
查询DS14196供应商

S14196 EIA/TIA-232 5

Driver

×

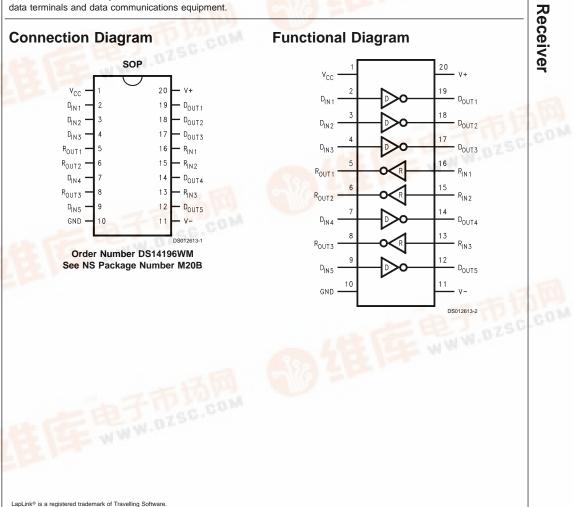
ω

April 1999

National Semiconductor

DS14196 EIA/TIA-232 5 Driver x 3 Receiver

General Description

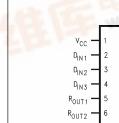

The DS14196 is a five driver, three receiver device which conforms to the EIA/TIA-232-E and the ITU-T V.28 standards.

The flow-through pinout facilitates simple non-crossover board layout. The DS14196 provides a peripheral side one-chip solution for the common 9-pin serial RS-232 interface between data terminals and data communications equipment.

The DS14196 offers optimum performance when used with the DS14185 3 x 5 Driver/Receiver, a host side one-chip solution for the common 9-pin serial RS-232 interface between data terminals and data communications equipment.

Features

- Replaces two 1488s and one 1489
- Conforms to EIA/TIA-232-E and ITU-T V.28
- 5 drivers and 3 receivers
- Flow-through pinout
- Failsafe receiver outputs high when inputs open
- 20-pin wide SOIC package
- LapLink[®] compatible 230.4 kbps data rate
- Pin compatible with: SN75196, GD75323



© 1999 National Semiconductor Corporation DS012613

dzsc.con

www.national.com

Absolute Maximum Ratings (Note 1)

•

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (V _{CC})	+7V
Supply Voltage (V ⁺)	+15V
Supply Voltage (V ⁻)	–15V
Driver Input Voltage	0V to V_{CC}
Driver Output Voltage (Power Off)	±15V
Receiver Input Voltage	±25V
Receiver Output Voltage (R _{OUT})	0V to V_{CC}
Maximum Power Package Dissipa	ation @ +25°C
M Package	1524 mW
Derate M Package	12.2 mW/°C above 25°C

Storage Temperature Range	–65°C to +150°C
Lead Temperature Range (Soldering, 4 se	ec.) +260°C
ESD Ratings (HBM. 1.5 kΩ, 100 pF)	≥1.5 kV

Recommended Operating Conditons

	Min	Nom	Max	Units
Supply Voltage (V_{CC})	+4.75	+5.0	+5.25	V
Supply Voltage (V ⁺)	+9.0	+12.0	+13.2	V
Supply Voltage (V ⁻)	-13.2	-12.0	-9.0	V
Operating Free Air				
Temperature (T _A)	0	+25	+70	°C

Electrical Characteristics(Note 2) (Note 3) Over recommended operating supply and temperature ranges unless otherwise specified

