imp</u>edance. The memory is in Power Down when RP is at V_{IL} . The power consumption is reduced to the Power Down level, independently from the Chip Enable \overline{E} , Output Enable \overline{G} or Write Enable \overline{W} inputs.

If \overline{RP} is pulled to V_{SS} during a Program or Erase, this operation is aborted and the memory content is no longer valid as it has been compromised by the aborted operation.

Operation	Ē	G	W	RP	WP	V _{PP}	DQ15-DQ0
Read	V _{IL}	V _{IL}	V _{IH}	V _{IH}	Х	Don't Care	Data Output
Write	V _{IL}	V _{IH}	V _{IL}	V _{IH}	Х	V_{DD} or V_{PPH}	Data Input
Output Disable	V _{IL}	V _{IH}	V _{IH}	V _{IH}	Х	Don't Care	Hi-Z
Standby	VIH	Х	Х	V _{IH}	Х	Don't Care	Hi-Z
Power Down	Х	Х	Х	V _{IL}	Х	Don't Care	Hi-Z

Table 5. User Bus Operations ⁽¹⁾

Note: 1. $X = V_{IL}$ or V_{IH} , $V_{PPH} = 12V \pm 5\%$.

Table 6. Read Electronic Signature (RSIG Instruction)

Code	Device	Ē	G	W	A0	A19-A1	DQ15-DQ8	DQ7-DQ0
Manufact. Code		VIL	VIL	V_{IH}	VIL	Don't Care	00h	20h
Device Code	M28W160T	VIL	VIL	VIH	VIH	Don't Care	00h	90h
	M28W160B	VIL	VIL	VIH	VIH	Don't Care	00h	91h

Note: 1. $\overline{RP} = V_{IH}$.

INSTRUCTIONS AND COMMANDS

Twelve instructions are available (see Tables 7 and 8) to perform Read Memory Array, Read Status Register, Read Electronic Signature, CFI Query, Erase, Program, Clear Status Register, Program/Erase Suspend, Program/Erase Resume, Read OTP, Program OTP. Status Register output may be read at any time, during programming or erase, to monitor the progress of the operation.

An internal Command Interface (C.I.) decodes the instructions while an internal Program/Erase Controller (P/E.C.) handles all timing and verifies the correct execution of the Program and Erase instructions. P/E.C. provides a Status Register whose bits indicate operation and exit status of the internal algorithms.

The Command Interface is reset to Read Array when power is first applied, when exiting from power down or whenever V_{DD} is lower than V_{LKO} . Command sequence must be followed exactly. Any invalid combination of commands will reset the device to Read Array.

Read (RD)

لرجا

The Read instruction consists of one write cycle (refer to Device Operations section) giving the command FFh. Next read operations will read the addressed location and output the data. When a device reset occurs, the memory is in Read Array as default.

Read Status Register (RSR)

The Status Register indicates when a program or erase operation is complete and the success or failure of operation itself. Issue a Read Status Register Instruction (70h) to read the Status Register content.

The Read Status Register instruction may be issued at any time, also when a Program/Erase operation is ongoing. The following Read operations output the content of the Status Register. It is latched on the falling edge of \overline{E} or \overline{G} signals, and can be read until \overline{E} or \overline{G} returns to V_{IH}. Either \overline{E} or \overline{G} must be toggled to update the latched data. Additionally, any read attempt during program or erase operation will automatically output the content of the Status Register.

Read Electronic Signature (RSIG)

Two codes identifying the manufacturer and the device can be read from the memory allowing programming equipment or applications to automatically match their interface to the characteristics of the M28W160. Manufacturer and Device Code (Electronic Signature) can be read by a Read Electronic Signature Instruction.

It uses 3 operations: a write operation issues the command 90h; it is followed by two read operations to output the manufacturer and device codes. The Manufacturer Code, 20h, is output when the address line A0 is at V_{IL} . The Device Code is 0090h (top version) or 0091h (bottom version) and is output when A0 is at V_{IH} (refer to table 4). Other Address inputs are ignored. The codes are output on DQ0-DQ15. Return to Read Mode is achieved writing the Read Array command.

CFI Query (RCFI)

The Common Flash Interface Query mode is entered by writing 98h. Next read operations will read the CFI data. Write a read instruction to return to Read mode (refer to the Common Flash Interface section).

Read OTP Area (RDO)

The Read OTP Area (RDO) instruction is a single write cycle instruction: as the command 80h is written the device will be driven in Read OTP mode. Any successive read bus cycle will output the addressed OTP word. To return in the Read Memory Array mode write the Read command FFh.

Hex Code	Command
00h, 01h, 60h, 2Fh, C0h	Invalid/Reserved
10h	Alternative Program Set-up
20h	Erase Set-up
30h	OTP Program Set-up
40h	Program Set-up
50h	Clear Status Register
70h	Read Status Register
80h	OTP Read
90h	Read Electronic Signature
98h	CFI Query
B0h	Program/Erase Suspend
D0h	Program/Erase Resume, or Erase Confirm
FFh	Read Array

Table 7. Commands

Table 8. Instructions

Mne-				1st Cycle		2nd Cycle			
monic	Instruction	n Cycles	Operation	Address ⁽¹⁾	Data	Operation	Address	Data	
RD	Read Memory Array	1+	Write	Х	FFh	Read ⁽²⁾	Read Address	Data	
RSR	Read Status Register	1+	Write	Х	70h	Read ⁽²⁾	Х	Status Register	
RSIG	Read Electronic Signature	1++	Write	х	90h	Read ⁽²⁾	Signature Address ⁽³⁾	Signature	
RCFI	CFI Query	1+	Write	Х	98h	Read ⁽²⁾	CFI Address	Query	
RDO	Read OTP Area	1+	Write	Х	80h	Read ⁽²⁾	OTP Address	OTP Data	
EE	Erase	2	Write	Х	20h	Write	Block Address	D0h	
PG	Program	2	Write	Х	40h or 10h	Write	Address	Data Input	
PDO	Program OTP Area	2	Write	Х	30h	Write	OTP Address	OTP Data Input	
CLRS	Clear Status Register	1	Write	Х	50h				
PES	Program/Erase Suspend	1	Write	Х	B0h				
PER	Program/Erase Resume	1	Write	Х	D0h				

Note: 1. X = Don't Care.

2. The first cycle of the RD, RSR, RSIG or RCFI instruction is followed by read operations to read memory array, Status Register or Electronic Signature codes. Any number of Read cycle can occur after one command cycle.

3. Signature address bit A0=V_{IL} will output Manufacturer code. Address bit A0=V_{IH} will output Device code. Other address bits are ignored.

Erase (EE)

Block erasure sets all the bits within the selected block to '1'. One block at a time can be erased. It is not necessary to program the block with 00h as the P/E.C. will do it automatically before erasing. This instruction uses two write cycles. The first command written is the Erase Set up command 20h. The second command is the Erase Confirm command D0h. An address within the block to be erased is given and latched into the memory during the input of the second command. If the second command given is not an erase confirm, the status register bits b4 and b5 are set and the instruction aborts.

Read operations output the status register after erasure has started.

Status Register bit b7 returns '0' while the erasure is in progress and '1' when it has completed. After completion the Status Register bit b5 returns '1' if there has been an Erase Failure. Erasing should not be attempted when V_{PP} is not within the allowed range of values (V_{DD} or V_{PPH}) as the results will be uncertain. Status Register bit b3 returns a '1' if V_{PP} is not within the allowed range of values when erasing is attempted and/or during erasing execution. Refer to the signals description section for details of the allowable ranges.

Erase aborts if V_{PP} drops out of the allowed range or \overline{RP} turns to V_{IL}. As data integrity cannot be guaranteed when the erase operation is aborted, the erase must be repeated. A Clear Status Register instruction must be issued to reset b3 of the Status Register.

During the execution of the erase by the P/E.C., the memory accepts only the RSR (Read Status Register) and PES (Program/Erase Suspend) instructions.

لرېک

V _{PP} ^(1,3)	RP ^(2,4)	WP (1,4)	Lockable Blocks	Other Blocks
Х	VIL	Х	Protected	Protected
V _{IL}	V _{IH}	Х	Protected	Protected
V_{DD} or V_{PPH} ⁽⁵⁾	V _{IH}	V _{IL}	Protected	Unprotected
V_{DD} or V_{PPH} ⁽⁵⁾	V _{IH}	V _{IH}	Unprotected	Unprotected

Table 9. Memory Blocks Protection Truth Table

Note: 1. Notes:1.X' = Don't Care

Notes I.X = Don't Care
 RP is the Reset/Power Down.
 V_{PP} is the program or erase supply voltage.
 V_{IH}/V_{IL} are logic high and low levels.
 V_{PP} must be also greater than the Program Voltage Lock-Out V_{PPLK}.

