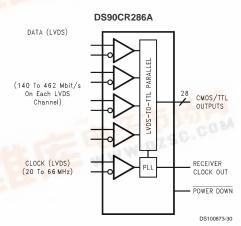


June 1999

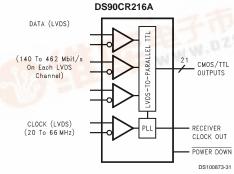
DS90CR286A/DS90CR216A

+3.3V Rising Edge Data Strobe LVDS Receiver 28-Bit Channel Link—66 MHz, +3.3V Rising Edge Strobe LVDS Receiver 21-Bit Channel Link—66 MHz

1.0 General Description


The DS90CR286A receiver converts the four LVDS data streams (Up to 1.848 Gbps throughput or 231 Megabytes/sec bandwidth) back into parallel 28 bits of CMOS/TTL data. Also available is the DS90CR216A that converts the three LVDS data streams (Up to 1.386 Gbps throughput or 173 Megabytes/sec bandwidth) back into parallel 21 bits of CMOS/TTL data. Both Receivers' outputs are Rising edge strobe.

This chipset is an ideal means to solve EMI and cable size problems associated with wide, high speed TTL interfaces.


2.0 Features

- 20 to 66 MHz shift clock support
- 50% duty cycle on receiver output clock
- Best-in-Class Set & Hold Times on RxOUTPUTs
- Rx power consumption <270 mW (typ) @66MHz Worst Case
- Rx Power-down mode <200µW (max)
- ESD rating >7 kV (HBM), >700V (EIAJ)
- PLL requires no external components
- Compatible with TIA/EIA-644 LVDS standard
- Low profile 56-lead or 48-lead TSSOP package
- Operating Temperature: -40°C to +85°C

3.0 Block Diagrams

Order Number DS90CR286AMTD See NS Package Number MTD56

Order Number DS90CR216AMTD See NS Package Number MTD48

4.0 Absolute Maximum Ratings (Note

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (V_{CC}) -0.3V to +4VCMOS/TTL Output Voltage -0.3V to (V_{CC} + 0.3V) LVDS Receiver Input Voltage –0.3V to ($V_{\rm CC}$ + 0.3V) Junction Temperature +150°C Storage Temperature -65°C to +150°C Lead Temperature (Soldering, 4 sec) +260°C

Maximum Package Power Dissipation Capacity @ 25°C

MTD56 (TSSOP) Package:

DS90CR286A

MTD48 (TSSOP) Package:

DS90CR216A

Package Derating: DS90CR286A 12.4 mW/°C above +25°C DS90CR216A 15 mW/°C above +25°C **ESD** Rating > 7 kV

> 700V

(HBM, 1.5 kΩ, 100 pF) (EIAJ, 0Ω, 200 pF)

5.0 Recommended Operating **Conditions**

	Min	Nom	Max	Units	
Supply Voltage (V _{CC})	3.0	3.3	3.6	V	
Operating Free Air					
Temperature (T _A)	-40	+25	+85	°C	
Receiver Input Range	0		2.4	V	
Supply Noise Voltage (V_{CC})			100	mV_PP	

Electrical Characteristics

Over recommended operating supply and temperature ranges unless otherwise specified.

1.61 W

1.89 W

Symbol	Parameter	Condition	Min	Тур	Max	Units	
CMOS/TTL DC SPECIFICATIONS							
V _{OH}	High Level Output Voltage	$I_{OH} = -0.4 \text{ mA}$		2.7	3.3		V
V _{OL}	Low Level Output Voltage	I _{OL} = 2 mA		0.06	0.3	V	
I _{os}	Output Short Circuit Current	V _{OUT} = 0V		-60	-120	mA	
LVDS RE	CEIVER DC SPECIFICATIONS			•			<u> </u>
V _{TH}	Differential Input High Threshold	V _{CM} = +1.2V				+100	mV
V _{TL}	Differential Input Low Threshold		-100			mV	
I _{IN}	Input Current	$V_{IN} = +2.4V, V_{CC} = 3.6V$ $V_{IN} = 0V, V_{CC} = 3.6V$				±10	μA
						±10	μA
RECEIVE	R SUPPLY CURRENT			•			
ICCRW Receiver	Receiver Supply Current Worst Case	C _L = 8 pF, Worst Case Pattern, DS90CR286A (Figures 1, 2), T _A =-10°C to +70°C	f = 33 MHz		49	65	mA
			f = 37.5 MHz		53	70	mA
			f = 66 MHz		81	105	mA
ICCRW Receiver Supply Current Worst C	Receiver Supply Current Worst Case	C _L = 8 pF, Worst Case Pattern,	f = 40 MHz		53	70	mA
		DS90CR286A (Figures 1, 2), T _A =-40°C to +85°C	f = 66 MHz		81	105	mA
ICCRW Receiver Supply Current Worst Ca	Receiver Supply Current Worst Case	Case Pattern, DS90CR216A (Figures 1 2) T = 10°C to	f = 33 MHz		49	55	mA
			f = 37.5 MHz		53	60	mA
			f = 66 MHz		78	90	mA
ICCRW	Receiver Supply Current Worst Case	C _L = 8 pF, Worst Case Pattern,	f = 40 MHz		53	60	mA
		DS90CR216A (Figures 1, 2), T _A =-40°C to +85°C	f = 66 MHz		78	90	mA
ICCRZ	Receiver Supply Current	Power Down = Low			10	55	μA
	Power Down	Receiver Outputs Stay L					
		Power Down Mode					