Symbol	Parameter	Conditions		Min	Тур	Max	Units
DEVICE	CHARACTERISTICS						
I _{cc}	V _{CC} Supply Current	No Load, All Inputs at +5V			13	22	mA
l+	V ⁺ Supply Current	No Load, All Driver	V ⁺ = +9V, V ⁻ = -9V		16	26	mA
		Inputs at 0.8V or	V ⁺ = +13.2V, V ⁻ = -13.2V		23	36	mA
I ⁻	V ⁻ Supply Current	+2V. All Receiver	V ⁺ = +9V, V ⁻ = -9V		-18	-26	mA
		Inputs at 0.8V or 2.4V.	V ⁺ = +13.2V, V ⁻ = -13.2V		-25	-36	mA
DRIVER	CHARACTERISTICS						
VIH	High Level Input Voltage			2.0			V
VIL	Low Level Input Voltage					0.8	V
I _{IH}	High Level Input Current	V _{IN} = 5V				10	μA
I _{IL}	Low Level Input Current	$V_{IN} = 0V$			-1.1	-1.5	mA
V _{он}	High Level Output Voltage	$R_{L} = 3 k\Omega, V_{IN} = 0.8^{\circ}$	V, V ⁺ = +9V, V ⁻ = -9V	6	7		V
		$R_{L} = 3 k\Omega, V_{IN} = 0.8V, V^{+} = +12V, V^{-} = -12V$		8	9		V
		$R_{L} = 7 \text{ k}\Omega, \text{ V}_{IN} = 0.8^{\circ}$	V, V ⁺ = +13.2V, V ⁻ = -13.2V	10	11.5		V
V _{OL}	Low Level Output Voltage	$R_{L} = 3 k\Omega, V_{IN} = 2V,$	$V^{+} = +9V, V^{-} = -9V$		-7	-6	V
		$R_{L} = 3 k\Omega, V_{IN} = 2V, V^{+} = +12V, V^{-} = -12V$			-10	-8	V
		$R_L = 7 k\Omega, V_{IN} = 2V,$	V ⁺ = +13.2V, V ⁻ = -13.2V		-11.5	-10	V
l _{os} +	Output High Short	$V_{OUT} = 0V, V_{IN} = 0.8V$		-6	-12	-18	mA
	Circuit Current (Note 4)						
I _{os} -	Output Low Short	$V_{OUT} = 0V, V_{IN} = 2.0V$		6	12	18	mA
	Circuit Current (Note 4)						
Ro	Output Resistance	$-2V \le V_{OUT} \le +2V, V^+ = V^- = V_{CC} = 0V$		300			Ω
		$-2V \le V_{OUT} \le +2V, V^+ = V^- = V_{CC}$ = Open Circuit		300			Ω
RECEIV	ER CHARACTERISTICS					-	
V _{TH}	Input High Threshold	$V_{OUT} \le 0.4V, I_O = 3.2$	2 mA		1.85	2.4	V
	(Recognized as a High Signal)						
V _{TL}	Input Low Threshold	$V_{OUT} \ge 2.5V, I_O = -0.5 \text{ mA}$		0.7	1.0		V
	(Recognized as a Low Signal)						
R _{IN}	Input Resistance	$V_{IN} = \pm 3V$ to $\pm 15V$		3.0	3.8	7.0	kΩ
I _{IN}	Input Current	V _{IN} = +15V		2.1	4.0	5.0	mA
		V _{IN} = +3V		0.43	0.7	1.0	mA
		V _{IN} = -15V		-2.1	-4.0	-5.0	mA
		$V_{IN} = -3V$		-0.43	-0.7	-1.0	mA

Electrical Characteristics(Note 2) (Note 3) (Continued)

Over recommended operating supply and temperature ranges unless otherwise specified

Symbol	Parameter	Conditions		Тур	Max	Units
RECEIVE	ER CHARACTERISTICS					
V _{OH}	High Level Output Voltage	$I_{OH} = -0.5 \text{ mA}, V_{IN} = -3V$	2.6	4.0		V
	(Note 7)	I _{OH} = -10 μA, V _{IN} = -3V	4.0	4.9		V
		I _{OH} = -0.5 mA, V _{IN} = Open Circuit	2.6	4.0		V
		$I_{OH} = -10 \ \mu A, V_{IN} = Open Circuit$	4.0	4.9		V
V _{OL}	Low Level Output Voltage	I _{OL} = 3.2 mA, V _{IN} = +3V		0.2	0.4	V
I _{OSR}	Short Circuit Current	$V_{OUT} = 0V, V_{IN} = 0V$ (Note 4)	-1.7	-2.7	-4	mA

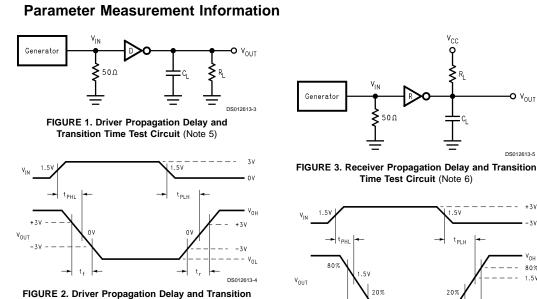
Switching Characteristics (Note 3) (Note 5) (Note 6)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
DRIVER O	CHARACTERISTICS					
t _{PHL}	Propagation Delay High to Low	$R_L = 3 k\Omega, C_L = 50 pF$		60	350	ns
t _{PLH}	Propagation Delay Low to High	(Figures 1, 2)		240	350	ns
t _r , t _f	Rise/Fall Time (Note 8)			40		ns
RECEIVE	R CHARACTERISTICS	· ·				
t _{PHL}	Propagation Delay High to Low	$R_{L} = 1.5 \text{ k}\Omega, C_{L} = 15 \text{ pF}$		150	350	ns
t _{PLH}	Propagation Delay Low to High	(includes fixture plus probe),		240	350	ns
t _r	Rise Time	(Figures 3, 4)		40	175	ns
t _r	Fall Time			40	100	ns

Note 1: Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of Electrical Characteristics specifies conditions of device operation.