Mnemonic	Bit	Name	Logic Level	Definition	Note			
			'1'	Ready	Indicates the P/E.C. status, check during			
P/ECS	P/ECS 7 P/E.C. Sta		'0' Busy		Program or Erase, and on completion before checking bits b4 or b5 for Program or Erase Success			
		Erase	'1'	Suspended	On an Erase Suspend instruction P/ECS and			
ESS	6	Suspend Status	'0'	In progress or Completed	ESS bits are set to '1'. ESS bit remains '1' until an Erase Resume instruction is given.			
= 0	_		'1'	Erase Error	ES bit is set to '1' if P/E.C. has applied the			
ES	5	Erase Status	'0'	Erase Success	maximum number of erase pulses to the block without achieving an erase verify.			
DC	4	Program	'1'	Program Error	PS bit set to '1' if the P/E.C. has failed to program			
PS 4 Status	Status	'0'	Program Success	a word.				
			'1'	V _{PP} Invalid, Abort	VPPS bit is set if the VPP voltage is not VPPH nor			
VPPS	3	V _{PP} Status	'0'	V _{PP} OK	V _{DD} when a Program or Erase instruction is executed.			
		Program	'1'	Suspended	On a Program Suspend instruction P/ECS and			
PSS	2	Suspend Status	'0'	In Progress or Completed	PSS bits are set to '1'. PSS remains '1' until a Program Resume Instruction is given			
BPS	1	Block Protection	'1'	Program/Eraseon protected Block, Abort	BPS bit is set to '1' if a Program or Erase operation has been attempted on a protected			
	Status		'0'	No operation to protected blocks	block			
	0	Reserved						

Table 10. Status Register Bits

Note: Logic level '1' is High, '0' is Low.

Program (PG)

The memory array can be programmed word-byword. This instruction uses two write cycles. The first command written is the Program Set-up command 40h (or 10h). A second write operation latches the Address and the Data to be written and starts the P/E.C.

Read operations output the Status Register content after the programming has started. The Status Register bit b7 returns '0' while the programming is in progress and '1' when it has completed. After completion the Status register bit b4 returns '1' if there has been a Program Failure. Programming should not be attempted when V_{PP} is not within the allowed range of values (V_{DD} or V_{PPH}) as the results will be uncertain. Status Register bit b3 returns a '1' if V_{PP} is not within the allowed range of values when programming is attempted and/or during programming execution. Refer to the signals description section for details.

Programming aborts if V_{PP} drops out of the allowed range or \overline{RP} goes to V_{IL} . As data integrity cannot be guaranteed when the program operation is aborted, the memory location must be erased and re-programmed. A Clear Status Register instruction must be issued to reset b3 of the Status Register.

During the execution of the program by the P/E.C., the memory accepts only the RSR (Read Status Register) and PES (Program/Erase Suspend) instructions.

Program OTP Area (PDO)

The Program OTP Area (PDO) instruction is a two write cycle instruction: the first code issues is the OTP Program Setup command 30h, while during the second write cycle the OTP selected Address and the OTP Data to be written are applied to the device. The conventional Read Status Register operation can be performed to monitor the end of the programming operation. To return in the Read Memory Array mode write the Read command FFh.

Clear Status Register (CLRS)

The Clear Status Register uses a single write operation which clears bits b3, b4 and b5 to '0'. Its use is necessary before any new operation when an error has been detected.

Note, also, that the Read Array command must be issued before data can be read from the memory

array. The Clear Status Register is executed writing the command 50h.

Program/Erase Suspend (PES)

As Erase takes in the order of seconds to complete, a Program/Erase Suspend instruction is provided. Program/Erase Suspend interrupts the Program/Erase routine allowing read from and program to data belonging to a different block. Program/Erase suspend is accepted only during the Program/Block Erase instruction execution. When a Program/Erase Suspend command is written to the C.I., the P/E.C. freezes the Program/ Erase operation. Program/Erase Resume (PER) continues the Program/Erase operation.

Program/Erase Suspend consists of writing the command B0h without any specific address.

The Status Register bit b2 is set to '1' when the program has been suspended. b2 is set to '0' in case the program is completed or in progress.

The Status Register bit b6 is set to '1' when the erase has been suspended. b6 is set to '0' in case the erase is completed or in progress.

The valid commands while erase is suspended are Program/Erase Resume, Program, Read Array, Read Status Register, Read Identifier, CFI Query. While program is suspended the same command set is valid except for program instruction. During program/erase suspend mode, the chip can be placed in a pseudo-standby mode by taking $\overline{\rm E}$ to V_{IH}. This reduces active current consumption.

 V_{PP} must be maintained within the allowed range of values (V_{DD} or V_{PPH}) while program/erase is suspended. Program/Erase is aborted if V_{PP} drops out of the allowed range or \overline{RP} turns to V_{IL} and Status Register b5 and b3 are set.

Program/Erase Resume (PER)

If a Program/Erase Suspend instruction was previously executed, the program/erase operation may be resumed by issuing the command D0h.

The status register bit b2/b6 is cleared when program/erase resumes. Read operations output the status register after the program/erase is resumed.

The suggested flow charts for programs that use the programming, erasure and program/erase suspend/resume features of the memories are shown from Figures 9, 10, 11 and 12.

Table 11. Program, Erase Times and Program/Erase Endurance Cycles
$(T_A = 0 \text{ to } 70^{\circ}\text{C or } -40 \text{ to } 85^{\circ}\text{C}; V_{DD} = 2.7\text{V to } 3.6\text{V})$

	T (0)		M28W160		11
Parameter	Test Conditions	Min	Тур ⁽¹⁾	Max	Unit
Ward Dragger	V _{PP} = 12V ±5%		10		μs
Word Program	$V_{PP} = V_{DD}$		20		μs
Main Black Drogram	V _{PP} = 12V ±5%		0.24	1	sec
Main Block Program	$V_{PP} = V_{DD}$		0.8	2.4	sec
Parameter Plack Program	V _{PP} = 12V ±5%		0.03	0.12	sec
Parameter Block Program	$V_{PP} = V_{DD}$		0.1	0.3	sec
Main Black France	V _{PP} = 12V ±5%		0.6	5	sec
Main Block Erase	$V_{PP} = V_{DD}$		1	5	sec
Parameter Block Erase	V _{PP} = 12V ±5%		0.4	4	sec
Parameter block Erase	$V_{PP} = V_{DD}$		0.5	4	sec
Program/Erase Cycles (per Block)		100,000			cycles

Note: $T_A = 25 \text{ °C}$.

A7/

BLOCK PROTECTION

Two parameter blocks can be protected against Program or Erase to ensure extra data security. For M28W160T, the blocks from address FE000h to FFFFh can be protected. For M28W160B, the blocks from address 00000h to 01FFFh can be protected. Unprotected blocks can be programmed or erased.

 $\overline{\text{WP}}$ tied to V_{IL} protects the two lockable blocks. Any program or erase operation on protected blocks is aborted. The Status Register tracks when the event occurs.

 $\overline{\text{WP}}$ tied to V_{IH} unprotects all the blocks that can be protect. Table 9 defines the protection methods. $\overline{\text{RP}}$ tied to V_{IL} protects all blocks.

POWER CONSUMPTION

The M28W160 place itself in one of four different modes depending on the status of the control signals: Active Power, Automatic Power Savings, Standby and Power Down define decreasing levels of current consumption. These allow the memory power to be minimised, in turn decreasing the overall system power consumption.

As different recovery time are linked to the different modes, please refer to the AC timing table to design your system.

Active Power

When \overline{E} is at V_{IL} and \overline{RP} is at V_{IH}, the device is in active mode. Refer to DC Characteristics to get the values of the current supply consumption.

Automatic Stand-by

Automatic Stand-by provides a low power consumption state during read mode.

Following a read operation, after a delay close to the memory access time, the device enters Automatic Stand-by: the Supply Current is reduced to I_{CC1} values. The device keeps the last output data stable, till a new location is accessed.

Stand-by

Refer to the Device Operations section.

Power Down

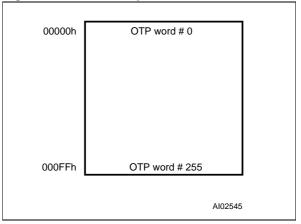
Refer to the Device Operations section.

Power Up

The Supply voltage V_{DD} and the Program Supply voltage V_{PP} can be applied in any order. The

memory Command Interface is reset on power up to Read Memory Array, but a negative transition of Chip Enable \overline{E} or a change of the addresses is required to ensure valid data outputs. Care must be taken to avoid writes to the memory when V_{DD} is above V_{LKO} and V_{PP} powers up first. Writes can be inhibited by driving either \overline{E} or \overline{W} to V_{IH}. The memory is disabled until \overline{RP} is up to V_{IH}.

Supply Rails


Normal precautions must be taken for supply voltage decoupling, each device in a system should have the V_{DD} and V_{PP} rails decoupled with a 0.1µF capacitor close to the V_{DD} and V_{PP} pins. The PCB trace widths should be sufficient to carry the required V_{PP} program and erase currents.

OTP MEMORY AREA

M28W160 features an additional "One Time Programmable" Memory Area. This feature is obtained by means of an OTP Block of 256 word, which can be programmed once and cannot be erased, thus useful to store permanent data. This OTP memory area can be programmed and addressed in Read Mode by the customer through two dedicated commands. Refer to the Program OTP Area (PDO) and Read OTP Area (RDO) instructions to properly write and read the OTP memory block.