www.national.com

Electrical Characteristics (Continued)

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The tables of "Electrical Characteristics" specify conditions for device operation.

Note 2: Typical values are given for $V_{CC} = 3.3V$ and $T_A = +25C$.

Note 3: Current into device pins is defined as positive. Current out of device pins is defined as negative. Voltages are referenced to ground unless otherwise specified (except V_{OD} and Δ V _{OD}).

Receiver Switching Characteristics

Over recommended operating supply and temperature ranges unless otherwise specified

Symbol	Parameter			Тур	Max	Units
CLHT	CMOS/TTL Low-to-High Transition Time (Figure 2)			2	5	ns
CHLT	CMOS/TTL High-to-Low Transition Time (Figure 2)		1.8	5	ns	
RSPos0	Receiver Input Strobe Position for Bit 0 (Figure 9, Figure 10)	1.0	1.4	2.15	ns	
RSPos1	Receiver Input Strobe Position for Bit 1		4.5	5.0	5.8	ns
RSPos2	Receiver Input Strobe Position for Bit 2		8.1	8.5	9.15	ns
RSPos3	Receiver Input Strobe Position for Bit 3		11.6	11.9	12.6	ns
RSPos4	Receiver Input Strobe Position for Bit 4		15.1	15.6	16.3	ns
RSPos5	Receiver Input Strobe Position for Bit 5		18.8	19.2	19.9	ns
RSPos6	Receiver Input Strobe Position for Bit 6		22.5	22.9	23.6	ns
RSPos0	Receiver Input Strobe Position for Bit 0 (Figure 9, Figure 10)	0.7	1.1	1.4	ns	
RSPos1	Receiver Input Strobe Position for Bit 1		2.9	3.3	3.6	ns
RSPos2	Receiver Input Strobe Position for Bit 2		5.1	5.5	5.8	ns
RSPos3	Receiver Input Strobe Position for Bit 3	7.3	7.7	8.0	ns	
RSPos4	Receiver Input Strobe Position for Bit 4	9.5	9.9	10.2	ns	
RSPos5	Receiver Input Strobe Position for Bit 5	11.7	12.1	12.4	ns	
RSPos6	Receiver Input Strobe Position for Bit 6	13.9	14.3	14.6	ns	
RSKM	RxIN Skew Margin (Note 4) (Figure 11)	f = 40 MHz	490			ps
f = 6		f = 66 MHz	400			ps
RCOP	RxCLK OUT Period (Figure 3)	15	Т	50	ns	
RCOH	RxCLK OUT High Time (Figure 3) f = 40 MHz		10.0	12.2		ns
RCOL	RxCLK OUT Low Time (Figure 3)		10.0	11.0		ns
RSRC	RxOUT Setup to RxCLK OUT (Figure 3)		6.5	11.6		ns
RHRC	RxOUT Hold to RxCLK OUT (Figure 3)		6.0	11.6		ns
RCOH	RxCLK OUT High Time (Figure 3) f = 66 MHz			7.6		ns
RCOL	RxCLK OUT Low Time (Figure 3)	5.0	6.3		ns	
RSRC	RxOUT Setup to RxCLK OUT (Figure 3)	4.5	7.3		ns	
RHRC	RxOUT Hold to RxCLK OUT (Figure 3)	4.0	6.3		ns	
RCCD	RxCLK IN to RxCLK OUT Delay 25°C, V _{CC} = 3.3V (Note 5)(Figure 4)			5.0	7.5	ns
RPLLS	Receiver Phase Lock Loop Set (Figure 5)				10	ms
RPDD	Receiver Power Down Delay (Figure 8)			1	μs	