Note 2: Current into device pins is defined as positive. Current out of the device pins is defined as negative. All voltages are referenced to ground unless otherwise specified. For current, minimum and maximum values are specified as an absolute value and the sign is used to indicate direction. For voltage logic levels, the more positive value is designated as maximum. For example, if -6V is a maximum, the typical value -6.8V is more negative.

Note 3: All typicals are given for: V_{CC} = +5V, V⁺ = +12V, V⁻ = -12V, T_A = +25°C.


Note 4: Only one driver output shorted at a time.

Note 5: Generator characteristics for driver input: f = 64 kHz (128 kbps), t_r = t_f < 10 ns, V_{IH} = 3V, V_{IL} = 0V, duty cycle = 50%.

Note 6: Generator characteristics for receiver input: f = 64 kHz (128 kbps), t_r = t_f = 200 ns, V_{IH} = 3V, V_{IL} = -3V, duty cycle = 50%.

Note 7: If receiver inputs are unconnected, receiver output is a logic high.

Note 8: Refer to typical curves. Driver output slew rate is measured from the +3V to the -3V level on the output waveform. Inputs not under test are connected to V_{CC} or GND. Slew rate is determined by load capacitance. To comply with a 30 V/µs maximum slew rate, a minimum load capacitance of 390 pF is recommended.

Time Waveforms Slew Rate (SR) = $6V/(t_r \text{ or } t_f)$

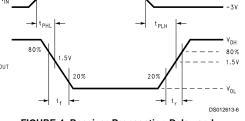


FIGURE 4. Receiver Propagation Delay and **Transition Time Waveform**

Pin Descriptions

Pin #	Pin	Description
	Name	
2, 3, 4, 7, 9	D _{IN}	Driver Input Pins
12, 14, 17, 18, 19	D _{OUT}	Driver Output Pins, RS-232 Levels
13, 15, 16	R _{IN}	Receiver Input Pins, RS-232 Levels
5, 6, 8	R _{OUT}	Receiver Output Pins
10	GND	Ground
20	V+	Positive Power Supply Pin (+9.0 \leq V ⁺ \leq +13.2)
11	V-	Negative Power Supply Pin ($-9.0 \le V^- \le -13.2$)
1	V _{cc}	Positive Power Supply Pin (+5V ±5%)

Applications Information

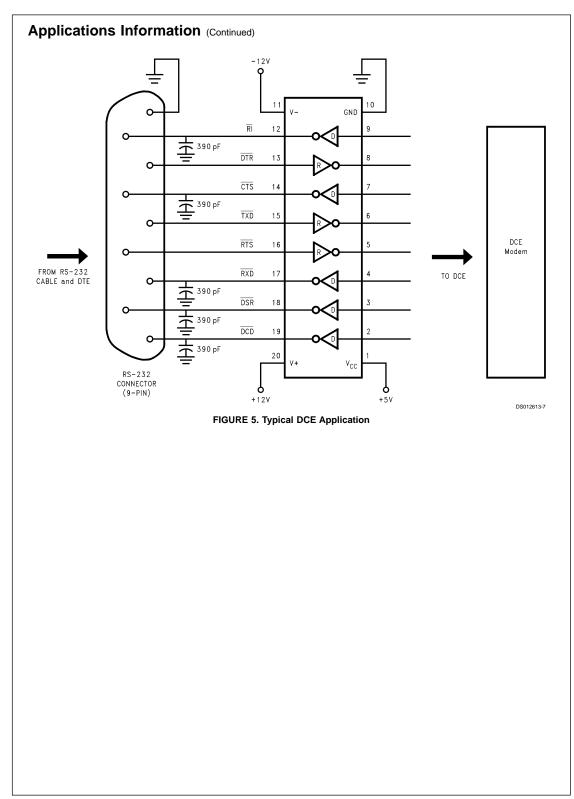
In a typical Data Terminal Equipment (DTE) to Data Circuit-Terminating Equipment (DCE) 9-pin de-facto interface implementation, 2 data lines and 6 control lines are required. The data lines are TXD and RXD. The control lines are RTS, DTR, DSR, DCD, CTS and RI.