The OTP Memory Area is organized as 256 x 16 bits as shown in the OTP Address Table, Figure 3.

Figure 3. OTP Memory Area Address Table

COMMON FLASH INTERFACE (CFI)

The Common Flash Interface (CFI) specification is a JEDEC approved, standardised data structure that can be read from the Flash memory device. CFI allows a system software to query the flash device to determine various electrical and timing parameters, density information and functions supported by the device.

CFI allows the system to easily interface to the Flash memory, to learn about its features and parameters, enabling the software to configure itself when necessary.

Tables 12, 13, 14, 15, 16 and 17 show the address used to retrieve each data.

The CFI data structure gives information on the device, such as the sectorization, the command set and some electrical specifications. Tables 12, 13, 14 and 15 show the addresses used to retrieve each data. The CFI data structure contains also a security area; in this section, a 64 bit unique security number is written, starting at address 80h. This area can be accessed only in read mode by the final user and there are no ways of changing the code after it has been written by ST. Write a read instruction to return to Read mode.

Refer to the CFI Query instruction to understand how the M28W160 enters the CFI Query mode.

Offset	Sub-section Name	Description	
00h	Reserved	Reserved for algorithm-specific information	
10h	CFI Query Identification String Command set ID and algorithm data offset		
1Bh	System Interface Information	Device timing & voltage information	
27h	Device Geometry Definition	Flash device layout	
Р	Primary Algorithm-specific Extended Query table	Additional information specific to the Primary Algorithm (optional)	
A	A Alternate Algorithm-specific Extended Query table Additional information specific to the Algorithm (optional)		

Table 12. Query Structure Overview

Note: The Flash memory display the CFI data structure when CFI Query command is issued. In this table are listed the main sub-sections detailed in Tables 13, 14, 15, 16 and 17. Query data are always presented on the lowest order data outputs.

Offset	Data	Description	
00h	0020h	Manufacturer Code	
01h	0091h - bottom 0090h - top	Device Code	
02h-0Fh	reserved	Reserved	
10h	0051h	Query Unique ASCII String "QRY"	
11h	0052h	Query Unique ASCII String "QRY"	
12h	0059h	Query Unique ASCII String "QRY"	
13h	0003h	Primary Algorithm Command Set and Control Interface ID code 16 bit ID code	
14h	0000h	defining a specific algorithm	
15h	offset = P = 0035h	Address for Drimony Algorithm sytended Query table	
16h	0000h	Address for Primary Algorithm extended Query table	
17h	0000h	Alternate Vendor Command Set and Control Interface ID Code second vendor	
18h	0000h	- specified algorithm supported (note: 0000h means none exists)	
19h	value = A = 0000h	Address for Alternate Algorithm extended Query table note: 0000h means none exists	
1Ah	0000h		

Note: Query data are always presented on the lowest - order data outputs (DQ7-DQ0) only. DQ8-DQ15 are '0'.

Table 14. CFI Query System Interface Information

Offset	Data	Description	
1Bh	0027h	V _{DD} Logic Supply Minimum Program/Erase or Write voltage bit 7 to 4 BCD value in volts bit 3 to 0 BCD value in 100 mV	
1Ch	0036h	V _{DD} Logic Supply Maximum Program/Erase or Write voltage bit 7 to 4 BCD value in volts bit 3 to 0 BCD value in 100 mV	
1Dh	00B4h	VPP [Programming] Supply Minimum Program/Erase voltagebit 7 to 4HEX value in voltsbit 3 to 0BCD value in 100 mVNote: This value must be 0000h if no VPP pin is present	
1Eh	00C6h	V _{PP} [Programming] Supply Maximum Program/Erase voltage bit 7 to 4 HEX value in volts bit 3 to 0 BCD value in 100 mV Note: This value must be 0000h if no V _{PP} pin is present	
1Fh	0005h	Typical timeout per single byte/word program (multi-byte program count = 1), 2 ⁿ µs (if supported; 0000h = not supported)	
20h	0000h	Typical timeout for maximum-size multi-byte program or page write, 2 ⁿ µs (if supported; 0000h = not supported)	
21h	000Ah	Typical timeout per individual block erase, 2 ⁿ ms (if supported; 0000h = not supported)	
22h	0000h	Typical timeout for full chip erase, 2 ⁿ ms (if supported; 0000h = not supported)	
23h	0007h	Maximum timeout for byte/word program, 2 ⁿ times typical (offset 1Fh) (0000h = not supported)	
24h	0000h	Maximum timeout for multi-byte program or page write, 2 ⁿ times typical (offset 20h) (0000h = not supported)	
25h	0003h	Maximum timeout per individual block erase, 2 ⁿ times typical (offset 21h) (0000h = not supported)	
26h	0000h	Maximum timeout for chip erase, 2 ⁿ times typical (offset 22h) (0000h = not supported)	

Offset Word Mode	Data	Description
27h	0015h	Device Size = 2 ⁿ in number of bytes
28h 29h	0001h 0000h	Flash Device Interface Code description: Asynchronous x16
2Ah 2Bh	0000h 0000h	Maximum number of bytes in multi-byte program or page = 2 ⁿ
2Ch	0002h	Number of Erase Block Regions within device bit 7 to 0 = x = number of Erase Block Regions
		 Note:1. x = 0 means no erase blocking, i.e. the device erases at once in "bulk." 2. x specifies the number of regions within the device containing one or more contiguous Erase Blocks of the same size. For example, a 128KB device (1Mb) having blocking of 16KB, 8KB, four 2KB, two 16KB, and one 64KB is considered to have 5 Erase Block Regions. Even though two regions both contain 16KB blocks, the fact that they are not contiguous means they are separate Erase Block Regions. 3. By definition, symmetrically block devices have only one blocking region.
M28W160T	M28W160T	Erase Block Region Information
2Dh	001Eh	bit 31 to 16 = z, where the Erase Block(s) within this Region are (z) times 256 bytes in
2Eh	0000h	size. The value $z = 0$ is used for 128 byte block size.
2Fh	0000h	e.g. for 64KB block size, z = 0100h = 256 => 256 * 256 = 64K
30h	0001h	bit 15 to 0 = y, where y+1 = Number of Erase Blocks of identical size within the Erase
31h	0007h	Block Region:
32h	0000h	e.g. y = D15-D0 = FFFFh => y+1 = 64K blocks [maximum number] y = 0 means no blocking (# blocks = y+1 = "1 block")
33h	0020h	Note: $y = 0$ value must be used with number of block regions of one as indicated
34h	0000h	by $(x) = 0$
M28W160B	M28W160B	
2Dh	0007h	
2Eh	0000h	
2Fh	0020h	
30h	0000h	
31h	001Eh	
32h	0000h	
33h	0000h	
34h	0001h	

 Table 15. Device Geometry Definition

Table 16. Prin	nary Algor	ithm-Specific	Extended	Query Table	

Offset	Data	Description			
(P)h = 35h	0050h				
	0052h	rimary Algorithm extended Query table unique ASCII string "PRI"			
	0049h				
(P+3)h = 38h	0031h	Major version number, ASCII			
(P+4)h = 39h	0030h	Minor version number, ASCII			
(P+5)h = 3Ah	0006h	Extended Query table contents for Primary Algorithm			
	0000h	bit 0 Chip Erase supported (1 = Yes, 0 = No)			
(P+7)h	0000h	bit 1Erase Suspend supported(1 = Yes, 0 = No)bit 2Program Suspend(1 = Yes, 0 = No)			
(P+8)h	0000h	bit 2 Lock/Unlock supported (1 = Yes, 0 = No) bit 4 Quequed Erase supported (1 = Yes, 0 = No) bit 31 to 5 Reserved; undefined bits are '0'			
(P+9)h = 3Eh	0001h	Supported Functions after Suspend Read Array, Read Status Register and CFI Query are always supported during Erase or Program operation			
		bit 0Program supported after Erase Suspend (1 = Yes, 0 = No)bit 7 to 1Reserved; undefined bits are '0'			
(P+A)h = 3Fh (P+B)h	0000h 0000h	Block Lock Status Defines which bits in the Block Status Register section of the Query are implemented.			
		bit 0Block Lock Status Register Lock/Unlock bit active (1 = Yes, 0 = No)bit 1Block Lock Status Register Lock-Down bit active (1 = Yes, 0 = No)bit 15 to 2Reserved for future use; undefined bits are '0'			
(P+C)h = 41h	0027h	V _{DD} Logic Supply Optimum Program/Erase voltage (highest performance)			
		bit 7 to 4 HEX value in volts bit 3 to 0 BCD value in 100 mV			
(P+D)h = 42h	00C0h	V _{PP} Supply Optimum Program/Erase voltage			
		bit 7 to 4 HEX value in volts bit 3 to 0 BCD value in 100 mV			
(P+E)h	0000h	Reserved			

