

Electrical Characteristics

Parameter	Conditions	Min	Typ	Max	Units
Output Voltage	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	14.5	15	15.5	V
Input-Output Differential		2.0			V
Line Regulation	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=18 \mathrm{~V} \text { to } 30 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=20 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \end{aligned}$		2.0	10	mV
Line Regulation Over Temperature Range	$\mathrm{V}_{\mathrm{IN}}=18 \mathrm{~V}$ to $30 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=20 \mathrm{~mA}$,		20	20	mV
Load Regulation $\mathrm{V}_{0}{ }^{+}$ V_{0}^{-}	$\begin{aligned} & \mathrm{I}_{\mathrm{L}}=0 \mathrm{~mA} \text { to } 50 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}= \pm 30 \mathrm{~V}, \\ & \mathrm{~T}={ }_{\mathrm{j}} 25^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 3.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Load Regulation Over Temperature Range $\begin{aligned} & \mathrm{V}_{\mathrm{O}^{+}} \\ & \mathrm{V}_{0} \\ & \hline \end{aligned}$	$\mathrm{I}_{\mathrm{L}}=0 \mathrm{~mA}$ to $50 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}= \pm 30 \mathrm{~V}$		$\begin{aligned} & 4.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Output Voltage Balance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$			± 300	mV
Output Voltage Over Temperature Range	$\begin{aligned} & P \leq P_{\text {MAX }}, 0 \leq I_{\mathrm{O}} \leq 50 \mathrm{~mA}, \\ & 18 \mathrm{~V} \leq\left\|V_{\text {IN }}\right\| \leq 30 \end{aligned}$	14.27		15.73	V
Temperature Stability of V_{O}			± 0.3		\%
Short Circuit Current Limit	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		260		mA
Output Noise Voltage	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{BW}=100-10 \mathrm{kHz}$		150		$\mu \mathrm{Vrms}$
Positive Standby Current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		1.75	3.0	mA
Negative Standby Current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		3.1	5.0	mA
Long Term Stability			0.2		\%/kHr
Thermal Resistance Junction to Case (Note 5) LM325H Junction to Ambient Junction to Ambient	(Still Air) (400 Lf/min Air Flow)		$\begin{gathered} 20 \\ 215 \\ 82 \\ \hline \end{gathered}$		$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$
Junction to Ambient LM325N	(Still Air)		90		${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note 1: "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Operating ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits.
Note 2: That voltage to which the output may be forced without damage to the device.
Note 3: Unless otherwise specified these specifications apply for $T_{j}=0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ on $\mathrm{LM} 325, \mathrm{~V}_{\mathrm{IN}}= \pm 20 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=0 \mathrm{~mA}, \mathrm{I}_{\mathrm{MAX}}=100 \mathrm{~mA}, \mathrm{P}_{\mathrm{MAX}}=2.0 \mathrm{~W}$ for the H 10 Package.
Note 4: If the junction temperature exceeds $150^{\circ} \mathrm{C}$, the output short circuit duration is 60 seconds.
Note 5: Without a heat sink, the thermal resistance junction to ambient of the H 10 Package is about $155^{\circ} \mathrm{C} / \mathrm{W}$. With a heat sink, the effective thermal resistance can only approach the junction to case values specified, depending on the efficiency of the sink

Typical Performance Characteristics

Regulator
Dropout Voltage for
Negative Regulator

Load Transient Response

 for Positive Regulator

TIME (IMs/DIV

Standby Current Drain

Peak Output
Current vs
Junction Temperature

Load Transient Response
for Negative Regulator

TIME (1 1 s/DIV)
DS007776-21

Regulator Dropout Voltage for Positive Regulator

LM325 Maximum Average
Power Dissipation vs Ambient Temperature

Line Transient Response

 for Positive Regulator

TIME ($2 \mu \mu /$ DIV)

Typical Performance Characteristics (Continued)

Typical Applications

Typical Applications (Continued)

Note: Metal can (H) packages shown.
$I_{C L}=\frac{\text { Current Limit Sense Voltage (See Curve) }}{R_{C L}}$
\dagger Solid tantalum
t†Short pins 6 and 7 on dip
$\dagger \dagger \dagger R_{C L}$ can be added to the basic regulator between pins 6 and 5,1 and 2 to reduce current limit.
*Required if regulator is located an appreciable distance from power supply filter.
**Although no capacitor is needed for stability, it does help transient response. (If needed use $1 \mu \mathrm{~F}$ electrolytic.)
${ }^{* * *}$ Although no capacitor is needed for stability, it does help transient response. (If needed use $10 \mu \mathrm{~F}$ electrolytic.)

Positive Current Dependent Simultaneous Current Limiting

$\mathrm{I}_{\mathrm{CL}}+=\frac{\frac{\mathrm{V}_{\text {SENSENEG }}}{2}+\mathrm{V}_{\text {BEQ1 }}}{2}$
$\mathrm{I}_{\mathrm{CL}^{+}}=\frac{\mathrm{V}_{\text {SENSE NEG }}+\mathrm{V}_{\text {DIODE }}}{R_{\mathrm{CL}^{-}}}$
$\mathrm{R}_{\mathrm{CL}^{+}}=\frac{\mathrm{V}_{\mathrm{SENSE}^{+}}}{1.1 \mathrm{I}_{\mathrm{CL}}{ }^{+}}$

ICL ${ }^{+}$Controls Both Sides of the Regulator

Typical Applications (Continued)

Positive Reg.
$\mathrm{I}_{\text {MAX }}=2.0 \mathrm{~A}$
$\mathrm{I}_{\mathrm{SC}}{ }^{+}=750 \mathrm{~mA}$
$@_{A}=25^{\circ} \mathrm{C}$
$+V_{\text {IN }}=+25 \mathrm{~V}$
Negative Reg.
$\mathrm{I}_{\text {MAX }}=2.0 \mathrm{~A}$
$\mathrm{I}_{\mathrm{SC}}=750 \mathrm{~mA}$
$@_{A}=25^{\circ} \mathrm{C}$
$-\mathrm{V}_{\mathrm{IN}}=-25 \mathrm{~V}$

Resistor Values

	$\mathbf{1 2 5}$	$\mathbf{1 2 6}$
R1	18	20
R2	310	180
R3	2.4 k	1.35 k
R6	300	290
R_{CL}	0.7	0.9

Typical Applications (Continued)

†Solid tantalum

t†Short pins 6 and 7 on dip
*Required if regulator is located an appreciable distance from power supply filter.
${ }^{* *}$ Although no capacitor is needed for stability, it does help transient response. (If needed use $1 \mu \mathrm{~F}$ electrolytic.)
Physical Dimensions inches (millimeters) unless otherwise noted

Metal Can Package (H)
Order Number LM325H
NS Package Number H10C

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation	National Semiconductor Europe	National Semiconductor Asia Pacific Customer	National Semiconductor Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 8586	Response Group	Tel: 81-3-5639-7560
Tel: 1-800-272-9959	Email: europe.support@nsc.com	Tel: 65-2544466	Fax: 81-3-5639-7507
Fax: 1-800-737-7018	Deutsch Tel: +49 (0) 1 80-530 8585	Fax: 65-2504466	
Email: support@nsc.com	English Tel: +49 (0) 1 80-532 7832	Email: sea.support@nsc.com	
	Français Tel: +49 (0) 1 80-532 9358		
www.national.com	Italiano Tel: +49 (0) 1 80-534 1680		

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