Note 4: Receiver Skew Margin is defined as the valid data sampling region at the receiver inputs. This margin takes into account the transmitter pulse positions (min and max) and the receiver input setup and hold time (internal data sampling window - RSPos). This margin allows for LVDS interconnect skew, inter-symbol interference (both dependent on type/length of cable), and clock jitter (less than 250 ps).

Note 5: Total latency for the channel link chipset is a function of clock period and gate delays through the transmitter (TCCD) and receiver (RCCD). The total latency for the 215/285 transmitter and 216A/286A receiver is: (T + TCCD) + (2*T + RCCD), where T = Clock period.

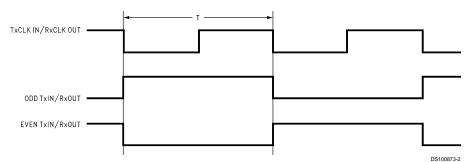


FIGURE 1. "Worst Case" Test Pattern

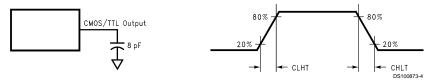


FIGURE 2. DS90CR286A/DS90CR216A (Receiver) CMOS/TTL Output Load and Transition Times

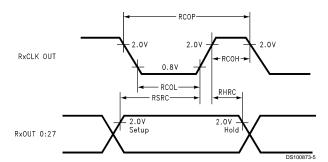


FIGURE 3. DS90CR286A/DS90CR216A (Receiver) Setup/Hold and High/Low Times

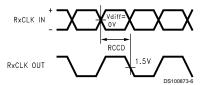


FIGURE 4. DS90CR286A/DS90CR216A (Receiver) Clock In to Clock Out Delay