Table 17. Security Code Area

Offset	Data	Description
80h	00XX	
81h	00XX	
82h	00XX	
83h	00XX	64 Decude rendem hit unique ecouvitu number
84h	00XX	64 Pseudo random bit unique security number
85h	00XX	
86h	00XX	
87h	00XX	

Table 18A. DC Characteristics $(T_A = 0 \text{ to } 70^{\circ}\text{C} \text{ or } -40 \text{ to } 85^{\circ}\text{C})$

Symbol	Parameter	Test Condition	V _{DD} = 2.7V to 3.6V V _{DDQ} = 2.7V to 3.6V		Unit
			Min	Max	
ILI	Input Leakage Current	$0V \le V_{IN} \le V_{DD}$		±1	μA
ILO	Output Leakage Current	0V≤ V _{OUT} ≤V _{DD}		±10	μA
Icc	Supply Current (Read)	$\overline{E} = V_{SS}, \overline{G} = V_{IH}, f = 5MHz$		20	mA
I _{CC1}	Supply Current (Standby or Automatic Standby)	$\overline{E} = V_{DD} \pm 0.2V,$ $\overline{RP} = V_{DD} \pm 0.2V$		10	μA
I _{CC2}	Supply Current (Power Down)	$\overline{RP} = V_{SS} \pm 0.2V$		10	μA
	Supply Current (Brogrom)	Program in progress V _{PP} = 12V ± 5%		20	mA
I _{CC3}	Supply Current (Program)	Program in progress V _{PP} = V _{DD}		20	mA
I _{CC4}	Supply Current (Erase)	Erase in progress V _{PP} = 12V ± 5%		20	mA
1004		Erase in progress V _{PP} = V _{DD}		20	mA
I _{CC5}	Supply Current (Program/Erase Suspend)	$\overline{E} = V_{IH}$, Erase suspended		10	μA
IPP	Program Current (Read or Standby)	$V_{PP} > V_{DD}$		200	μA
I _{PP1}	Program Current (Read or Standby)	$V_{PP} \le V_{DD}$		±15	μA
I _{PP2}	Program Current (Power Down)	$\overline{RP} = V_{SS} \pm 0.2V$		5	μA
I _{PP3}	Program Current (Program)	Program in progress V _{PP} = 12V ± 5%		15	mA
1993		Program in progress V _{PP} = V _{DD}		20	mA
I _{PP4}	Program Current (Erase)	Erase in progress V _{PP} = 12V ± 5%		15	mA
'PP4		Erase in progress V _{PP} = V _{DD}		20	mA
I _{PP5} ⁽¹⁾	Program Current (Program/Erase Suspend)	Program/Erase suspended		200	μA
VIL	Input Low Voltage		-0.4	0.4	V
VIH	Input High Voltage		V _{DDQ} -0.4		V
V _{OL}	Output Low Voltage	$\begin{split} I_{OL} &= 100 \mu A, \ V_{DD} = V_{DD} \ \text{min}, \\ V_{DDQ} &= V_{DDQ} \ \text{min} \end{split}$		0.1	V
V _{OH}	Output High Voltage	$I_{OH} = -100\mu A$, $V_{DD} = V_{DD} min$, $V_{DDQ} = V_{DDQ} min$	V _{DDQ} -0.1		V
V_{PP1}	Program Voltage (Program or Erase operations)		2.7	3.6	V
Vpph	Program Voltage (Program or Erase operations)		11.4	12.6	V
V _{LKO}	V _{DD} Supply Voltage (Program and Erase lock-out)			2.2	V
V _{LKO2}	V _{DDQ} Supply Voltage (Program and Erase lock-out)			1.5	V
V _{PPLK}	Program Voltage lock-out			1.5	V

Note: 1. Current increases to I_{CC} + I_{CC5} during a Read operation.

A7/

Table 18B. DC Characteristics $(T_A = 0 \text{ to } 70^\circ\text{C} \text{ or } -40 \text{ to } 85^\circ\text{C})$

Symbol	Parameter	Test Condition	V _{DD} = 2.7V to 3.3V V _{DDQ} = 1.65V min		Unit
-			Min	Max	
ILI	Input Leakage Current	$0V \le V_{IN} \le V_{DD}$		±1	μA
ILO	Output Leakage Current	$0V \le V_{OUT} \le V_{DD}$		±10	μA
Icc	Supply Current (Read)	$\overline{E} = V_{SS}, \overline{G} = V_{IH}, f = 5MHz$		20	mA
I _{CC1}	Supply Current (Standby or Automatic Standby)	$\overline{E} = V_{DD} \pm 0.2V,$ $\overline{RP} = V_{DD} \pm 0.2V$		10	μA
I _{CC2}	Supply Current (Power Down)	$\overline{RP} = V_{SS} \pm 0.2V$		10	μA
laas	Supply Current (Brogrom)	Program in progress V _{PP} = 12V ± 5%		20	mA
I _{CC3}	Supply Current (Program)	Program in progress V _{PP} = V _{DD}		20	mA
	Supply Current (Frase)	Erase in progress V _{PP} = 12V ± 5%		20	mA
I _{CC4}	Supply Current (Erase)	Erase in progress V _{PP} = V _{DD}		20	mA
I _{CC5}	Supply Current (Program/Erase Suspend)	$\overline{E} = V_{IH}$, Erase suspended		10	μA
IPP	Program Current (Read or Standby)	$V_{PP} > V_{DD}$		200	μA
I _{PP1}	Program Current (Read or Standby)	$V_{PP} \leq V_{DD}$		±15	μA
I _{PP2}	Program Current (Power Down)	$\overline{RP} = V_{SS} \pm 0.2V$		5	μA
I _{PP3}	Program Current (Program)	Program in progress V _{PP} = 12V ± 5%		15	mA
'FF3		Program in progress V _{PP} = V _{DD}		20	mA
I _{PP4}	Program Current (Erase)	Erase in progress V _{PP} = 12V ± 5%		15	mA
IPP4	Trogram Guneni (Lrase)	Erase in progress V _{PP} = V _{DD}		20	mA
I _{PP5} ⁽¹⁾	Program Current (Program/Erase Suspend)	Program/Erase suspended		200	μA
VIL	Input Low Voltage		-0.2	0.2	V
VIH	Input High Voltage		V _{DDQ} -0.2		V
V _{OL}	Output Low Voltage	$\begin{split} I_{OL} &= 100 \mu A, \ V_{DD} = V_{DD} \ \text{min}, \\ V_{DDQ} &= V_{DDQ} \ \text{min} \end{split}$		0.1	V
V _{OH}	Output High Voltage	$I_{OH} = -100\mu A$, $V_{DD} = V_{DD} min$, $V_{DDQ} = V_{DDQ} min$	V _{DDQ} -0.1		V
V _{PP1}	Program Voltage (Program or Erase operations)		2.7	3.3	V
V _{PPH}	Program Voltage (Program or Erase operations)		11.4	12.6	V
V _{LKO}	V _{DD} Supply Voltage (Program and Erase lock-out)			2.2	V
V_{LKO2}	V _{DDQ} Supply Voltage (Program and Erase lock-out)			1.2	V
V _{PPLK}	Program Voltage lock-out			1.5	V

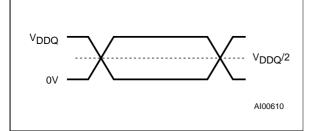

Note: 1. Current increases to I_{CC} + I_{CC5} during a Read operation.

Table 19. AC Measurement Conditions

Input Rise and Fall Times	≤ 10ns
Input Pulse Voltages	0 to V _{DDQ}
Input and Output Timing Ref. Voltages	V _{DDQ} /2

Figure 4. AC Testing Input Output Waveform

$\begin{array}{c} V_{DDQ}/2 \\ \hline \\ 1 N914 \\ \hline \\ 3.3k\Omega \\ \hline \\ UNDER \\ TEST \\ \hline \\ C_L includes JIG capacitance \\ Al00609B \end{array}$

Figure 5. AC Testing Load Circuit

Table 20. Capacitance ⁽¹⁾ (T_A = 25 °C, f = 1 MHz)

Symbol	Parameter	Test Condition	Min	Max	Unit
C _{IN}	Input Capacitance	$V_{IN} = 0V$		6	pF
C _{OUT}	Output Capacitance	V _{OUT} = 0V		12	pF

Note: 1. Sampled only, not 100% tested.