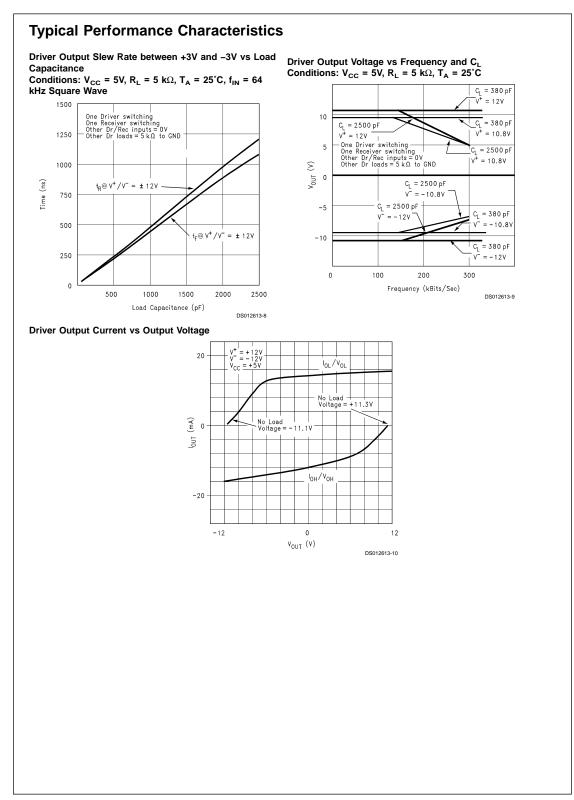
The DS14196 is a 5 x 3 Driver/Receiver and offers a single chip solutuion for this DTE interface. As shown in Figure 5, this interface allows for direct flow-thru interconnect. For a more conservative design, the user may wish to insert ground traces between the signal lines to minimize cross talk.

FAILSAFE RECEIVER OUTPUTS

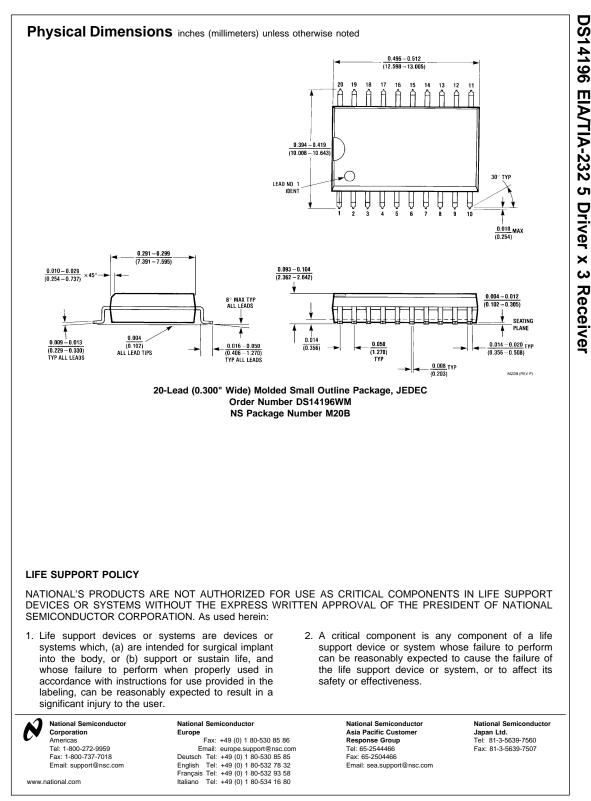
The DS14196 features failsafe receiver outputs. In failsafe mode, if the receiver input becomes zero or an open-circuit, the receiver output is pulled to a high level.

LapLink COMPATIBILITY


The DS14196 can easily provide 128 kbps data rate under maximum driver load conditions of C_{L} = 2500 pF and R_{L} = 3 $k\Omega$, while power supplies are:


 $V_{CC} = +4.75V, V^+ = 10.8V, V^- = -10.8V$

MOUSE DRIVING


A typical mouse can be powered from the drivers. Two driver outputs connected in parallel and set to V_{OH} can be used to supply power to the V⁺ pin of the mouse. The third driver output is set to $V_{\mbox{\scriptsize OL}}$ to sink the current from the V-terminal. Refer to typical curves of VOUT/IOUT. Typical mouse specifications are:

10 mA at +6V 5 mA at -6V

www.national.com

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.