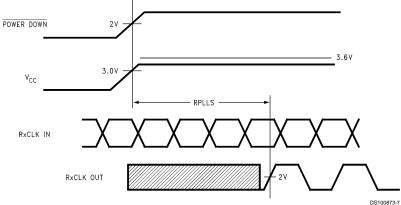


FIGURE 5. DS90CR286A/DS90CR216A (Receiver) Phase Lock Loop Set Time

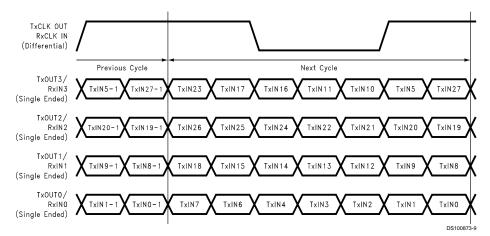


FIGURE 6. 28 Parallel TTL Data Inputs Mapped to LVDS Outputs - DS90CR286A

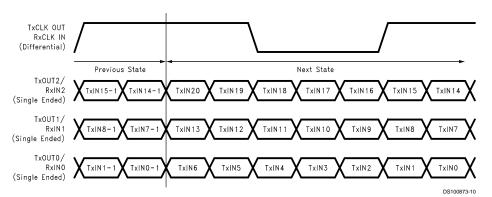
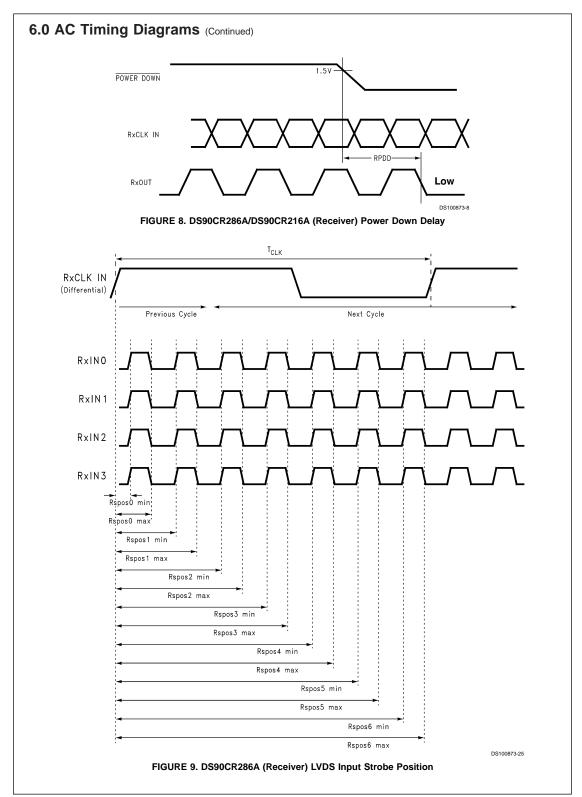
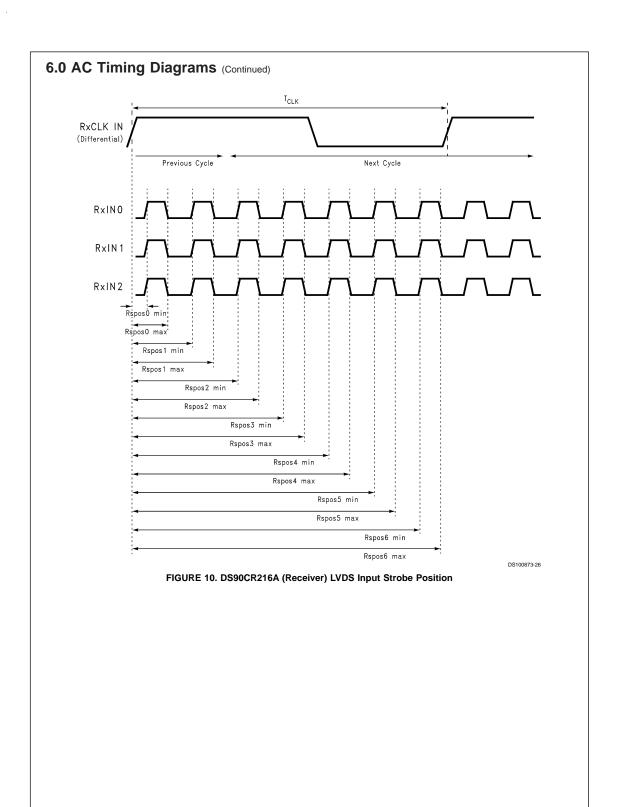
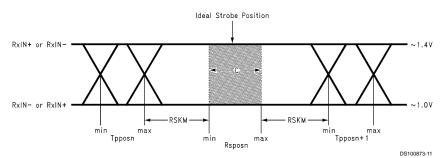





FIGURE 7. 21 Parallel TTL Data Inputs Mapped to LVDS Outputs - DS90CR216A

6.0 AC Timing Diagrams (Continued)

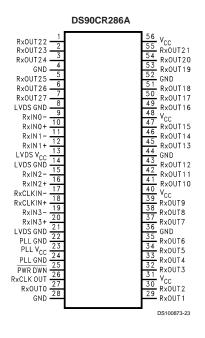
C — Setup and Hold Time (Internal data sampling window) defined by Rspos (receiver input strobe position) min and max Tppos — Transmitter output pulse position (min and max) RSKM = Cable Skew (type, length) + Source Clock Jitter (cycle to cycle) (Note 6) + ISI (Inter-symbol interference) (Note 7) Cable Skew — typically 10 ps-40 ps per foot, media dependent

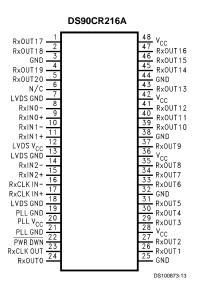
Note 6: Cycle-to-cycle jitter is less than TBD ps at 66 MHz. Note 7: ISI is dependent on interconnect length; may be zero.