				M28V	V160			
			1	100 120 V _{DD} = 3V to 3.6V V _{DD} = 2.7V to 3.3V V _{DDQ} = 2.7V min V _{DDQ} = 1.65V min)	Unit	
Symbol	Alt	Parameter						
			Min	Мах	Min	Max		
t _{AVAV}	t _{RC}	Address Valid to Next Address Valid	100		120		ns	
t _{AVQV}	tACC	Address Valid to Output Valid		100		120	ns	
t _{PHQV}	t _{PWH}	Power Down High to Output Valid		200		200	ns	
t _{ELQX} ⁽²⁾	t _{LZ}	Chip Enable Low to Output Transition	0		0		ns	
t _{ELQV} ⁽³⁾	t _{CE}	Chip Enable Low to Output Valid		100		120	ns	
t _{GLQX} ⁽²⁾	toLZ	Output Enable Low to Output Transition	0		0		ns	
t _{GLQV} ⁽³⁾	t _{OE}	Output Enable Low to Output Valid		30		35	ns	
t _{EHQX} ⁽²⁾	t _{OH}	Chip Enable High to Output Transition	0		0		ns	
t _{EHQZ} ⁽²⁾	t _{HZ}	Chip Enable High to Output Hi-Z		25		30	ns	
t _{GHQX} ⁽²⁾	tон	Output Enable High to Output Transition	0		0		ns	
t _{GHQZ} ⁽²⁾	tDF	Output Enable High to Output Hi-Z		25		30	ns	
t _{AXQX} ⁽²⁾	tон	Address Transition to Output Transition	0		0		ns	
t _{PLPH} ^(2,4)	t _{RP}	RP Reset Pulse Width	100		100		ns	

Table 21A. Read AC Characteristics ⁽¹⁾ ($T_A = 0$ to 70°C or -40 to 85°C)

Note: 1. See AC Testing Measurement conditions for timing measurements.
2. Sampled only, not 100% tested.
3. G may be delayed by up to t_{ELQV} - t_{GLQV} after the falling edge of E without increasing t_{ELQV}.
4. The device Reset is possible but not guaranteed if t_{PLPH} < 100ns.

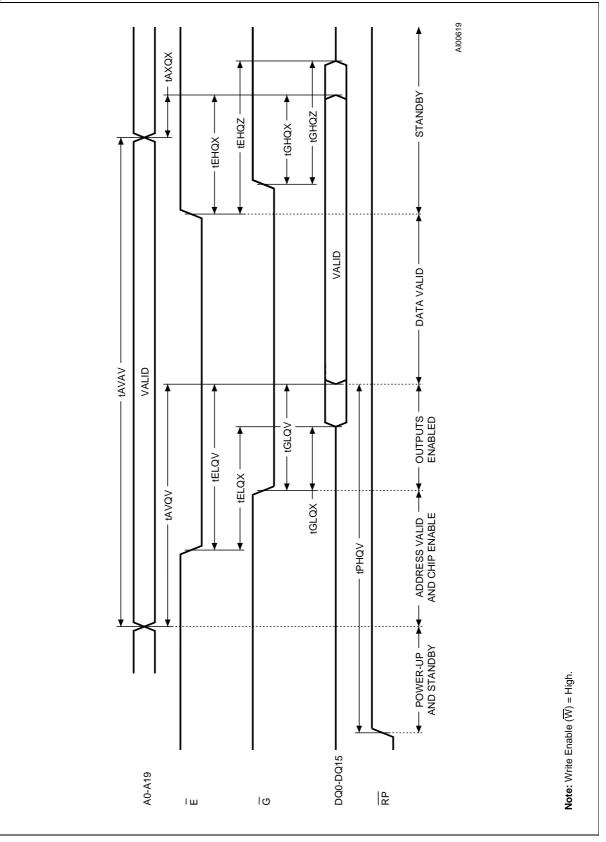

			M28	W160	
			1	50	
Symbol	Alt	Parameter	V _{DD} = 2.7V to 3.3V V _{DDQ} = 1.65V min		Unit
			Min	Max	
t _{AVAV}	t _{RC}	Address Valid to Next Address Valid	150		ns
tAVQV	tACC	Address Valid to Output Valid		150	ns
t _{PHQV}	t _{PWH}	Power Down High to Output Valid		200	ns
t _{ELQX} ⁽²⁾	t _{LZ}	Chip Enable Low to Output Transition	0		ns
t _{ELQV} ⁽³⁾	t _{CE}	Chip Enable Low to Output Valid		150	ns
t _{GLQX} ⁽²⁾	tolz	Output Enable Low to Output Transition	0		ns
t _{GLQV} ⁽³⁾	t _{OE}	Output Enable Low to Output Valid		40	ns
t _{EHQX} ⁽²⁾	t _{OH}	Chip Enable High to Output Transition	0		ns
t _{EHQZ} ⁽²⁾	t _{HZ}	Chip Enable High to Output Hi-Z		35	ns
t _{GHQX} ⁽²⁾	tон	Output Enable High to Output Transition	0		ns
t _{GHQZ} ⁽²⁾	tDF	Output Enable High to Output Hi-Z		35	
t _{AXQX} ⁽²⁾	tон	Address Transition to Output Transition	0	0	
t _{PLPH} ^(2,4)	t _{RP}	RP Reset Pulse Width	100		ns

Table 21B. Read AC Characteristics ⁽¹⁾ ($T_A = 0$ to 70°C or -40 to 85°C)

57

Note: 1. See AC Testing Measurement conditions for timing measurements.
2. Sampled only, not 100% tested.
3. G may be delayed by up to t_{ELQV} - t_{GLQV} after the falling edge of E without increasing t_{ELQV}.
4. The device Reset is possible but not guaranteed if t_{PLPH} < 100ns.

Figure 6. Read AC Waveforms

				M28	3W160		
			1	00	12	20	
Symbol	Alt	Parameter		/ to 3.6V 2.7V min	V _{DD} = 2.7 V _{DDQ} = 1.		Unit
			Min	Max	Min	Max	Unit ns ns ns ns ns ns ns ns ns ns sec sec ns
t _{AVAV}	t _{WC}	Write Cycle Time	100		120		ns
t _{PHWL}	t _{PS}	Power Down High to Write Enable Low	100		120		ns
tELWL	t _{CS}	Chip Enable Low to Write Enable Low	0		0		ns
t _{WLWH}	t _{WP}	Write Enable Low to Write Enable High	70		70		ns
t _{DVWH}	t _{DS}	Data Valid to Write Enable High	70		70		ns
twhdx	tDH	Write Enable High to Data Transition	0		0		ns
t _{WHEH}	t _{CH}	Write Enable High to Chip Enable High	0		0		ns
twhwl	twph	Write Enable High to Write Enable Low	30		30		ns
t _{AVWH}	t _{AS}	Address Valid to Write Enable High	70		70		ns
twphwh		Write Protect High to Write Enable High	70		70		ns
t _{VPHWH} ⁽⁴⁾	t _{VPS}	V _{PP} High to Write Enable High	200		200		ns
t _{WHAX}	t _{AH}	Write Enable High to Address Transition	0		0		ns
t _{WHQV1} ^(2, 3)		Write Enable High to Output Valid	10		10		μs
t _{WHQV2} ⁽²⁾		Write Enable High to Output Valid (Parameter Block Erase)		4		4	sec
t _{WHQV3} ⁽²⁾		Write Enable High to Output Valid (Main Block Erase)		5		5	sec
t _{QVVPL} ⁽⁴⁾		Output Valid to VPP not VDD nor VPPH	0		0		ns
t _{PLPH} ^(4,5)	t _{RP}	RP Reset Pulse Width	100		100		ns
t _{PLRH} ^(4,6)		RP Low to Program/Erase Abort		22		22	μs

Table 22A. Write AC Characteristics, Write Enable Controlled ⁽¹⁾ $(T_A = 0 \text{ to } 70^\circ\text{C} \text{ or } -40 \text{ to } 85^\circ\text{C})$

Note: 1. See AC Testing Measurement conditions for timing measurements.
2. Time is measured to Status Register Read giving bit b7 = '1'.
3. For Program or Erase of the Lockable Blocks WP must be at V_{IH}.

Sampled only, not 100% tested.
 The device Reset is possible but not guaranteed if t_{PLPH} < 100ns.
 The reset will complete within 100ns if RP is asserted while not in Program nor in Erase m

Table 22B. Write AC Characteristics, Write Enable Controlled ⁽¹⁾ $(T_A = 0 \text{ to } 70^\circ\text{C} \text{ or } -40 \text{ to } 85^\circ\text{C})$

			M28V	M28W160 150	
			15		
Symbol	Alt	Parameter	V _{DD} = 2.7 V _{DDQ} = 1	50 V to 3.3V	Unit
			Min	Max	
t _{AVAV}	t _{WC}	Write Cycle Time	150		ns
t _{PHWL}	t _{PS}	Power Down High to Write Enable Low	150		ns
t _{ELWL}	t _{CS}	Chip Enable Low to Write Enable Low	0		ns
t _{WLWH}	t _{WP}	Write Enable Low to Write Enable High	100		ns
t _{DVWH}	t _{DS}	Data Valid to Write Enable High	100		ns
t _{WHDX}	tDH	Write Enable High to Data Transition	0		ns
t _{WHEH}	t _{CH}	Write Enable High to Chip Enable High	0		ns
t _{WHWL}	twph	Write Enable High to Write Enable Low	50		ns
t _{AVWH}	t _{AS}	Address Valid to Write Enable High	100		ns
t _{WPHWH}		Write Protect High to Write Enable High	100		ns
t _{VPHWH} ⁽⁴⁾	t _{VPS}	V _{PP} High to Write Enable High	200		ns
t _{WHAX}	t _{AH}	Write Enable High to Address Transition	0		ns
t _{WHQV1} ^(2, 3)		Write Enable High to Output Valid	10		μs
t _{WHQV2} ⁽²⁾		Write Enable High to Output Valid (Parameter Block Erase)		4	sec
t _{WHQV3} ⁽²⁾		Write Enable High to Output Valid (Main Block Erase)		5	sec
t _{QVVPL} ⁽⁴⁾		Output Valid to V _{PP} not V _{DD} nor V _{PPH}	0		ns
t _{PLPH} ^(4,5)	t _{RP}	RP Reset Pulse Width	100		ns
t _{PLRH} ^(4,6)		RP Low to Program/Erase Abort		22	μs

Note: 1. See AC Testing Measurement conditions for timing measurements.
2. Time is measured to Status Register Read giving bit b7 = '1'.
3. For Program or Erase of the Lockable Blocks WP must be at V_{IH}.
4. Sampled only, not 100% tested.

