

National Semiconductor

June 1999

LM325 **Dual Voltage Regulator**

General Description

This dual polarity tracking regulator is designed to provide balanced positive and negative output voltages at current up to 100 mA, and is set for ±15V outputs. Input voltages up to ±30V can be used and there is provision for adjustable current limiting. The device is available in two package types to accommodate various power requirements and temperature ranges.

Features

- ±15V tracking outputs
- Output current to 100 mA
- Output voltage balanced to within 2%
- Line and load regulation of 0.06%
- Internal thermal overload protection
- Standby current drain of 3 mA
- Externally adjustable current limit
- Internal current limit

Schematic and Connection Diagrams 0 (2) (14 0 (18) (11 () H10 () 14-LEAD DI **-0** (5) (4) DS007776-1

Metal Can Package

Case connected to -VIN

Top View Order Number LM325H See NS Package Number H10C

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Output Short-Circuit Duration (Note 4)

Continuous

Operating Conditions

Operating Free Temperature Range 0°C to +70°C
Storage Temperature Range -65°C to +150°C
Lead Temperature (Soldering, 10 sec.) 300°C

Electrical Characteristics

Parameter	Conditions	Min	Тур	Max	Units
Output Voltage	T _i = 25°C	14.5	15	15.5	V
Input-Output Differential		2.0			V
Line Regulation	$V_{IN} = 18V \text{ to } 30V, I_L = 20 \text{ mA},$ $T_j = 25^{\circ}C$		2.0	10	mV
Line Regulation Over Temperature Range	V _{IN} = 18V to 30V, I _L = 20 mA,		20	20	mV
Load Regulation V _O ⁺	$I_L = 0$ mA to 50 mA, $V_{IN} = \pm 30V$, $T = {}_{1}25^{\circ}C$		3.0	10	mV
V _O -	1 1 20 0		5.0	10	mV
Load Regulation Over Temperature Range	$I_1 = 0 \text{ mA to } 50 \text{ mA}, V_{IN} = \pm 30 \text{V}$				
V _o ⁺			4.0	20	mV
V _O -			7.0	20	mV
Output Voltage Balance	$T_j = 25^{\circ}C$			±300	mV
Output Voltage Over Temperature Range	$P \le P_{MAX}, \ 0 \le I_{O} \le 50 \text{ mA},$ $18V \le V_{IN} \le 30$	14.27		15.73	V
Temperature Stability of V _O			±0.3		%
Short Circuit Current Limit	$T_j = 25^{\circ}C$		260		mA
Output Noise Voltage	$T_j = 25^{\circ}C$, BW = 100 – 10 kHz		150		μVrms
Positive Standby Current	$T_j = 25^{\circ}C$		1.75	3.0	mA
Negative Standby Current	$T_j = 25^{\circ}C$		3.1	5.0	mA
Long Term Stability			0.2		%/kHr
Thermal Resistance Junction to Case (Note 5)					
LM325H			20		°C/W
Junction to Ambient	(Still Air)		215		°C/W
Junction to Ambient	(400 Lf/min Air Flow)		82		°C/W
Junction to Ambient LM325N	(Still Air)		90		°C/W

Note 1: "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Operating ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits.

www.national.com

 $[\]textbf{Note 2:} \ \ \textbf{That voltage to which the output may be forced without damage to the device.}$

Note 3: Unless otherwise specified these specifications apply for T_j = 0°C to +125°C on LM325, V_{IN} = ±20V, I_L = 0 mA, I_{MAX} = 100 mA, P_{MAX} = 2.0W for the H10 Package.

Note 4: If the junction temperature exceeds 150°C, the output short circuit duration is 60 seconds.

Note 5: Without a heat sink, the thermal resistance junction to ambient of the H10 Package is about 155°C/W. With a heat sink, the effective thermal resistance can only approach the junction to case values specified, depending on the efficiency of the sink.

Typical Performance Characteristics

Load Regulation

Standby Current Drain

Regulator Dropout Voltage for Positive Regulator

Regulator Dropout Voltage for Negative Regulator

Peak Output Current vs Junction Temperature

LM325 Maximum Average Power Dissipation vs Ambient Temperature

Load Transient Response for Positive Regulator

Load Transient Response for Negative Regulator

Line Transient Response for Positive Regulator

Typical Performance Characteristics (Continued)

Line Transient Response for Negative Regulator

Ripple Rejection

Output Impedance vs Frequency

Typical Applications

Basic Regulator†††

Typical Applications (Continued)

2.0 Amp Boosted Regulator with Current Limit

Note: Metal can (H) packages shown.

$$I_{CL} = \frac{\text{Current Limit Sense Voltage (See Curve)}}{R_{CL}}$$

- †Solid tantalum
- $\dagger\dagger Short$ pins 6 and 7 on dip
- †††R_{CL} can be added to the basic regulator between pins 6 and 5, 1 and 2 to reduce current limit.
- *Required if regulator is located an appreciable distance from power supply filter.
- **Although no capacitor is needed for stability, it does help transient response. (If needed use 1 μF electrolytic.)
- ***Although no capacitor is needed for stability, it does help transient response. (If needed use 10 μF electrolytic.)

Positive Current Dependent Simultaneous Current Limiting

$$I_{CL}^{+} = \frac{\frac{V_{SENSE \, NEG}}{2} + V_{BEQ1}}{R1}$$

$$I_{CL}^{+} = \frac{V_{SENSE \, NEG} + V_{DIODE}}{RCL}$$

 $I_{CL}^{\ +}$ Controls Both Sides of the Regulator.

www.national.com

Typical Applications (Continued)

Boosted Regulator With Foldback Current Limit

DS007776-9

Positive Reg. $I_{MAX} = 2.0A$ $I_{SC}^+ = 750 \text{ mA}$ $@T_A = 25^{\circ}C$ $+V_{IN} = +25V$ Negative Reg. $I_{MAX} = 2.0A$ $I_{SC} = 750 \text{ mA}$ $@T_A = 25^{\circ}C$ $-V_{IN} = -25V$

Resistor Values

	125	126
R1	18	20
R2	310	180
R3	2.4k	1.35k
R6	300	290
R _{CL}	0.7	0.9

www.national.com 6

Typical Applications (Continued)

†Solid tantalum

^{†1}Short pins 6 and 7 on dip
*Required if regulator is located an appreciable distance from power supply filter.
**Although no capacitor is needed for stability, it does help transient response. (If needed use 1 µF electrolytic.)

Physical Dimensions inches (millimeters) unless otherwise noted

Metal Can Package (H) Order Number LM325H NS Package Number H10C

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation

Tel: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com

www.national.com

National Semiconductor Europe

Fax: +49 (0) 1 80-530 85 86

Email: europe.support@nsc.com Deutsch Tel: +49 (0) 1 80-530 85 85 English Tel: +49 (0) 1 80-532 78 32 Français Tel: +49 (0) 1 80-532 93 58 Italiano Tel: +49 (0) 1 80-534 16 80

National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466

Fax: 65-2504466 Email: sea.support@nsc.com

National Semiconductor Japan Ltd. Tel: 81-3-5639-7560 Fax: 81-3-5639-7507