FIGURE 11. Receiver LVDS Input Skew Margin

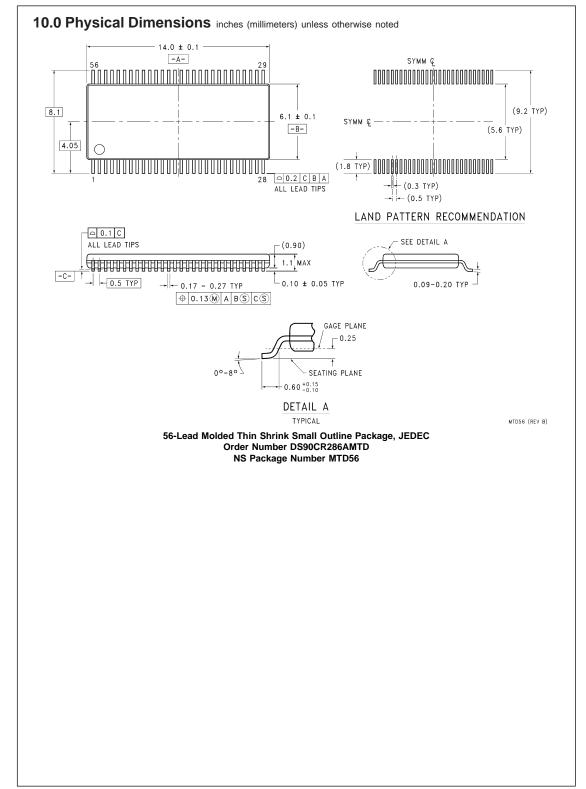
www.national.com

7.0 DS90CR286A Pin Description—28-Bit Channel Link Receiver

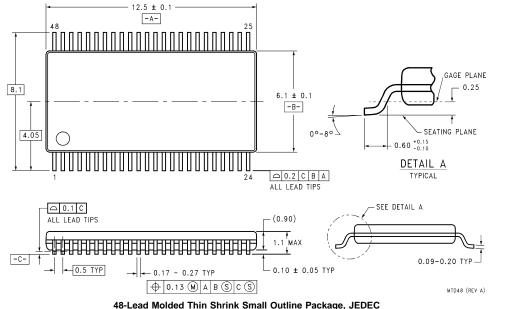

Pin Name	I/O	No.	Description
RxIN+	I	4	Positive LVDS differential data inputs.
RxIN-	I	4	Negative LVDS differential data inputs.
RxOUT	0	28	TTL level data outputs.
RxCLK IN+	ı	1	Positive LVDS differential clock input.
RxCLK IN-	I	1	Negative LVDS differential clock input.
RxCLK OUT	0	1	TTL level clock output. The rising edge acts as data strobe.
PWR DOWN	ı	1	TTL level input. When asserted (low input) the receiver outputs are low.
V _{cc}	I	4	Power supply pins for TTL outputs.
GND	I	5	Ground pins for TTL outputs.
PLL V _{CC}	I	1	Power supply for PLL.
PLL GND	I	2	Ground pin for PLL.
LVDS V cc	I	1	Power supply pin for LVDS inputs.
LVDS GND	I	3	Ground pins for LVDS inputs.


8.0 DS90CR216A Pin Description—21-Bit Channel Link Receiver

Pin Name	I/O	No.	Description
RxIN+	I	3	Positive LVDS differential data inputs. (Note 8)
RxIN-	ı	3	Negative LVDS differential data inputs. (Note 8)
RxOUT	0	21	TTL level data outputs.
RxCLK IN+	I	1	Positive LVDS differential clock input.
RxCLK IN-	I	1	Negative LVDS differential clock input.
RxCLK OUT	0	1	TTL level clock output. The rising edge acts as data strobe.
PWR DOWN	I	1	TTL level input. When asserted (low input) the receiver outputs are low.
V _{cc}	I	4	Power supply pins for TTL outputs.
GND	I	5	Ground pins for TTL outputs.
PLL V _{CC}	I	1	Power supply for PLL.
PLL GND	I	2	Ground pin for PLL.
LVDS V _{CC}	I	1	Power supply pin for LVDS inputs.
LVDS GND	I	3	Ground pins for LVDS inputs.


Note 8: These receivers have input failsafe bias circuitry to guarantee a stable receiver output for floating or terminated receiver inputs. Under these conditions receiver inputs will be in a HIGH state. If a clock signal is present, outputs will all be HIGH; if the clock input is also floating/terminated outputs will remain in the last valid state. A floating/terminated clock input will result in a LOW clock output.

9.0 Pin Diagram



www.national.com 1

10.0 Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

48-Lead Molded Thin Shrink Small Outline Package, JEDEC Order Number DS90CR216AMTD NS Package Number MTD48

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation

Tel: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com

www.national.com

National Semiconductor Europe

Fax: +49 (0) 1 80-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 1 80-530 85 85 English Tel: +49 (0) 1 80-532 78 32 Français Tel: +49 (0) 1 80-532 93 58

Italiano Tel: +49 (0) 1 80-534 16 80

National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466 Fax: 65-2504466

Email: sea.support@nsc.com

National Semiconductor Japan Ltd. Tel: 81-3-5639-7560 Fax: 81-3-5639-7507