The device Reset is possible but not guaranteed if t_{PLPH} < 100ns.
 The reset will complete within 100ns if RP is asserted while not in Program nor in Erase mode.

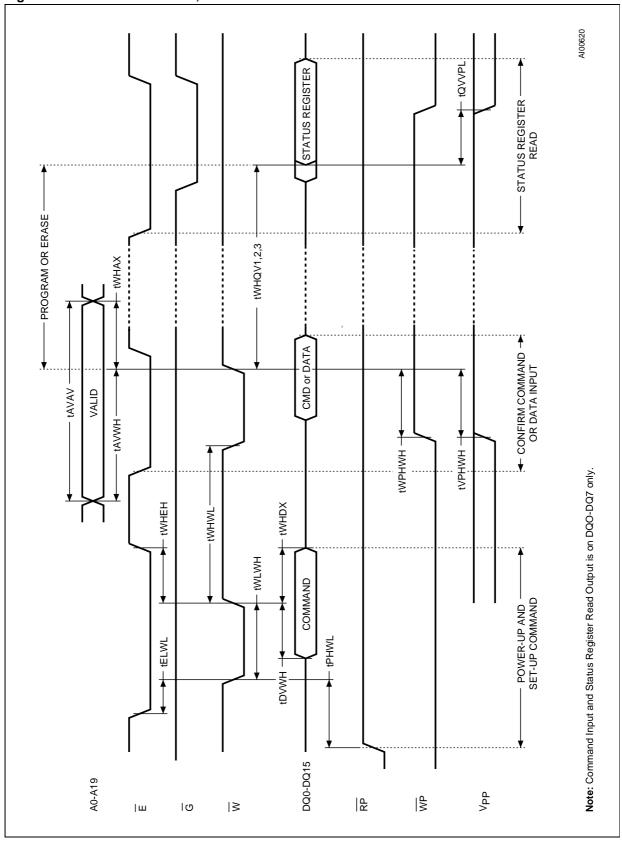


Figure 7. Write AC Waveforms, W Controlled

25/40

Table 23A. Write AC Characteristics, Chip Enable Controlled ⁽¹⁾ $(T_A = 0 \text{ to } 70^{\circ}\text{C or} -40 \text{ to } 85^{\circ}\text{C})$

				M28	W160		
			10	0	120	120	
Symbol	Alt	Parameter	V _{DD} = 3V V _{DDQ} = 2		V _{DD} = 2.7V VDDQ = 1.6		Unit
			Min	Max	Min	Max	Unit ns ns ns ns ns ns ns ns ns sec sec ns
t _{AVAV}	t _{WC}	Write Cycle Time	100		120		ns
t PHEL	t _{PS}	Power Down High to Chip Enable Low	100		120		ns
t _{WLEL}	t _{CS}	Write Enable Low to Chip Enable Low	0		0		ns
t _{ELEH}	t _{CP}	Chip Enable Low to Chip Enable High	70		70		ns
t _{DVEH}	t _{DS}	Data Valid to Chip Enable High	70		70		ns
t _{EHDX}	t _{DH}	Chip Enable High to Data Transition	0		0		ns
t _{EHWH}	t _{WH}	Chip Enable High to Write Enable High	0		10		ns
tehel	t _{CPH}	Chip Enable High to Chip Enable Low	30		30		ns
t _{AVEH}	t _{AS}	Address Valid to Chip Enable High	70		70		ns
t _{WPHEH}		Write Protect High to Chip Enable High	70		70		ns
t _{VPHEH} ⁽⁴⁾	t _{VPS}	V _{PP} High to Chip Enable High	200		200		ns
t _{EHAX}	t _{AH}	Chip Enable High to Address Transition	0		0		ns
t _{EHQV1} ^(2, 3)		Chip Enable High to Output Valid	10		10		μs
t _{EHQV2} ⁽²⁾		Chip Enable High to Output Valid (Parameter Block Erase)		4		4	sec
t _{EHQV3} ⁽²⁾		Chip Enable High to Output Valid (Main Block Erase)		5		5	sec
t _{QVVPL} ⁽⁴⁾		Output Valid to V_{PP} not V_{DD} nor V_{PPH}	0		0		ns
t _{PLPH} ^(4,5)	t _{RP}	RP Reset Pulse Width	100		100		ns
t _{PLRH} ^(4,6)		RP Low to Program/Erase Abort		22		22	μs

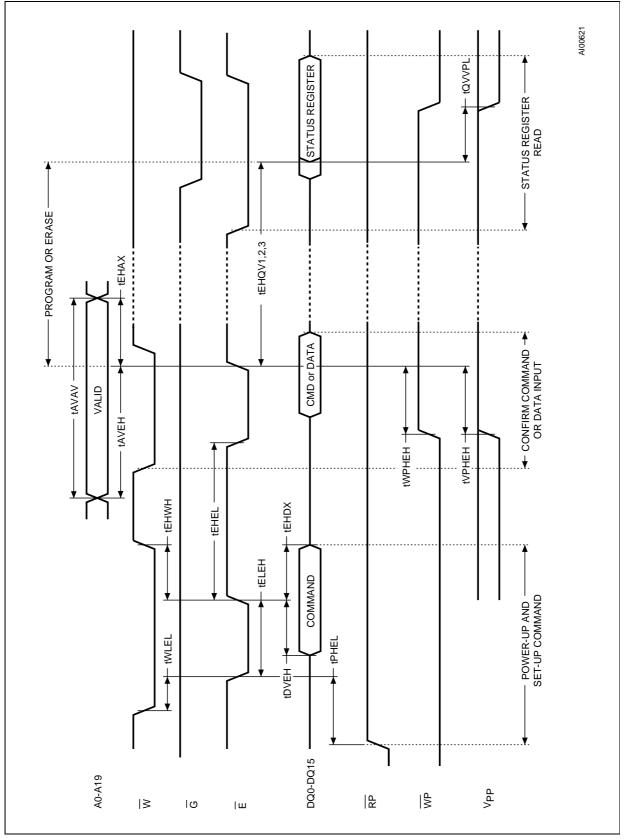
Note: 1. See AC Testing Measurement conditions for timing measurements.
2. Time is measured to Status Register Read giving bit b7 = '1'.
3. For Program or Erase of the Lockable Blocks WP must be at V_{IH}.

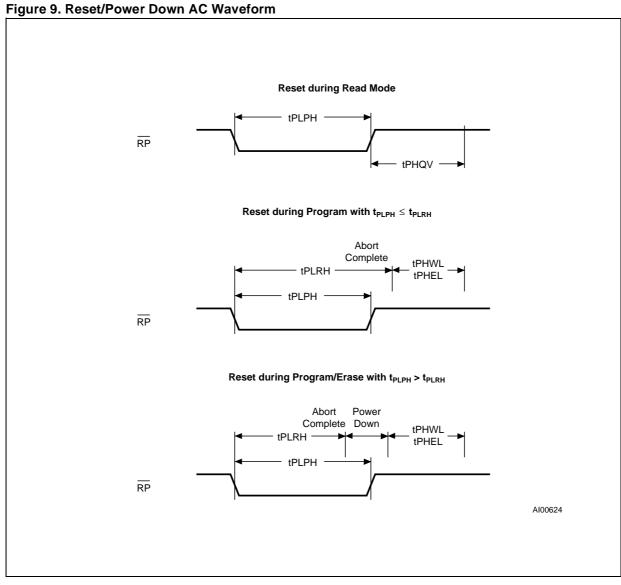
Sampled only, not 100% tested.
 The device Reset is possible but not guaranteed if t_{PLPH} < 100ns.
 The reset will complete within 100ns if RP is asserted while not in Program nor in Erase mode.

				W160	_
Symbol	Alt	Parameter	V _{DD} = 2.7	50 ′V to 3.3V .65V min	Unit
			Min	Max	
t _{AVAV}	twc	Write Cycle Time	150		ns
t _{PHEL}	t _{PS}	Power Down High to Chip Enable Low	150		ns
tWLEL	tcs	Write Enable Low to Chip Enable Low	0		ns
t _{ELEH}	t _{CP}	Chip Enable Low to Chip Enable High	100		ns
tDVEH	t _{DS}	Data Valid to Chip Enable High	100		ns
t _{EHDX}	t _{DH}	Chip Enable High to Data Transition	0		ns
tehwh	twH	Chip Enable High to Write Enable High	0		ns
tehel	tCPH	Chip Enable High to Chip Enable Low	50		ns
t _{AVEH}	t _{AS}	Address Valid to Chip Enable High	100		ns
twphen		Write Protect High to Chip Enable High	100		ns
t _{VPHEH} ⁽⁴⁾	t _{VPS}	V _{PP} High to Chip Enable High	200		ns
t _{EHAX}	t _{AH}	Chip Enable High to Address Transition	0		ns
t _{EHQV1} (2, 3)		Chip Enable High to Output Valid	10		μs
t _{EHQV3} ⁽²⁾		Chip Enable High to Output Valid (Parameter Block Erase)		4	sec
t _{EHQV4} ⁽²⁾		Chip Enable High to Output Valid (Main Block Erase)		5	sec
t _{QVVPL} ⁽⁴⁾		Output Valid to VPP not VDD nor VPPH	0		ns
t _{PLPH} ^(4,5)	t _{RP}	RP Reset Pulse Width	100		ns
t _{PLRH} ^(4,6)		RP Low to ProgramErase Abort		22	μs

Table 23B. Write AC Characteristics, Chip Enable Controlled ⁽¹⁾ $(T_A = 0 \text{ to } 70^\circ\text{C} \text{ or } -40 \text{ to } 85^\circ\text{C})$

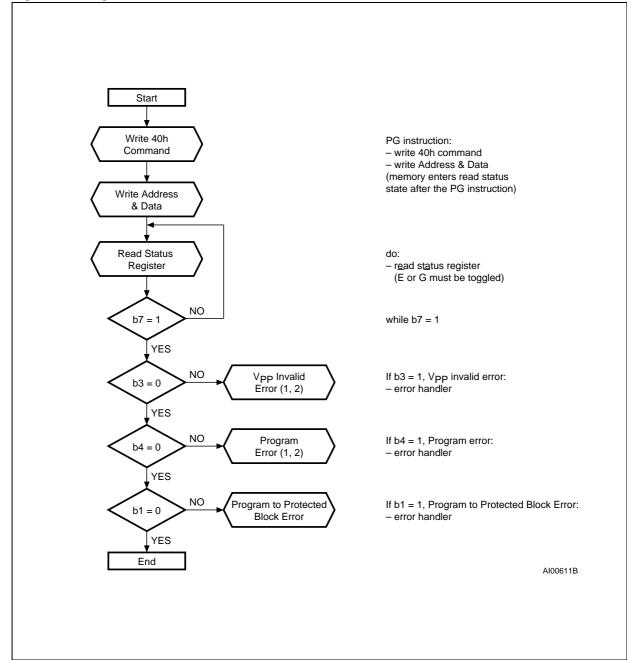
 Note:
 1. See AC Testing Measurement conditions for timing measurements.


 2. Time is measured to Status Register Read giving bit b7 = '1'.
 3. .For Program or Erase of the Lockable Blocks WP must be at VIH.

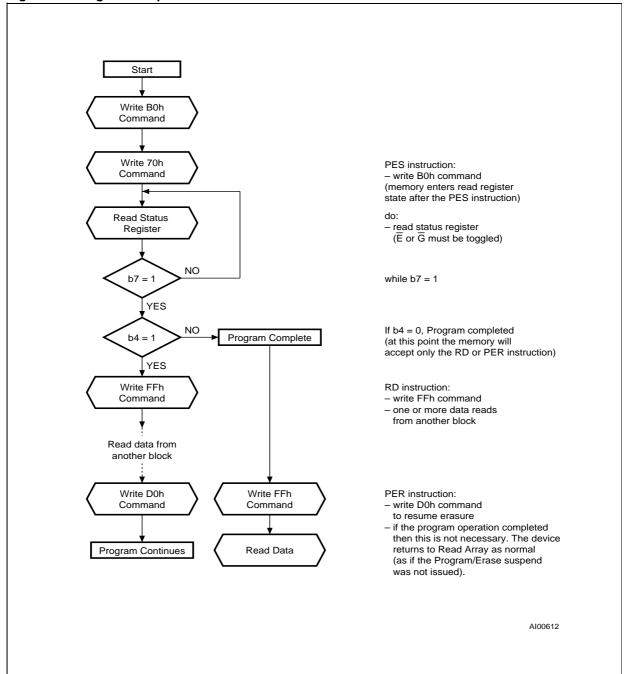

4. Sampled only, not 100% tested.

57

The device Reset is possible but not guaranteed if t_{PLPH} < 100ns.
 The reset will complete within 100ns if RP is asserted while not in Program nor in Erase mode.



<u>___</u>



Note: 1. Status check of b1 (Protected Block), b3 (V_{PP} Invalid) and b4 (Program Error) can be made after each word programming or after a sequence.

A7

2. If an error is found, the Status Register must be cleared (CLRS instruction) before further P/E.C. operations.

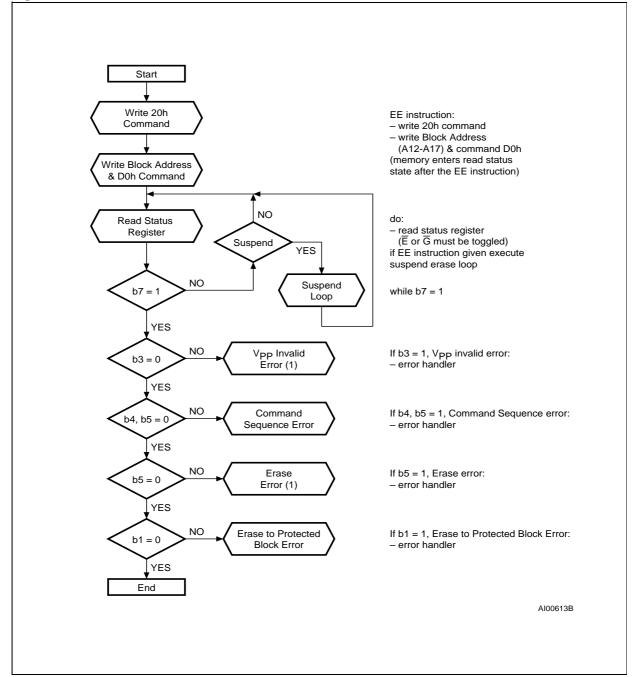
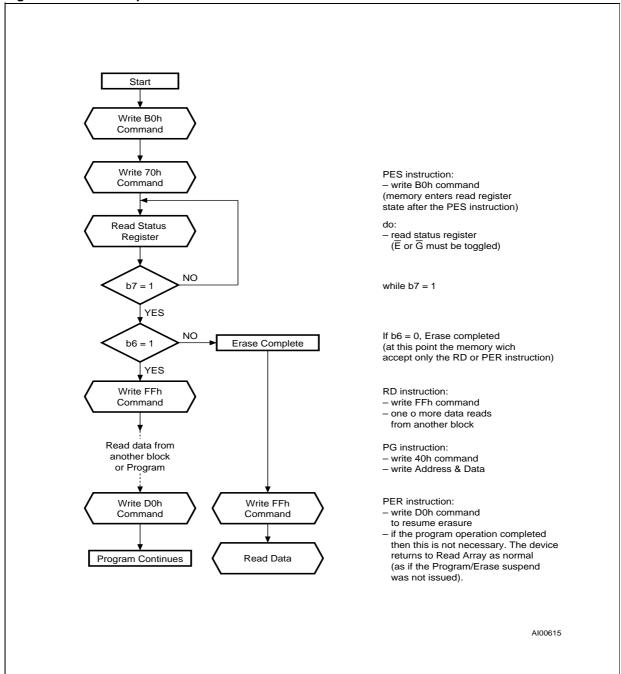


Figure 11. Program Suspend & Resume Flowchart and Pseudo Code


47/

31/40

Note: 1. If an error is found, the Status Register must be cleared (CLRS instruction) before further P/E.C. operations.

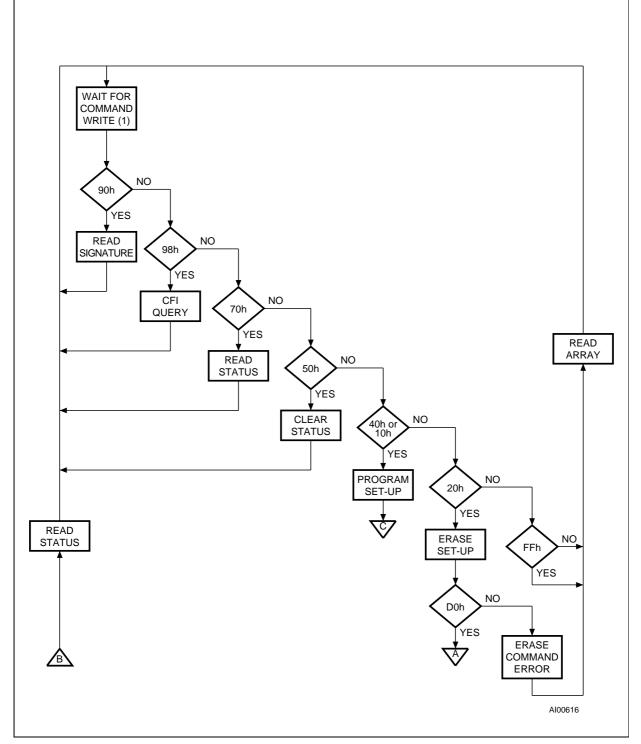


Figure 13. Erase Suspend & Resume Flowchart and Pseudo Code

47/

33/40

Note: 1. If no command is written, the Command Interface remains in its previous valid state. Upon power-up, on exit from power-down or if V_{DD} falls below V_{LKO} , the Command Interface defaults to Read Array mode. 2. P/E.C. status (Ready or Busy) is read on Status Register bit 7.

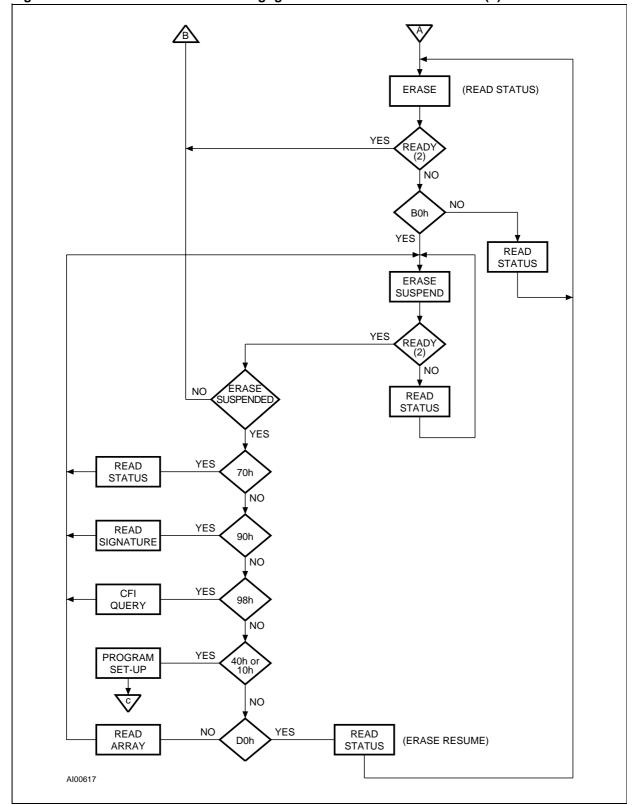
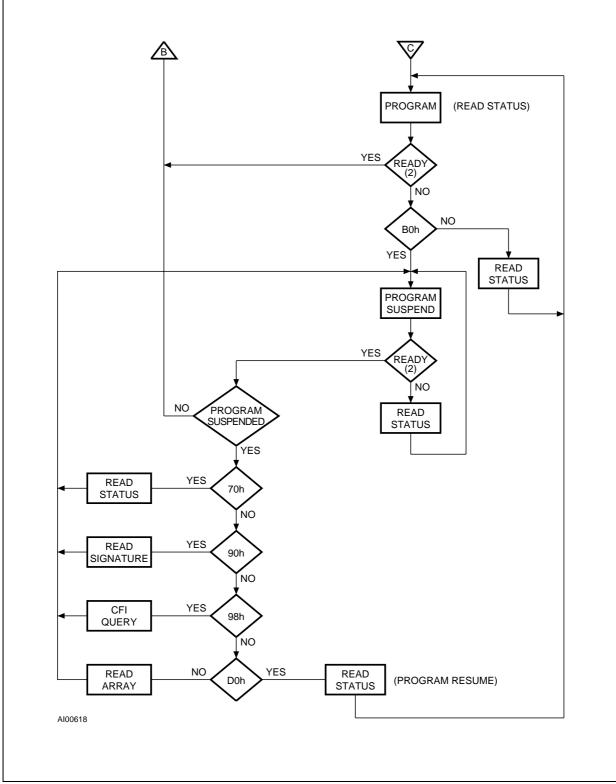
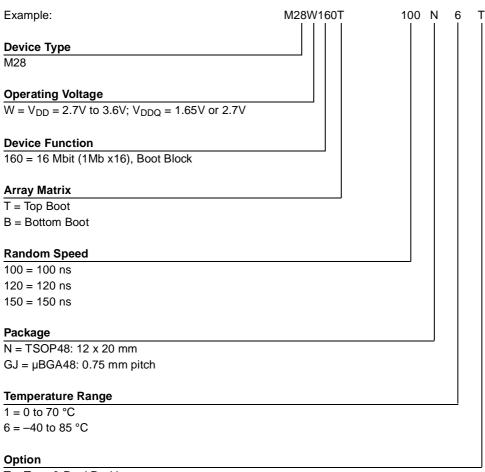



Figure 14B. Command Interface and Prgogram Erase Controller Flowchart (b)

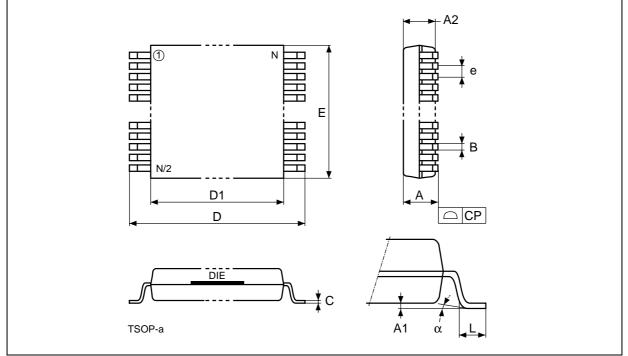

Note: 2. P/E.C. status (Ready or Busy) is read on Status Register bit 7.

Note: 2. P/E.C. status (Ready or Busy) is read on Status Register bit 7.

Table 24. Ordering Information Scheme

T = Tape & Reel Packing

51

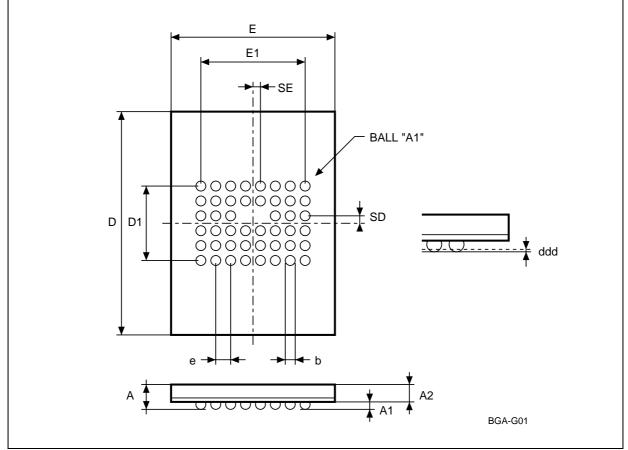

Devices are shipped from the factory with the memory content erased (to FFFFh).

For a list of available options (Speed, Package, etc...) or for further information on any aspect of this device, please contact the STMicroelectronics Sales Office nearest to you.

Curren la		mm		inches		
Symb	Тур	Min	Max	Тур	Min	Мах
А			1.20			0.047
A1		0.05	0.15		0.002	0.006
A2		0.95	1.05		0.037	0.041
В		0.17	0.27		0.007	0.011
С		0.10	0.21		0.004	0.008
D		19.80	20.20		0.780	0.795
D1		18.30	18.50		0.720	0.728
E		11.90	12.10		0.469	0.476
е	0.50	-	-	0.020	_	-
L		0.50	0.70		0.020	0.028
α		0°	5°		0°	5°
Ν		48	•		48	
CP			0.10			0.004

Table 25. TSOP48 - 48 lead Plastic Thin Small Outline, 12 x 20 mm, Package Mechanical Data

Figure 15. TSOP48 - 48 lead Plastic Thin Small Outline, 12 x 20 mm, Package Outline



Drawing is not to scale.

Cumh		mm			inches	
Symb	Тур	Min	Max	Тур	Min	Max
А			0.865			0.034
A1	0.200	0.150	0.250	0.008	0.006	0.010
A2	0.494	0.444	0.544	0.019	0.017	0.021
b	0.300	0.250	0.350	0.012	0.010	0.014
ddd	0.150	0.100	0.200	0.006	0.004	0.008
D	9.616	9.516	9.716	0.379	0.375	0.383
D1	3.750	-	-	0.148	-	-
е	0.750	-	-	0.030	-	-
E	6.850	6.750	6.950	0.270	0.266	0.274
E1	5.250	-	-	0.207	-	-
SD	0.375	-	-	0.015	-	-
SE	0.375	-	-	0.015	-	-

Table 26. µBGA48 - 8 x 6 balls, 0.75 mm pitch, Package Mechanical Data

Figure 16. µBGA48 - 8 x 6 balls, 0.75 mm pitch, Package Outline

Drawing is not to scale.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

All other names are the property of their respective owners.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands -Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

http://www.st.com

